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Abstract

The protein complex including Mre11, Rad50, and Nbs1 (MRN) functions in DNA double-strand 

break repair to recognize and process DNA ends as well as signal for cell cycle arrest. Amino acid 

sequence similarity and overall architecture make Rad50 a member of the structural maintenance 

of chromosome (SMC) protein family. Like SMC proteins, Rad50 function depends on ATP 

binding and hydrolysis. All current evidence indicates that ATP binding and hydrolysis cause 

architectural rearrangements in SMC protein complexes that are important for their functions in 

organizing DNA. In the case of the MRN complex, the functional significance of ATP binding and 

hydrolysis are not yet defined. Here we review the data on the ATP-dependent activities of MRN 

and their possible mechanistic significance. We present some speculation on the role of ATP for 

function of the MRN complex based on the similarities and differences in the molecular 

architecture of the Rad50-containing complexes and the SMC complexes condensin and cohesin.
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Introduction

The structural maintenance of chromosome (SMC) proteins, as their name implies, are 

involved in organizing DNA to assure proper function of chromosomes. Stated in a 

simplified way, condensins arrange and organize DNA within chromosomes and cohesins 

organize and arrange DNA between different chromosomes. SMC family proteins also have 

important roles organizing DNA for repair. DNA damage, such as double-strand breaks 

(DSBs), can disrupt chromosome architecture. DNA damage repair, especially repair of 

DSBs, is an essential element of maintaining or re-establishing proper DNA arrangement in 

chromosomes. The SMC family member Rad50, in complex with Mre11 and Nbs1, is a 

required component of DSB repair. Here we introduce the DNA repair functions of Rad50-

containing complexes and compare their architecture with the SMC complexes cohesin and 

condensin. ATP binding and hydrolysis are important for all of these protein complexes. We 

review what is known about the molecular architectural effects and functional significance 

of ATPase activity for these proteins and highlight unresolved issues. The accumulated data 

suggest testable ideas about the architectural changes in the Rad50 complex and how these 

may be linked to ATPase activity.

Double-strand break repair

DNA double-strand breaks (DSBs) are one of the most damaging occurrences for an 

organism. All organisms, therefore, have evolved intricate pathways to efficiently and 

systematically repair these breaks. Unrepaired DSBs can cause cell-cycle checkpoint arrest, 

ultimately leading to cell death. Improper repair can cause genome rearrangements, which in 

multicellular organisms are a common precursor to cancer. Eukaryotes have two main DSB 

DNA repair mechanisms: nonhomologous end-joining and homologous recombination. 

Nonhomologous end-joining rejoins DNA breaks with little or no homology, often resulting 

in deletions and insertions in the genome. Some breaks are directly ligated or joined after 

minimal processing. These sequences are aligned and the remaining DNA is removed via a 

nuclease or filled in by a DNA polymerase and then re-ligated (Weterings and van Gent 

2004). Homologous recombination, in contrast, is an error-free, ‘accurate’ genetic 

recombination pathway that predominates in the S and G2 phases as it uses the undamaged 

homologous duplex as a template for repair synthesis (Wyman et al. 2004).

Homologous recombination requires DNA processing by architectural, structural and 

enzymatic factors. Homologous recombination begins with the recognition of the DSB 

followed by 5′ to 3′ nuclease processing which yields 3′ single-stranded DNA (ssDNA). 

This 3′-ssDNA is covered by RPA (replication protein A), which is subsequently displaced 

by the DNA strand exchange protein Rad51. Assembly of Rad51 onto properly processed 

ssDNA is aided by recombination mediators such as Rad54, Rad54B, Rad50/Mre11, the 

Rad51 paralogues (XRCC2, XRCC3, Rad51B, Rad51C, and Rad51D), and BRCA2 

(Symington 2002; Wyman et al. 2004; Wyman and Kanaar 2006). Rad51 forms a 

nucleoprotein filament on ssDNA that invades homologous DNA segments for eventual 

polymerase-mediated extension (West 2003). The process is then completed with strand 

resolution and ligation. DSB repair pathways are closely linked to cell-cycle checkpoint 

signaling via the ATM checkpoint kinase (D’Amours and Jackson 2002; Assenmacher and 
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Hopfner 2004). ATM activation causes cell-cycle arrest until the DNA breaks are repaired 

or cells undergo apoptosis (Khanna and Jackson 2001).

Multiple roles of the MRN complex in DSB repair

The MRN complex is involved at several distinct steps in DSB repair including break 

recognition, DNA end processing, and signaling for cell cycle arrest (Fig. 1). The MRN 

complex is a primary damage sensor involved in the early steps of DSB repair in both 

human and yeast cells (D’Amours and Jackson 2002). The importance of Rad50, Mre11, 

and Nbs1 genes in mammals is illustrated by the cell nonviability or embryonic lethality 

resulting when any of these three genes is disrupted (Xiao and Weaver 1997; Luo et al. 

1999; Zhu et al. 2001). In humans, mutations in Nbs1 cause Nijmegen breakage syndrome 

(NBS). NBS patients show radiation sensitivity, immune system deficiency, and a high rate 

of malignancy (Shiloh 1997). NBS patients show phenotypes similar to ataxia-telangiectasia 

(A-T), a related radiation sensitivity disorder. A-T is caused by mutations in the A-T 

mutated gene (ATM), which encodes a large protein kinase that initiates DNA damage 

signaling in response to DSBs. A connection between MRN and ATM arose with the 

identification of two families with A-T-like disorder (ATLD), clinically identical to A-T but 

caused by mutations in Mre11 (Stewart et al. 1999).

The link between MRN recognition of DNA damage and activation of ATM cell-cycle 

checkpoint signaling is also supported by biochemical data. ATM activation is suggested to 

involve two steps, first recruitment of ATM dimers to sites of DNA damage where they 

dissociate into monomers then activation of ATM monomers to become functional kinases 

(Dupre et al. 2006). ATM then phosphorylates many proteins important for the DNA 

damage response. Nbs1 is required to activate ATM and is also a substrate for ATM kinase 

activity (Lee and Paull 2004; Paull and Lee 2005). The MRN complex has additional 

functional and physical interactions with other DNA repair and cell-cycle checkpoint 

proteins (reviewed in Assenmacher and Hopfner 2004).

Structure and function of MRN components

All DSB repair functions of MRN involve interactions with DNA that require at least Rad50 

and Mre11. Homologues of Rad50 and Mre11 exist in archaea, fission and budding yeasts, 

as well as higher metazoans (Hopfner et al. 2000a; D’Amours and Jackson 2002). The 

Mre11-Rad50 (MR) complex has essential functions early in DSB repair, based both on time 

of accumulation at breaks in cells and its biochemical activities (Assenmacher and Hopfner 

2004; Lisby et al. 2004). The associated Nbs1 (also known as nibrin) or Xrs2 proteins (MRN 

or MRX complexes), in mammalian and yeast cells, respectively, link the Mre11-Rad50 

complex to cell-cycle checkpoint activation (Assenmacher and Hopfner 2004).

Rad50 resembles the SMC proteins involved in chromosome cohesion and chromatin 

condensation (Aravind et al. 1999; Strunnikov and Jessberger 1999). SMC proteins all 

contain Walker A and B nucleotide (NTP)-binding motifs at their amino- and carboxy-

terminal ends, respectively. These motifs are separated by long stretches of amino acids that 

form an extended coiled-coil structure. The coiled coils fold back on themselves to form 

intramolecular association of the ATPase domains at one end and a so-called hook or hinge 
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domain at the other end of an elongated structure (Fig. 2a). These structural elements and 

their architectural arrangement are exploited for various functions of Rad50 and related 

proteins. The core Rad50 complex is a heterotetramer of Mre11 and Rad50 (M2R2) arranged 

such that the DNA-binding sites on the Mre11 dimer are close to the two Rad50 ATPase 

domains (Fig. 2b) (de Jager et al. 2001b; Hopfner et al. 2001). The Mre11/Rad50 (MR) 

coiled coils are notably flexible (de Jager et al. 2001b; van Noort et al. 2003; Moreno-

Herrero et al. 2005). RM binds to DNA via the globular domain with the coiled coils 

protruding (de Jager et al. 2001b). DNA is an allosteric effector of the RMN complex as 

binding DNA induces reorientation of the RAD50 coiled coils to become parallel to one 

another favoring the inter-complex interactions needed for DNA tethering and organizing 

DNA for eventual repair (Fig. 2c) (Moreno-Herrero et al. 2005).

Mre11 orthologues have a number of enzymatic activities that may play important roles in 

DNA end processing for eventual repair. Activities identified in vitro include: Mn2+-

dependent ssDNA endonuclease, double-strand DNA (dsDNA) 3′ to 5′ exonuclease, and 

DNA hairpin opening enzymatic activities (Paull and Gellert 1998). In this study, both 

exonuclease and hairpin opening activities are stimulated by Rad50 and ATP. X-ray 

structures of P. furiosus Mre11 showed that the catalytically active center of the protein has 

two domains. Domain 1 consists of the N-terminal calcineurin-like phosphoesterase with 

nuclease catalytic motifs and coordinates Mn2+. Domain 2 consists of C-terminal DNA-

binding domains with potential Rad50-interacting domains (Hopfner et al. 2001). The 

structure of P. furiosus Mre11 bound to Mn2+ and a 5′-dAMP nucleotide hydrolysis product 

indicates that Mre11 has 3′ to 5′ directionality. This polarity is opposite that required to 

process double-stranded DNA ends into the 3′ single-stranded overhangs needed for the 

strand exchange step of homologous recombination.

In vivo a role for MRN in DNA end processing for homologous recombination would 

require reversing the directionality of the Mre11 nuclease or an additional 5′ to 3′ 

exonuclease. Mre11, Rad50, and Xrs2 in S. cerevisiae are involved in producing 3′-ssDNA 

from DSBs. This is based on the phenotype of Rad50 and Mre11 mutants, which stall during 

the initiation of meiosis because DSBs are formed but not resected (Alani et al. 1990). 

However, Mre11 is a 3′ to 5′ exonuclease with or without Rad50 (Paull and Gellert 1998), 

suggesting that other factors are involved in creating 3′ ends. Candidate factors have been 

identified as CtIP in mammals, Sae2 in S. cerevisiae, and Ctp1 in S. pombe, proteins that 

interact with Mre11 to promote DSB resection (Clerici et al. 2005; Lengsfeld et al. 2007; 

Limbo et al. 2007; Sartori et al. 2007).

Cell-cycle checkpoint signaling requires the third component in the MRN complex, Nbs1 (or 

its functional homologue Xrs2 in Saccharomyces cerevisiae) (D’Amours and Jackson 2002; 

Stracker et al. 2004). The Nbs1 protein family is less conserved and has so far been 

described only in mammals. On current evidence, including reduced Nbs1 association with 

MR complex including a mutant Mre11 and purification of a stable Mre11-Nbs1 complex, it 

is expected that Nbs1 associates with the complex via interaction with Mre11 (Stewart et al. 

1999; Lee et al. 2003). However, the protein–protein interactions among the three 

components necessary for Nbs1 association and the architectural arrangement of Nbs1 with 

respect to the other components have not yet been determined. Because of its large overall 
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mass and the very elongated form of Rad50, attempts to determine the stoichiometry of 

Nbs1 within the complex have so far not succeeded (Lee et al. 2003). Indeed, our current 

data (E. van der Linden. and C. Wyman, unpublished) is consistent with the remark of Lee 

et al. that ‘the triple complex may in fact be a collection of complexes with varying 

stoichiometry’.

ATP modulates molecular architecture

ATP binding and hydrolysis cause architectural rearrangements in SMC proteins. A 

functional ATPase is formed in the characteristic SMC structure when intramolecular 

antiparallel coiled-coil interactions bring the N-terminal Walker A and C-terminal Walker B 

nucleotide-binding domains together (de Jager et al. 2001b; Haering et al. 2002; Hopfner et 

al. 2002). These nucleotide-binding domains place SMC proteins in the conserved family of 

ATP-binding cassette (ABC) ATPases (Hopfner and Tainer 2003; Ye et al. 2004). Although 

proteins in this family have diverse functions, their ATPase modules share structural and 

mechanistic properties. ATP binds at a dimer interface whereby the Walker A and B 

nucleotide-binding domains contact a highly conserved signature motif (C motif) from a 

second protein (Fig. 3) (Hopfner et al. 2000b). Current evidence supports a picture of 

functional SMC dimers whereby ATP binding to the two ATPase head domains triggers 

engagement of two subunits, and subsequent ATP hydrolysis leads to disengagement of this 

dimer interface (Figs. 2b and c) (Arumugam et al. 2003; Weitzer et al. 2003; Lu et al. 2005).

This ATPase cycle is well described for the B. subtilis SMC protein where specific 

mutations block the ATPase cycle at different stages (Hirano et al. 2001; Hirano and Hirano 

2004, 2006). A mutation in the C motif that allows ATP binding but blocks ATP-driven 

dimer engagement also abolished ATP hydrolysis, supporting the idea that head–head 

engagement is essential for ATP hydrolysis. A so-called transition state mutant stabilizes the 

dimeric state by slowing down ATP hydrolysis. Similarly, the eukaryotic SMC1/3 complex 

of cohesin binds and hydrolyzes ATP at a dimer interface. There is added complexity here 

as the ATPase activity of cohesin is controlled by an additional subunit, Scc1, interacting 

with the ATPase domains of SMC1/3 (Arumugam et al. 2006). The ATPase cycle is 

common to SMC proteins and ABC transporters. How this ATP-dependent engagement–

disengagement cycle facilitates the diverse functions of the different ABC ATPases has not 

yet been mechanistically defined. ATP hydrolysis is essential for the SMC complexes 

involved in chromosome segregation and condensation, but its specific role in enabling or 

modulating the several predicted DNA transactions is far from understood.

Bacteria have additional SMC family members involved in DNA repair whose function 

appears to be modulated by ATP. Sequence homology comparison shows that RecN and 

SbcC proteins have a similar organization to eukaryotic SMCs (SMC1/3, SMC2/4, SMC5/6, 

or Rad50) (Hopfner and Tainer 2003; Sanchez et al. 2008). Additionally, the crystal 

structure of a bacterial RecF protein, involved in homologous recombination DNA repair, 

shows a high degree of structural similarity with the ATPase head of RAD50 (Koroleva et 

al. 2007). The SbcC and SbcD together form a complex with an architectural arrangement 

similar to eukaryotic MR including a CXXC amino acid motif that defines the hook domain 

in the long coiled coil (Connelly et al. 1998; Connelly and Leach 2002). Reminiscent of the 
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MR complex, purified SbcCD is an ATP-dependent double-stranded exonuclease and ATP 

independent single-stranded endonuclease, with nuclease activities that depend on Mn2+ 

(Connelly and Leach 1996; Connelly et al. 1997). Biochemical studies also point out several 

functional similarities between RecN and eukaryotic MRN. Although RecN is an ssDNA-

dependent ATPase, it binds DNA independently of ATP. RecN forms large DNA networks 

with ssDNA or duplex molecules containing ssDNA regions in the presence of ATP or ADP 

(Sanchez and Alonso 2005; Sanchez et al. 2008). Similarly to Rad50, the primary sequence 

of RecN predicts that a functional ATP binding site can be formed by association of the N- 

and C-terminal Walker A and B motifs.

The role of ATP in DNA binding by Rad50 complexes

The B. subtilis SMC protein provides some specific clues as to how ATP binding and 

hydrolysis may influence DNA binding in related proteins. B. subtilis SMC is a homodimer 

that can bind DNA via its hinge domain (Hirano and Hirano 2006). Two different forms of 

DNA binding modulated by the ATPase cycle have been described (Hirano and Hirano 

2006). A less stable interaction with DNA, called the sitting mode, stimulates ATPase 

activity leading to head–head disengagement and opening of the proposed ring formed by 

the coiled coils, which are still held as a dimer via the hinge–hinge interface (Fig. 2b 

compared to Fig. 2c). This disengagement of the ATPase domain interface is a prerequisite 

for the formation of more stable DNA binding, called the hooking mode. In this more stable 

binding mode, ATP has a positive effect on DNA binding as head–head engagement can 

lead to the capture of a second DNA duplex within a ring formed when the coiled coils are 

connected at both hinge and ATPase ends. These ideas are conceptually similar to the ring 

model proposed for the function of eukaryotic cohesin complex (Haering et al. 2002), in 

which two DNA duplexes are held within a protein ring formed by association of the coiled 

coils at both hinge and ATPase head domains (Haering et al. 2008), although here specific 

DNA binding sites have not been defined. The B. subtilis SMC, like other SMCs, interacts 

via its ATPase domain with non-SMC proteins, in this case ScpA and ScpB (Hirano 2005). 

Binding of ScpA and ScpB suppresses the ATPase activity, thereby stabilizing engagement 

of the ATPase domains (Hirano and Hirano 2004).

Although the present models for the function of the several SMC members are still 

speculative, the above data show that the ATPase cycle is linked to changing interactions 

among the subunits and possibly regulates DNA binding in multiple ways. Various studies 

suggest that ATP binding or hydrolysis is important for MR(N) function. ATP likely acts as 

a structural switch that changes the conformation of MR(N). The addition of ATP, and more 

so AMP-PNP, increased the preference of purified human MR for forming large oligomers 

on DNA substrates with 3′-overhangs compared to blunt ends and 5′-overhangs (de Jager et 

al. 2002). Based on x-ray crystallography of isolated ATPase domains, ATP binding causes 

two major structural rearrangements to the ATPase domain of Rad50. Firstly, there is a 30° 

rotation of the C-terminal lobe relative to the N-terminal lobe; and secondly, the two 

ATPase motifs of Rad50 form into a compact homodimer (Hopfner et al. 2001). It was 

proposed that ATP-induced rotation repositions bound DNA with respect to Mre11 (Hopfner 

et al. 2001). The specific roles of the ATP-induced conformational changes within the 

context of the complete RMN complex are still to be elucidated.
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A specific requirement for ATP in DNA binding by the MR(N) complex has been suggested 

in several studies, but not observed in others. Rad50 originally purified by itself from S. 

cerevisiae (Raymond and Kleckner 1993) bound DNA dependently on ATP in a filter-

binding assay. Similarly, a protein construct including the N- and C-terminal ATPase 

domains of P. furiosus Rad50 (hereafter referred to as pfRad50cd for catalytic domain) 

dimerized in the presence of ATP, as determined by dynamic light scattering (Hopfner et al. 

2000b). In this same study, an electrophoretic mobility shift assay (EMSA) showed that the 

same concentrations of pfRad50cd bound more DNA in the presence of ATP. However, 

purified complexes of human MR or MRN exhibited ATP-independent DNA binding in one 

study (Paull and Gellert 1999) but nucleotide and NBS1-dependent DNA binding in another 

(Lee et al. 2003). Amino acid substitutions in the conserved ATP binding signature motif of 

human RAD50 abolish DNA binding by the resulting MRN complex (Moncalian et al. 

2004), also implying that ATP is required for DNA binding. However substantial DNA 

binding by human MR complex in the absence of added nucleotides was observed in EMSA 

assays as well by SFM imaging that demonstrated nucleotide-independent DNA binding, 

oligomerization, and tethering (de Jager et al. 2001b). A careful look at these different 

studies shows some important differences that may help clarify the apparently disparate 

results.

Binding of protein to a substrate, DNA in this case, is characterized by association and 

dissociation constants related to concentration. Various DNA binding studies, described 

above, report somewhat different behavior of Rad50-containing complexes. These reported 

differences may of course be due to varying conditions for the binding reactions and assays. 

However, any change in the implied affinity of protein for DNA, due to presence or absence 

of cofactors, would be due to differences in binding constants. The association constants for 

Rad50, or complexes including Rad50, binding to DNA have not been rigorously 

determined, and may be difficult to sort out for reasons described below. Nevertheless, 

apparent DNA-binding activity depends on the concentration of protein and DNA, and these 

factors differ among the published reports. Nucleotide-independent DNA binding is 

observed by EMSA and SFM imaging at MR protein concentrations in the range of 10–100 

nM (de Jager et al. 2001b, 2002). Varying nucleotide-dependent binding is observed in 

studies where DNA substrates and protein complex are present in low nanomolar 

concentrations (Paull and Gellert 1999; Lee et al. 2003). Comparing these studies indicates 

that large differences in DNA binding behavior are observed with 2–3-fold changes in 

protein concentration. This may indicate that the Kd for MR or MRN binding to DNA is in 

the range of 10 nM. It is also possible that the purified proteins used in these studies may 

differ slightly in composition, quality, and specific activity.

In addition to considerations of the amount and quality of protein used, the type of DNA in 

the different assays may influence apparent binding affinity. EMSA assays typically use 

relatively short DNA, in the range of 50–160 nt or bp in the studies cited above, which 

would accommodate binding of one or a few MR(N) complex(es). The SFM imaging 

experiments use longer DNA in the range of 1–5 kbp. Binding of MR(N) to longer DNA 

substrates, on the order of 1 kbp, may involve protein–protein interaction in addition to 

protein–DNA interaction. SFM imaging shows that the longer DNA is bound by oligomeric 
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assemblies in which protein–DNA complex formation and stability could be influenced by 

favoring interactions among proteins brought near each other by binding to DNA. The 

multiple DNA–protein and protein–protein interactions taking place on DNA substrates 

capable of binding multiple MR (N) complexes make it difficult to determine simple 

protein–DNA affinities and binding constants.

One way to interpret these reports of ATP-dependent and ATP-independent DNA binding 

by MR and MRN is that there are different DNA binding sites and that ATP effects access to 

or assembly of DNA-binding sites. This idea reflects the proposed different DNA binding 

modes and their control by ATP binding described for B. subtilis SMC (Hirano and Hirano 

2006). For the MR complex, different DNA-binding sites are expected as separately both 

Mre11 and Rad50 bind DNA (Paull and Gellert 1998; Raymond and Kleckner 1993; de 

Jager et al. 2001a; Hopfner et al. 2000a). Whereas DNA binding by Mre11 is ATP 

independent, ATP is required for Rad50 alone to bind DNA. Thus the different effects of 

ATP on DNA binding by MR or MRN complexes may reflect binding to these two different 

sites. In addition, the access to DNA-binding sites in the protein complex may depend on 

ATP binding-induced changes in molecular architecture.

By analogy with well-described SMC proteins, it is expected that ATP binding to Rad50 

will cause ATPase domains to engage as a dimers and ATP hydrolysis will cause 

disengagement. X-ray crystallographic studies of pfRad50 catalytic domain reveal a 30° 

rotation of domains relative to each other induced by ATP binding (Hopfner et al. 2000b). 

Interestingly, biochemical analysis of eukaryotic MR shows enhanced protein–DNA 

interaction with AMP-PNP (a nonhydrolyzable analogue of ATP) (Lee et al. 2003). These 

authors reasoned that AMP-PNP binding might block DNA release that is otherwise 

triggered by ATP hydrolysis. They suggest that the requirement for a nonhydrolyzable ATP 

analogue implies rapid ATP hydrolysis by MRN. However ATP turnover rates for MR are 

rather slow, ranging from 0.026 to 0.08 per min per MR complex (de Jager et al. 2002; 

Bhaskara et al. 2007). A clearer picture of the importance of ATP in Rad50 complex 

function will require further consolidation of the wealth of available data, as well as 

consideration of more subtle roles of nucleotide cofactors. For instance, possible effects of 

DNA binding on MR affinity for and exchange of bound nucleotides has not been 

determined, nor are the kinetics of ADP release well defined. These mechanistically 

interesting events are possibly linked to changes in protein complex architecture during the 

ATPase cycle. In addition, the discussion we present here predicts new aspects of MR(N) 

function in organizing DNA that could be controlled in the ATPase cycle. These structure–

function connections include: (1) the existence of different binding sites or modes in the 

MR(N) complexes, (2) the importance of protein–protein interactions for controlling DNA 

binding, and (3) architectural changes in MR(N) that could influence inter- or intra-complex 

contacts and subsequently control formation of or access to DNA-binding sites.

Rad50 and SMC complexes; similarities and differences

Some speculation on the role of ATP in DNA binding and function can be considered on the 

basis of the similarities and differences in the molecular architecture of Rad50 complex, 

condensin, and cohesin (Fig. 2). Rad50 and the other SMC proteins have in common a very 
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elongated overall structure due to an extended amino acid region encoding a coiled coil, up 

to 50 nm long. At one end of this elongated coiled coil, the juxtaposed N- and C-terminal 

domains form a functional ATPase. The other end of the coiled coil, the apex where the 

amino acid sequence turns back on itself, can be described in all of these proteins as an 

interaction domain (Fig. 2a). Rad50, condensin, and cohesin are all arranged in dimeric 

complexes of two elongated structures. The manner in which the elongated coiled-coil 

structures are connected and the resulting disposition of the ATPase domains differ between 

Rad50 and the SMCs cohesin and condensin (Fig. 2b). Cohesin and condensin dimerize by a 

stable interface at the globular ‘hinge’ domains located at the coiled-coil apex. This places 

the ATPase domains of the SMCs tethered at the ends of two long (and possibly flexible) 

coiled coils. In contrast, the smaller CxxC amino acid motif at the Rad50 coiled-coil apex is 

not a stable dimerization domain (Fig. 4). Two Rad50s are included in complexes by 

interaction with Mre11, which is a stable dimer alone and binds Rad50 along the coiled coils 

near the ATPase domain (Hopfner et al. 2001). Cohesin and condensin function together 

with partner proteins that interact at or near the ATPase domains. Inclusion of the SMC 

partner proteins in complexes modulates association of the ATPase domains and or ATPase 

activity, and can result in a ring-like structure in which both ends of the coiled coils are 

attached via protein–protein interactions (Haering et al. 2008). Rad50 functions together 

with Mre11, which defines the dimer interactions, and sometimes with Nbs1 in a yet 

undefined arrangement and stoichiometry.

Thus, all of these proteins have two long coiled coils that can be joined at either one end or 

both ends. The ATPase domains at one end of the coiled coils are expected to dimerize 

accompanied by ATP binding, as is characteristic of similar proteins in this family, the ABC 

transporters or RecA fold ATPases (Hopfner and Tainer 2003; Ye et al. 2004). This ATP 

binding-induced dimerization can involve either intra- or inter-monomer/complex 

interactions. Cohesin and condensin are stable dimers joined at their coiled-coil apexes. In 

the absence of other partner proteins, the relative orientation of their ATPase domains, at the 

ends of about 100 nm combined long coiled coils, is not necessarily defined. The two 

ATPase domains in one complex are held in high local concentration, whereby ATP binding 

is likely to involve their intra-complex dimerization. On the other hand, the Rad50 ATPase 

domains are held relatively closer together via the Mre11 dimer bound at an adjacent 

position on the coiled coils. This places the ATPase domains in close proximity but perhaps 

also in a constrained relative orientation. Depending on the arrangement of Rad50 and 

Mre11 at their interface, ATP-binding induced dimerization within the complex may be 

favored or even disfavored. The possibility that ATPase domain dimerization in Rad50 

complexes involves inter-complex interactions is an intriguing possibility to be tested.

The SMC cohesin and condensin complexes work in arranging DNA molecules by trapping 

one or more double helixes within a protein ring (Haering et al. 2002, 2008; Hirano 2005; 

Hirano and Hirano 2006) (Fig. 5). This arrangement does not require specific protein-DNA 

binding sites in order to work in organizing DNA molecules. Where specific binding sites 

have been identified or proposed they appear to be inside the potential protein ring. Thus, 

ring opening and closing via association of ATPase domains with each other or with partner 

proteins would control DNA access to these binding sites. By contrast, Rad50 complexes 
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alone do not form stable rings via interactions at both ends of their coiled coils and are not 

expected to trap DNA within a large ring.

Conversely, DNA is an allosteric effector of MR, which changes the relative orientation of 

the coiled coils within a complex. Rad50 coiled coils are flexible, allowing their apexes to 

interact with each other (Fig. 4). Because this inter-complex binding between the hook 

domains is transiently observed in single complexes it appears to be relatively weak 

(Moreno-Herrero et al. 2005). Remarkably, once bound to DNA, the coiled coils become 

parallel to each other, an orientation that disfavors inter-complex interactions. In this way 

the hook domains of DNA bound MR(N) are poised to interact with those of other DNA 

bound complexes (Moreno-Herrero et al. 2005). Multiple MR(N) complexes bind to DNA, 

presenting a dense group of protruding hook domains. These provide multiple weak 

interacting partners to tether DNA bound by oligomers of MR (de Jager et al. 2001b; 

Hopfner et al. 2002). In contrast to other SMCs, inter-complex protein–protein interactions 

play an important role in this aspect of MR(N) function. Because it appears that individual 

hook–hook interactions are weak but that collectively many such interactions keep bound 

DNA molecules together, we describe MR as molecular Velcro for DNA.

The changes in orientation of Rad50 coiled coils upon DNA binding and DNA tethering by 

bound MR (N) oligomers are not influenced by ATP binding or hydrolysis (de Jager et al. 

2001b, 2002; Moreno-Herrero et al. 2005). Thus ATP binding does not appear to affect 

interactions at the hook or hinge domain of MR(N). However ATP binding did affect the 

prevalence of large oligomeric MR complexes on DNAs with different end structures (de 

Jager et al. 2002). Because Mre11 has DNA end-specific activities, this could indicate ATP 

binding changes the orientation of the globular domains of the complex, specifically 

between Rad50 and Mre11. ATP binding-associated changes in the orientation of Rad50 

ATPase domains could control access to DNA binding sites on Mre11. Depending on the 

exact architecture of the MR interactions, likely to be similar for human and yeast MR but 

so far best defined for pfRad50-Mre11 complex (Hopfner et al. 2001), intra-complex 

ATPase domain dimerization may trap DNA bound to Mre11 or prevent access to DNA 

binding sites on Mre11 (Fig. 5). Work with Rad50 alone suggests that a DNA-binding site is 

created by dimerization of ATP-binding domains. Whether two DNA-binding modes 

actually exist in intact complexes needs to be determined before their cooperation or 

competition for DNA can be addressed.

DNA binding is only the first step in the multiple activities of the Rad50 complexes that are 

essential for DNA break repair. The additional functionalities will inevitably involve 

changes in molecular architecture to promote new interactions. For instance, DNA tethering 

requires many protein complexes bound, perhaps cooperatively, to DNA. Thus factors that 

promote MR complex oligomerization and cooperative DNA binding are expected to be 

important regulators of this early step in DNA repair. Control of DNA end processing by 

MR(N) will likely involve modulating the access to Mre11 DNA-binding sites. In addition, 

ATM activation and cell-cycle signaling must require a specific molecular architecture of 

MRN complexes bound to DNA. We have focused here on details of the role of ATP in 

DNA binding by MR(N). For this first step there are still important unanswered questions. 

New information on the nature and control of inter- and intra-complex interactions and the 
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dynamic arrangement of component proteins will provide valuable insight into how the 

relatively simple MR(N) molecular machine performs its many different jobs in DNA break 

repair.

Abbreviations

ABC ATP binding cassette

A-T ataxia telangiectasia

ATLD ataxia telangiectasia like disorder

ATM the protein ataxia telangiectasia mutated

DSBs DNA double-strand breaks

EMSA electrophoretic mobility shift assay

MR complex consisting of MRE11 and RAD50

MRN complex consisting of MRE11, RAD50 and NBS1

MR(N) complex MR or MRN

MRX complex consisting of the yeast proteins Mre11, Rad50 and Xrs2

NBS Nijmegen breakage syndrome

NTP nucleotide triphosphate

RPA replication protein A

SFM scanning force microscopy (also called AFM, atomic force microscopy)

SMC structural maintenance of chromosomes

ssDNA single-stranded DNA
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Fig. 1. 
The multiple roles of Rad50 complexes in DNA break repair are illustrated. From top to 

bottom: Rad50 complexes bind to DNA early in the repair process to recognize double-

strand breaks. Multiple Rad50 complexes bind to DNA. Rad50 complexes are involved in 

DNA processed including strand unwinding and nuclease digestion. This involves additional 

components that have not yet been clearly defined in all systems. DNA ends bound by 

Rad50 complex multimers are tethered by interaction among multiple coiled-coil apex hook 

domains. ATM is activated for cell-cycle signaling by interaction with DNA-bound Rad50 

complexes; this step requires the Nbs1 component
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Fig. 2. 
Comparison of the molecular architecture of SMC proteins (generalized for condensin and 

cohesin) and Rad50. a The arrangement of protein domains in cohesin/condensin and Rad50 

monomers. The N- and C-terminal amino acid domains are juxtaposed at one end of an 

intramolecular coiled coil. This constitutes an ATPase head domain. The apex of the coiled 

coil where it folds back on itself is a globular dimerization domain for condensin and 

cohesin called the hinge. For Rad50 the coiled-coil apex is a smaller CxxC amino acid 

motif, called the hook; b The arrangement of SMC and Rad50 proteins in dimers. For 

condensin and cohesin, two elongated monomers are held together by a stable dimer 

interface between hinge domains. For Rad50 complexes, an Mre11 dimer binds two 

elongated Rad50 monomers, holding them together by interaction along the coiled coils near 

the ATPase heads; c Additional interactions among complex components. ATP binding 
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occurs at the interface of two ATPase monomers. In this simplified cartoon for condensin 

and cohesin, this results in joining of the coiled coils at both ends, forming a large protein 

ring. Rad50 complexes are held together by Mre11 but can additionally interact at the 

coiled-coil apexes. Two CxxC hook domains can coordinate a zinc ion and cause a similar 

large protein ring to form. However, if DNA is bound at the globular ATPase/Mre11 end of 

the complex, the arrangement of the coiled coils changes so that they no longer interact with 

each other within the same complex

Kinoshita et al. Page 17

Chromosome Res. Author manuscript; available in PMC 2015 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Illustration of the ATP binding sites at the interface of two ABC ATPase monomers. Only 

the globular ATPase domains of a generic ABC ATPase, here representing an SMC protein 

or Rad50, are shown. The Walker A and Walker B motifs are located at the N- and C-

terminal ends of the protein, respectively. Domains of the same color are from the same 

protein or polypeptide chain. ATP binds at the dimer interface, whereby the Walker A and B 

nucleotide-binding domains contact a highly conserved signature motif (C motif) from a 

second protein. Two ATPs are shown as there are two possible binding sites formed in a 

dimer. However, it is not known whether two ATPs can or do bind simultaneously

Kinoshita et al. Page 18

Chromosome Res. Author manuscript; available in PMC 2015 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Scanning force microscopy images of purified human MR and MRN complexes. The large 

globular domain including the Rad50 ATPase heads, Mre11 and Nbs1, if present, is the high 

darker colored object from which the two 50 nm long coiled coils protrude. The top two 

images are MRN and the bottom two images are MR. The hook domains are not stable as 

the ‘closed’ (left images) and ‘open’ (right images) conformations are about equally 

prevalent. These approximately 100 nm×100 nm images are presented as tilted views to 

emphasize topography, color indicates height from 0 to 4 nm (red to purple)
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Fig. 5. 
ATP-induced domain dimerization and DNA binding for SMC and Rad50 complexes. 

Cohesin and condensin organize DNA by trapping duplexes within a protein ring. 

Interaction with DNA can be controlled by closing and opening the protein ring. Both ATP 

binding-induced dimerization of ATPase domains and interactions with partner proteins are 

involved. In some SMC examples there are specific DNA binding sites, for others DNA is 

topologically linked to the protein complex. Rad50 complexes do not form large coiled-coil 

bound protein rings when bound to DNA. The conformation induced by DNA binding 

presumably inhibits intra-complex interaction of the coiled-coil apexes. DNA can bind to 

and be enzymatically processed by Mre11. If DNA binds on the surface of Mre11 in the 

orientation shown, then ATP binding-induced association of the head domains would be 

expected to modulate access to the Mre11 DNA-binding site or stability of the Mre11–DNA 

interaction. Currently the orientation of the Mre11 DNA-binding surfaces and the Rad50 

globular domains is not known; one of the possible arrangements is shown. Here intra-

complex ATPase site dimerization is shown. Association of ATPase sites between different 

complexes is also possible. This inter-complex dimerization may be favored between 

complexes bound near each other on DNA. The position of Nbs1 and its influence on 

complex architecture have not yet been determined. This simplified illustration is based on 

current knowledge. More complexity will surely be introduced when Nbs1 can be placed in 

the complex and possible DNA-binding sites on Rad50 are taken into account
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