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Despite the significant improvement of feed efficiency (FE) in pigs over the past decades,
feed costs remain a major challenge for producers profitability. Improving FE is a top
priority for the global swine industry. A deeper understanding of the biology underlying FE
is crucial for making progress in genetic improvement of FE traits. This review
comprehensively discusses the topics related to the FE in pigs including:
measurements, genetics, genomics, biological pathways and the advanced
technologies and methods involved in FE improvement. We first provide an update of
heritability for different FE indicators and then characterize the correlations of FE traits with
other economically important traits. Moreover, we present the quantitative trait loci (QTL)
and possible candidate genes associated with FE in pigs and outline the most important
biological pathways related to the FE traits in pigs. Finally, we present possible ways to
improve FE in swine including the implementation of genomic selection, new technologies
for measuring the FE traits, and the potential use of genome editing and omics
technologies.
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1 INTRODUCTION

Since pig producers profit is affected by both inputs and outputs, it is essential to apply methods for
reducing input costs as the goals are to improve production and increase profit (Hume et al., 2011).
Providing feed for an animal is one of the main input costs in any animal production system. The
expenses associated with feed can account for 60–70% of total costs for pig production systems
(Patience et al., 2015). Feed efficiency (FE) can be defined as the association between feed intake (input)
and production (output), and therefore, improving FE will reduce production costs. Another main goal
of improving FE is to reduce the negative impacts of production on the environment. The livestock
production sector is a major source of worldwide greenhouse gas (GHG) emissions, notably methane
(CH4), nitrous oxide (N2O) and carbon dioxide (CO2). It has been reported to contribute 14.5% of the
global anthropogenic GHG emissions (Gerber et al., 2013). Therefore, it is critical to find a strategy to
mitigate GHG emissions and reduce the impact of animal agriculture on climate change. Improving FE
can reduce the environmental footprint as there is a significant correlation between FE and methane
emission traits (Connor et al., 2012). Animals with high FE use energy from feedmore efficiently, which
ultimately reduces the enteric methane production and GHG emissions (Basarab et al., 2013). A lower
protein degradation rate in more efficient animals may lead to reduced environmental pollution from
nitrogen, as a result of more efficient nitrogen utilization (Bezerra et al., 2013). Several studies reported
improved FE as a promising strategy to reduce GHG emissions, and consequently, reduce global
warming (Fitzsimons et al., 2013; Dini et al., 2019; Soleimani and Gilbert, 2021).
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In order to relate feed intake to animal efficiency, it is
necessary to apply comprehensive strategies for FE
measurements. One of the most common measures of FE is
feed conversion ratio (FCR) that is defined as the ratio of body
weight gain to feed intake (Skinner-Noble and Teeter, 2003).
Another measure of FE is residual feed intake (RFI), as proposed
by Koch et al. (1963). It is described as the difference between
actual feed intake and expected intake based on an animal’s body
size and maintenance over a time period.

FE traits are economically important traits that are controlled
by many genes and environmental factors. Several studies have
been conducted to analyze these traits. Examples include,
evaluation of breeding values for selection candidates (Miar
et al., 2015; Garrick, 2017) or identifying candidate genes for
FE (Do et al., 2014a; Fu et al., 2020). Some studies successfully
identified quantitative trait loci (QTLs) that are related to feed
efficiency in livestock species (Andersson et al., 1994; Georges
et al., 1995), however, due to low resolution in QTL mapping
analysis and complex genetic architecture in most QTLs, QTL
mapping has not been very successful (Andersson, 2009).
Genome-wide association study (GWAS) is a powerful tool for
identification of causal genes or regulatory elements for
economically important traits such as FE traits in livestock.
GWAS has some benefits, e.g. the power to identify genetic
variants and the practical approach to evaluate genetic
architecture of complex traits (Kronenberg, 2008). Genomic
data are extensively accessible in the livestock industry and
supply a profitable means of estimating genetic merit. This is
helpful for selection decisions that enhance genetic gains.
Genomic selection is now a widely used animal breeding
program approach since it enhances the selection for difficult
and expensive traits to measure, such as FE and growth traits
(Meuwissen et al., 2013). Genomic selection can increase genetic
gain by reducing generation interval as breeders are able to
predict the genetic potential of animals at an early stage of life
(Meuwissen et al., 2013; Miar et al., 2015). However, the largest
benefit of genomic selection for swine will be from an increase in
the amount of genetic gain by improved accuracy of genomic
estimated breeding values (GEBVs) compared with traditional
approaches that ignore Mendelian sampling (Wiggans et al.,
2017). In the current review, we summarize the different
measurements of FE, then present the state of the art for
genetic and genomic studies for FE in pigs. This is followed by
an overview of the critical biological pathways linked to the
regulation of FE. Finally, there is a discussion of current and
future methods and technologies that could improve FE in pigs.

2 MEASURES OF FEED EFFICIENCY AND
NON-GENETIC FACTORS EFFECTS

Body weight gain per unit of feed consumed by an animal is a
general measurement of FE in most studies (Patience et al., 2015).
Although FE has conventionally been described as the ratio of
feed consumed compared to the growth achieved by an animal,
other FE indicators have been proposed recently (Crowley et al.,
2010; Berry and Crowley, 2012). Despite the importance of FE as

a critical parameter in breeding programs, there is little consensus
regarding the optimized approach to achieve ideal FE (Gaines
et al., 2012). Firstly, this lack of concensus might be due to the fact
that a complex biological process affects FE (Cantalapiedra-Hijar
et al., 2018). Secondly, there is controversy surroundinht be due
to the fact that a complex biological process affects FE
(Cantalapiedra-Hijar et al., 2018). Secondly, there is
controversy surrounding how to define and measure FE traits
(Patience et al., 2015). Finally, it should be noted that measuring
FE is remarkably difficult to measure; compared to growth traits,
which can easily be obtained by weighing the animals at specific
periods in a lifetime (Hoque and Suzuki, 2009).

FE can be defined using energy consumed as a factor instead of
the feed consumed by the animal as part of the calculation
(Patience, 2012). This approach can be beneficial as energy is
a significant contributor to the cost of diet (Patience, 2012).
However, the inaccurate estimation of energy concentration in
the diet is one of the main drawbacks of this method, as there are
issues at the time of quantifying dietary energy concentration
(Patience, 2012). In addition, the differences in methods
expressing the dietary energy concentration like digestible
(DE) and metabolizable (ME) energy might cause differences
in FE due to the artifacts of the inaccurate energy system
(Patience, 2012).

Despite the genetic capability of FE traits in swine, there are
numerous internal and external factors affecting FE in pigs that
impede to capture the full genetic potential of animals. These
factors include nutritional elements (the quantity, composition,
and the digestibility of feed), maintenance processes, immune
function, thermal environment and access to feed and water
(Knap and Wang, 2012). Figure 1 illustrates the factors that
might affect FE in the swine industry. Studies have shown that FE
in pigs can be improved by increasing the concentration of energy
in the diet (De la Llata et al., 2001; Beaulieu et al., 2009). However,
it is necessary to consider the process of growth, as the energy

FIGURE 1 | Non-genetic factors affecting feed efficiency traits in swine
industry. All pictures were taken from public-domain share-free websites.
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requirements vary through different growth phases (Kil et al.,
2013). Although increasing dietary energy concentration may
lead to improved feed efficiency, the correlation between dietary
energy concentration and FE is very low (Oresanya et al., 2008).
This might be due to non-dietary factors affecting estimation of
FE, such as inaccurate measurement of, dietary energy
concentration, and animal variation (Patience et al., 2015).

2.1 Feed Conversion Ratio
With respect to improving FE in the pig industry, feed conversion
ratio (FCR; feed to body weight gain ratio) has traditionally been
investigated as a simple and relatively common indicator of FE
(Hoque and Suzuki, 2009). Although FCR is considered an
essential part of the goal in pig breeding programs, there are
some definite issues with FCR. Selection based on FCR can lead to
large-sized animals at a mature age that might have high energy
requirements for maintenance (Smith et al., 2010). In addition,
high genetic correlations with FCR, growth, body size and body
composition, cause the changes in component traits in future
generations (Gunsett, 1984). Finally, animals with similar FCR
might vary in growth rate and feed intake (Smith et al., 2010).
Thus, there is a need to define an indicator that negates the effect
of body weight on FE of each animal.

2.2 Residual Feed Intake
Residual feed intake (RFI) is another FE measurement
proposed as an alternative to FCR. RFI is defined as the
difference between the observed feed intake and the
expected feed intake. This was first proposed by Koch et al.
(1963). They suggested that feed intake could be adjusted for
body weight and weight gain. Since RFI is independent of body
weight and average daily gain (ADG), selection for RFI can
alter the energy of maintenance requirements without
changing the body size and production level. In addition,
due to the RFI’s mathematical independence to animal
production, this method is notably suitable to investigate
the biological mechanisms underlying the FE variation in
each individual (Berry and Crowley, 2013). However, RFI
calculation might be dependent on the predicted feed
requirement for production and maintenance (Do et al.,
2013a), which might cause difficulty in comparing results of
different studies. In addition, in the case where genetic
correlation exists between FE and maintenance traits, the
heritability estimation might be unreliable (Lu et al., 2015).

2.3 Other Feed Efficiency Indicators
A wide variety of terms have been proposed to define FE, which
can be applied as alternative measurement for FCR and RFI
(Berry and Crowley, 2013). Kleiber ratio (KR), defined as growth
rate/body mass0.75, was suggested as an indirect selection
parameter for feed conversion (Kleiber, 1947). It is
acknowledged that KR is a useful indicator in selection for
growth efficiency since it does not require the calculation of
individual intake and enables ranking of individuals with high
growth efficiency relative to body size (Köster et al., 2016).
Another indicator of FE is partial efficiency of growth (PEG),
described as the ratio of ADG per unit of feed intake consumed

for growth. Studies reported that PEG has some advantages over
FCR since it has considerably lower genetic and phenotypic
correlation with ADG compared to ADG and FCR (Arthur
et al., 2001; Nkrumah et al., 2004). Residual gain (RG) and
residual feed intake and gain (RIG) are other alternative
measures of FE (Crowley et al., 2010; Berry and Crowley,
2012). RG is defined as the difference between the actual ADG
and the expected ADG and combines the measurements of
growth and feed intake in a similar principle to RFI. However,
for RFI, feed intake is regressed on ADG and body weight, but in
the calculation of RG, ADG is regressed on feed intake and body
weight (Crowley et al., 2010). RIG, proposed by Berry and
Crowley (2012), combines RFI and RG to identify efficient
and fast-growing animals independent of their body weights.
Therefore, the advantages of both reduced feed intake and greater
ADG are represented in RIG. However, it is necessary to perform
comprehensive RIG trait examinations in swine studies to
support its advantages to the swine industry (Lu et al., 2017).

3 GENETICS OF FEED EFFICIENCY

3.1 Heritability Estimates of Feed Efficiency
and Its Components Traits
Generally, estimated heritability of traits (defined as the ratio of
genetic variation to the overall phenotypic variation) is used to
determine the degree to which traits are under genetic control. In
order to have an accurate estimate of heritability, a well-
established measure of FE, as well as complete and precise
pedigree information on many individuals are required.
Supplementary Table S1 provides an overview of literature
for heritabilities of FE-related traits in pigs.

Among all FE traits in pigs, RFI has received increasing
attention in recent years (Godinho et al., 2018; Nascimento
et al., 2019; Santiago et al., 2021). The heritability estimates
for RFI have been reported in the range of 0.10–0.51 (Jiao
et al., 2014a; Hong et al., 2021). The diverse range of
heritability estimates presented in the literature is due to
evaluation of different populations, ages, diets, environments,
and the number of animals in the study. A controversial subject
related to RFI is that this term or other unspecified feed intake
terms are referred to as FE. The residual might be associated with
random errors, for example, prediction and measurement errors,
inaccurate recording or feeding loss (Van Der Werf, 2004). These
errors can reflect the phenotypic variation, which might change
the heritability of RFI. Several studies have evaluated the
heritability of FCR in different pig populations
(Supplementary Table S1). The heritability of FCR in pigs has
been reported to vary considerably from 0.13 to 0.49 (Habier
et al., 2009; Hong et al., 2021). Different studies also estimated the
heritability for ADG and daily feed intake (DFI) as other FE
component traits (Supplementary Table S1). The average
estimates of heritability reported for component traits (such as
ADG and DFI) were higher compared to RFI and FCR but still
varied substantially, ranged from 0.23 to 0.67 and 0.16 to 0.66 for
ADG and DFI, respectively (Supplementary Table S1).
Published studies indicated that FE-related traits are
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moderately heritable traits, and therefore, have good potential to
respond to selection (Supplementary Table S1).

3.2 Genetic Correlation of Feed Efficiency
With Other Traits
Although heritability can provide information about the
candidates’ genetic merit for traits of interest, understanding
the magnitude and direction of correlations between FE traits
and other economically important traits is essential to establish a
successful breeding program (Brito et al., 2020). Traits with high
positive genetic correlations tend to improve simultaneously, but
high negative genetic correlations between traits cause the
opposite direction of improvement. The average absolute
values of genetic correlations of RFI and FCR with other
economically important traits such as ADG, DFI, body weight,
backfat thickness, muscle depth, meat quality, loin muscle area,
lipid deposition, and protein deposition were calculated based on
the studies published between 1995 and 2022 (Figure 2).

The FCR and RFI genetic improvement strategies are different
and rely on their particular genetic correlations with other
production traits. Genetic correlations between FCR and RFI
traits are high and positive and range from 0.53 to 0.95 (Hoque
and Suzuki, 2008; Jiao et al., 2014a). Previous studies indicated
that FCR had moderate positive correlations with body weight
and ADG (Herrera-Cáceres et al., 2019; Hong et al., 2021); so FCR
could be changed indirectly with the selection of growth traits. In
contrast, indirect selection of growth traits including body weight,
ADG and in some cases, backfat thickness (BF), would not affect
RFI, as the calculation of RFI is based on the regression of feed
intake on growth traits (Kennedy et al., 1993). In pigs, the genetic
and phenotypic correlations of RFI and ADG are relatively low
and range between -0.06 and 0.28 (Hoque et al., 2007; Saintilan
et al., 2011). The magnitude of genetic correlation between RFI
and BF is reported to be low and close to zero in different studies
(Saintilan et al., 2011; Godinho et al., 2018; Hong et al., 2021). The
moderate negative correlation between RFI and body leanness in
different studies (Cai et al., 2008; Hsu et al., 2015) indicated that
selection based on RFI might increase lean growth. Selection

based on RFI is also associated with animal characteristics related
to energy cost. Decreasing the maintenance energy requirements
leads to decreased physical activity and reduced heat production
of pigs, which could significantly contribute to higher energy
efficiency (Gilbert et al., 2017). Therefore, low RFI pigs are
desired since they spend less energy on feed consumption,
interacting with others, heat production, and maintenance
requirements (Gilbert et al., 2017). RFI is reported to be
highly correlated with DFI, indicating that selection against
RFI can decrease DFI (Von Felde et al., 1996; Gilbert et al.,
2007). Although FCR was positively correlated with DFI, the
magnitude was less than for RFI and ranged from 0.13 to 0.88
(Von Felde et al., 1996; Do et al., 2013a). Therefore, selection for
low RFI would decrease DFI more than FCR-based selection in
pigs. Nevertheless, it is important to consider differences in body
weight of animals using in genetic parameter estimation, since
animals with different weights might have different maintenance
requirements, and thereby have an impact on the estimated
parameters, genetic correlations and prediction of FE traits
(Patience et al., 2015).

4 GENOMICS OF FEED EFFICIENCY

4.1 QTL and Candidate Genes Associated
With Feed Efficiency
Detection of causative mutations underlying QTLs has always
been challenging in domestic animals (Zhang et al., 2012).
Compared to conventional QTL mapping methods, GWAS
has the power to identify genetic variants with even modest
effects (Hirschhorn and Daly, 2005). In pigs, the advancement
of genomic technologies has enabled researchers to perform
different GWAS studies to identify genomic regions and
candidate genes associated with economically important traits,
including meat quality and quantity, reproductive traits, and FE
traits. To date, 34,342 QTLs for 708 different traits have been
mapped in the pig genome (Hu G et al., 2022). Taking different
FE indicators into account, 410 QTLs for FCR, 96 QTLs for RFI,
143 QTLs for DFI, and 815 QTLs for ADG presented in the

FIGURE 2 | The average absolute values of genetic correlations of RFI and FCR with other economically important traits in pig.
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animal QTL database by December 2021 (Hu G et al., 2022). The
descriptive information of GWAS studies for FE traits in pigs is shown
in Supplementary Table S2. In various studies, a large number of
regionswith small effects were identified for FE traits in pigs, suggesting
that feed efficiency is a polygenic trait (Onteru et al., 2013).

Feeding is one of animals’ most conserved activities, and a key
mechanism for survival is to regulate feed intake (Bader et al., 2007).
FE traits are quantitative traits with complex genetic architecture
(Do et al., 2014b). Therefore, an important field of research in
livestock genetics and breeding is the discovery of candidate genes
underlying these traits. To date, several studies investigated genes
that potentially affect FE in pigs. Notably, one of the well-known
candidate genes for growth traits or/and feed intake in pigs is the
melanocortin-4 receptor (MC4R) located at 178Mb on SSC1 (Kim
et al., 2000; Piórkowska et al., 2010; Onteru et al., 2013). TheMC4R is
an integral part of the nervous system and plays an essential role in
the regulation of feed intake, energy balance, and body weight in
mammals (Adan et al., 2006). In pigs, several GWAS studies showed
that theMC4R gene could be associated with body weight (Lee et al.,
2020), backfat thickness (Wang et al., 2019), ADG (Howard et al.,
2015), and ADFI (Onteru et al., 2013).

High-mobility group AT-hook 1 (HMGA1) gene is another
promising candidate gene, as it is functionally related to several
FE-related traits (Guo et al., 2015; Qiao et al., 2015; Ji et al., 2019).
Guo et al. (2015) indicated thatHMGA1 was close to the top SNP
in the strongest associated region detected on SSC7. They
proposed the HMGA1 gene as a candidate gene for FCR on
SSC7.HMGA1, which encodes a chromatin-associated protein, is
ubiquitous in all cells of higher eukaryotes (Cleynen and Van de
Ven, 2008) and is known to have an essential biological role in cell
growth and differentiation by acting as a dynamic regulator of
chromatin structure (Bustin and Reeves, 1996; Melillo et al.,
2001). HMGA1 affects the expression of insulin growth factor-
binding protein (IGFBP) and therefore, can serve as a modulator
of insulin-like growth factor 1 (IGF1) activity and consequently
regulates glucose uptake (Iiritano et al., 2012). Several studies
have reported that the IGF1 gene is involved with body size and
body height in both humans and animals (Sutter et al., 2007;
Okada et al., 2010). Furthermore, Kubota et al. (1999) reported
that HMGA1 could bind with peroxisome proliferator activated
receptor gamma (PPARG), a crucial regulator of fat-cell
differentiation and glucose homeostasis. In pigs, HMGA1
might have pleiotropic effects on several traits, as HMGA1
variants have been associated with growth (Guo et al., 2015),
fatness (Qiao et al., 2015), and carcass traits (Gong et al., 2019). Ji
et al. (2019) reported a suggestive QTL (near the HMGA1 gene)
located on SSC7 (34 Mb) for nine different body weight and ADG
traits. TheHMGA1 gene near this region supports the pleiotropic
effect of this QTL. Interestingly, Quan et al. (2018) identified
another member of high mobility group AT-hook family,
HMGA2, in a haplotype block located on SSC5 spanning
774 Kb of chromosome-wide significant SNP (ID=
H3GA0016186) for ADG. The H3GA0016186 was located
78,423 bp upstream of HMGA2 on SSC5. Abi Habib et al.
(2018) demonstrated that HMGA2 directly regulated IGF2
through increased expression of pleomorphic adenoma gene 1
(PLAG1); and any defects in the HMGA2–PLAG1–IGF2 pathway

can lead to the Silver–Russell Syndrome, a syndromic form of
fetal growth retardation. Further studies on porcine HMGA2
should be conducted in the future to thoroughly investigate the
role of HMGA2 on FE in pigs. Figure 3 depicts the hub genes
based on the protein protein interaction networks for RFI
and FCR.

4.2 Biological Pathways Related to Feed
Efficiency
The high number of candidate genes and localization of QTLs
indicate that the genes underlying FE traits in pigs are involved in
numerous biological processes. As discussed before, several
GWAS studies have been reported some SNPs and candidate
genes that might be associated with FE in pigs (Do et al., 2014a; Fu
et al., 2020; Miao et al., 2021). However, identifying biological
pathways affecting FE is challenging, and GWAS studies are
limited in finding the chromosomal regions or preselected genes
that might be related to FE (Singer, 2009). Instead, a growing
number of studies have applied omics methods to explore the
mechanisms affecting FE in pigs, including transcriptomics
(Vigors et al., 2019; Xu et al., 2020a), 16S rRNA gene
sequencing (Quan et al., 2018; Si et al., 2020), proteomics (Wu
et al., 2020), and metabolomics (Carmelo et al., 2020; Wang and
Kadarmideen, 2020). By screening and analyzing the
differentially expressed genes (DEGs) and related biological
pathways derived from transcriptomics studies, candidate
genes and pathways affecting FE can be identified
(Nagalakshmi et al., 2008; Wilhelm and Landry, 2009).
Metabolites are downstream of the gene regulation network in
the biological processes from DNA through RNA to proteins;
therefore, the metabolite displays more detailed biological
terminal information. As the final products of cell metabolism,
metabolites are the ultimate response of biological systems related
to genetic change; hence, metabolomics is regarded as the link
between genotypes and phenotypes (Fiehn, 2002). It is also
acknowledged that proteomics approaches can be applied to
examine the changes in protein expression of liver and muscle;
hence proteome analysis is essential to fully understand the
regulatory mechanism of animals (Kuhla and Metges, 2013).
Moreover, the main information on the biological process is
mainly explored at the protein level, so investigating FE at the
protein level will provide information on the mechanism of a trait
under different physiological or pathological conditions (Bassols
et al., 2014; Wang et al., 2017). To date, several omics studies have
been carried out in pigs and have revealed various molecular
mechanisms of FE, including carbohydrate and lipid metabolism
(Horodyska et al., 2019a), energy metabolism (Xu et al., 2020b),
and immune responses (Vigors et al., 2019).

4.2.1 Metabolism-Related Pathways Involve in Feed
Efficiency
Metabolic pathways play an essential role in regulating FE in pigs.
Studies indicated that lipid metabolism is enriched by down-
regulated genes of adipose tissues in high FE pigs (Horodyska
et al., 2019b), and up-regulated genes are involved in lipid
catabolism (Gondret et al., 2017). Cyclic adenosine
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monophosphate (cAMP) and Ca2+ are the two most common
second messengers in eukaryotic cells (Katona et al., 2015) that
are closely related to lipid metabolism (Benmansour et al., 1991;
Chen et al., 2004; Goudarzi et al., 2018). Xu et al. (2020a) carried
out a transcriptomics experiment to detect DEGs of Yorkshire
pigs with extremely high and low FE. Their results indicated that
DEGs were significantly related to the cAMP signaling pathway
and Ca2+ binding. The high level of Ca2+ exerts an antilipolytic
effect by activation of phosphodiesterase (PDE), leading to the
inhibition of lipolysis through reducing cAMP and hormone-
sensitive lipase (HSL) phosphorylation (Xue et al., 2001). Jing
et al. (2015) reported several mRNAs and miRNAs differentially
expressed in skeletal muscle of purebred Yorkshire boars with
different RFI. The down-regulated genes such as FABP3, RCAN,
PPARGC1 (PGC-1), HK2 and PRKAG2 were mainly involved in
mitochondrial energy metabolism regulatory pathways, whereas
the up-regulated genes, including IGF2, PDE7A, CEBPD, PIK3R1
and MYH6 were involved in skeletal muscle differentiation and
proliferation. Peroxisome proliferator-activated receptor γ
coactivator-1 (PGC-1) plays a vital role in mitochondrial
biogenesis as it activates cAMP response binding protein and
nuclear respiratory factors (Asin-Cayuela and Gustafsson, 2007).
Similarly, Fu et al. (2017) reported that mitochondrial energy
metabolism in skeletal muscle tissue was significantly associated
with FE in purebred Yorkshire pigs. Recently, Carmelo and
Kadarmideen (2020) applied multiple types of transcriptomic
analysis; and their results supported the knowledge that
mitochondrial activity had a key role in FE of pigs.

4.2.2 Hormone-Related Pathways Involved in Feed
Efficiency
The brain plays a significant role in regulating feed intake. The
brain central nervous system interacts with other organs or

tissues such as liver, pancreas and adipose tissue to control
appetite and energy balance (Berthoud, 2002). Considering the
molecular perspective, signaling molecules of the bilateral gut-
brain axis contribute to the regulation of feed intake. In this case,
nutrient availability is influenced by the efficiency of enteral
absorption processes, including factors such as leptin, ghrelin,
neuropeptide Y and cholecystokinin (Richards and Proszkowiec-
Weglarz, 2007). Recently, Xu et al. (2020b) revealed that the most
significantly enriched pathways were mainly related to hormone
secretion, including insulin secretion, GnRH secretion,
aldosterone synthesis and secretion, Oxytocin signaling
pathway, and pancreatic secretion. Among all significant
pathways, insulin secretion and oxytocin signaling pathway are
the main pathways that were closely associated with FE. Insulin is
a key metabolic hormone that regulates various growth processes
through related central actions in the brain (Schwartz et al., 2000).
Insulin receptors are expressed in the mesolimbic system of the
ventral tegmental area and the arcuate nucleus of the
hypothalamus, which respond to insulin to inhibit feed intake
and regulate energy homeostasis (Kyriaki, 2003; Davis et al.,
2010). Studies by Do et al. (2014a; 2014b) indicated that genes
involved in insulin signaling and energy metabolism pathway
play key roles in regulating FE-related traits such as RFI and FCR.

4.2.3 Immune-Related Pathways Involved in Feed
Efficiency
Maintaining a competent immune system for effective immune
response is a nutritionally demanding process that involves trade-
offs with other processes such as growth, reproduction and
thermoregulation (Lochmiller and Deerenberg, 2000).
Exposure to pathogenic challenges creates a situation in which
pigs need nutrients for functions that enable defence, including
innate immune response, replenishment of damaged or lost

FIGURE 3 | The protein protein interaction networks for candidate genes for feed conversion ratio (left) and residual feed intake (right) in pig. The candidate genes
from the pig QTL database and additional recent papers (Supplementary Table S2) were used for building the interaction network using the default inputs of Network
Analyst (Zhou et al., 2019).
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tissue, and acquired immune response (Kyriazakis et al., 2006).
Therefore, sustaining an appropriate immune response leads to
fewer nutrients available for growth (Patience et al., 2015). In this
context, the modification of nutrients toward immune response
might have negative impacts on the FE of animals (Paradis et al.,
2015). suggested that high feed efficient animals had efficient
immune response against inflammation, and thus, there was
more energy for growth and muscle deposition. Blood cells
constitute the first line of the immune defence system; hence
there is expectation for numerous genes associated with
immunity in the whole blood transcriptome analysis (Liew
et al., 2006). The role of nuclear factor of activated T cells
(NFAT) in the regulation of the immune response was
identified as a significant pathway in the transcriptome
analysis of liver tissue in pigs divergent for FE (Horodyska
et al., 2019a). NFAT proteins contribute to innate immune-
response regulation in the first line of defence through
controlling innate leukocyte response to inflammatory stimuli
(Zanoni and Granucci, 2012). In the RFI context, transcriptomic
studies reported variable and conflicting results for immune-
related genes and pathways. Some studies presented only up-
regulation of immune-related genes in more efficient pigs
(Horodyska et al., 2018). However, in general, studies reported
reduced expression of genes associated with immune functions in
more efficient pigs (Jégou et al., 2016; Gondret et al., 2017).

4.2.4 Other Pathways
Small intestine is the vital organ where much of the digestion and
absorption of feed takes place. The ability of small intestine for
digestion and absorption is tightly related to FE traits. Recently,
Wu et al. (2020) examined differentially expressed proteins in the
small intestine of high-FE against low-FE commercial pigs. Their
results showed that regulation of actin cytoskeleton, focal
adhesion, adherens junction, and tight junction pathways were
the main biological pathways associated with small intestinal
structures. Several studies have shown that microvilli, focal
adhesions, and intestinal mucosa are key factors that regulate
the absorption of nutrients in the small intestine of pigs (Athman
et al., 2002; Dokladny et al., 2016). Bruewer et al. (2004) reported
that tight junctions and adherens junctions are the main
components of apical complex, regulating epithelial
paracellular permeability. Tight junctions serve as a selective
permeability barrier and regulate the permeability of the
intestinal mucosa, which in turn control the entry of small
molecules and ions into the body (Andersson, 2009; Dokladny
et al., 2016).

5 GENETIC IMPROVEMENTS IN FEED
EFFICIENCY

5.1 Implementation of Genomic Selection
Although FE has already been improved in the pig industry using
traditional selection methods, genomic selection provides further
genetic improvements since it only needs phenotypic records for
the reference population (Samorè and Fontanesi, 2016). Genetic
improvement depends on existing genetic variation, selection

intensity, accuracy of the breeding values, and generation
interval. The most significant impact of genomic selection on
the dairy cattle industry relies on reducing the generation
intervals; however, for pigs the impact has been to increase
the accuracy of selection for economically important traits,
like FE (Samorè and Fontanesi, 2016). The accurate estimation
of genomic estimated breeding values (GEBVs) depends on
several factors, including the heritability of the trait, the
number of included phenotypes, the extent of the linkage
disequilibrium between SNP and quantitative trait loci, the
size of the training population, and the relationship between
the training and reference population (Daetwyler et al., 2008;
Pszczola et al., 2012). Table 1 summarizes the results of genomic
selection studies that have been conducted on FE traits in pigs.

Christensen et al. (2012) reported that including genomic
information improves prediction for FE traits in Danish Duroc
pigs compared with the pedigree-based method. The authors
indicated that the accuracy of GEBV was the highest for single-
step method (commonly known as ssGBLUP), which is a
developed model that can simultaneously implement both
pedigree and genomic information. Several statistical methods
have been developed to increase the accuracy of GEBV achieved
in genomic prediction (Miar et al., 2015; VanRaden, 2020). In this
context, studies tested various statistical genomic selection
methods for different FE components in pigs (Ostersen et al.,
2011; Do et al., 2015). Do et al. (2015) performed a genomic
selection study to examine the performance of different genomic
prediction methods such as GBLUP, Bayesian LASSO, Bayes A,
Bayes B and Bayes Cπ for FE traits in Danish Duroc pigs and
reported that the accuracies ranged from 0.508 to 0.531, 0.506 to
0.532, and 0.276 to 0.357 for DFI, RFI and ADG, respectively.
Their results indicated that the choice of statistical method had
low impact on the accuracy of prediction for FE traits in pigs.
Similarly, Ostersen et al. (2011) reported equal performances for
three different statistical methods including GBLUP, Bayesian
LASSO and MIXTURE. Using purebred pig data with their high
relationship with genotyped animals and the traits with strong
selection background are the possible reasons for the small
differences between the statistical methods. Zhang et al. (2018)
investigated the possible increase of genetic gain for different FE
components in pigs and indicated that the genetic architecture of
FE traits might be the reason for the accuracies differences.

5.2 Future Perspectives and Opportunities
5.2.1 Phenotypic Measures and Genetic Analyses
As discussed earlier, several internal and external factors such as
body composition, physical activity, maintenance requirements,
digestibility, immune response, and measurement errors might
affect FE in pigs (Knap and Wang, 2012). Therefore, to develop
global metrics for FE traits, it is essential to consider all relevant
factors. To date, several ratio and residual traits have been
developed as FE measures. Although ratio traits have some
advantages, such as the ease of calculation and interpretation,
their main drawback is the strong correlations between ratio traits
and their component traits (Berry and Crowley 2013). On the
other hand, FE can be measured independently of production
level using residual measurements like RFI, which are based on
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the mathematical model considering energy requirements for
body maintenance and production over a specific production
time period. As the model implies in RFI, the feed intake and
production correlation are assumed to be constant at all
production and feed intake levels. However, the true biological
efficiency depends on the degree of production and feed intake,
which means that the correlation of maintenance requirement,
production and feed intake varies over the growth period (Van
DerWerf, 2004). In this context, it is suggested to apply a random
regression model as it considers the variation within animals
between different growth period stages (Veerkamp and
Thompson, 1999).

Feed intake, and accordingly FE traits, are considered difficult
and expensive to measure traits in all pig production farms. Over
recent decades, many feeding strategies have been introduced by
breeding companies to facilitate the measuring feeding process in
a precise way to achieve accurate measurement of individual FE
on a large scale that can increase the genetic gain and
productivity. Nowadays, a vast amount of data can be
extracted from the state-of-the-art technologies such as sensors
for precision feeding systems, machine vision sensors, infrared
thermal imaging sensors, microphones, and radio frequency
identification (RFID) tags. Introducing new traits for selection
of FE can significantly improve the accuracy of prediction in pigs.
Martinsen et al. (2015) introduced new FE traits like fat efficiency

and lean meat efficiency. Their results indicated that these traits
help breeders select animals with high genetic potential for
efficient deposition of lean meat at low feed costs.
Furthermore, measuring the components of FE such as net FE
(digestibility, net energy, heat production, and methane energy
output), activity and behaviour (feeding per day, total time spent
eating per day, feed intake, and time spent eating per visit), and
robustness, might help breeders select more efficient individuals
in diverse breeding conditions. It was shown that there is positive
phenotypic and genetic correation between feeding behaviour
and FE traits, indicating their possible role on selection of feed-
efficient individuals (Von Felde et al., 1996; Lu et al., 2017). A
deep understanding of the feeding behaviour can help breeders to
improve feeding strategies, and thus, increase the productivity
(Andretta et al., 2016).

5.2.2 Beyond Genomics
Although significant progress has been achieved in
understanding the complexities of genetic control of FE traits,
the breeders are always seeking ways to improve FE in their
breeding programs to obtain greater genetic progress. One
practical way to enhance genetic gain is to maintain genetic
variation. Gene editing technology, which generates progeny with
selected mutations, can add variation to the population (Wang
et al., 2015b). Modification of genes might allow breeders to

TABLE 1 | Literature estimates of genomic estimated breeding values (GEBVs) for feed efficiency trait in pigs.

Traits Methods Breeds Number of
samples

Accuracy Bias References

RFI ssGBLUP French
Large
White pigs

References data set = HRFI
line: 398 LRFI line: 399
Validation data set = HRFI
line: 400 LRFI line: 433

HRFI line: 0.63LRFI line: 0.22 HRFI line: 0.98 LRFI
line: 0.72

Aliakbari et al.
(2020)

RFI Bayes A References data set = 1,047
Validation data set = 516

0.09 - Jiao et al.
(2014a)

RFI GBLUP, Bayesian
LASSO, Bayesian
A, B and Cπ

Duroc References data set =
968Validation data set = 304

GBLUP: 0.51
Bayes A: 0.53
Bayes B: 0.51
Bayes LASSO: 0.50
Bayes Cπ1.1*: 0.52Bayes Cπ10.1:
0.51Bayes Cπ100.1: 0.53

GBLUP: 1.23
Bayes A: 1.08
Bayes B: 1.23
Bayes LASSO: 1.19
Bayes Cπ1.1*: 1.24
Bayes Cπ10.1: 1.23
Bayes Cπ100.1: 1.18

Do et al. (2015)

FCR
ssGBLUP French

Large
White pigs

References data set = HRFI
line: 398
LRFI line: 399
Validation data set = HRFI
line: 400 LRFI line: 433

HRFI line: 0.41LRFI line: 0.28 HRFI line: 0.74LRFI
line: 0.61

Aliakbari et al.
(2020)

FCR
Bayes A References data set = 1,047

Validation data set = 516
0.11 - Jiao et al.

(2014a)

FCR
GBLUP, Original
single-step,
Adjusted single-
step

Duroc References data set = 921
Validation data set = 553

Univariate= GBLUP: 0.21Original single-
step: 0.22 Adjusted single-step:
0.23Bivariate= GBLUP: 0.18Original
single-step: 0.22 Adjusted single-
step: 0.22

Univariate= GBLUP: 0.57
Original single-step: 0.89
Adjusted single-step: 0.92
Bivariate= GBLUP: 0.53
Original single-step: 0.98
Adjusted single-step: 0.94

Christensen
et al. (2012)

FCR
GBLUP, Bayesian
LASSO, MIXTURE

Duroc References data set = 1,375
Validation data set = 536

EBV= GBLUP: 0.40
Bayesian Lasso: 0.40MIXTURE:
0.38Deregressed EBV= GBLUP:
0.44Bayesian LASSO:
0.44MIXTURE: 0.45

Ostersen et al.
(2011)

*Parameter with a uniform (0, 1) prior distribution.
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confer the desired phenotypes to pigs to improve production
traits or disease resistance. Recently, Zhu et al. (2020) successfully
knocked out the myostatin gene (MSTN) in Chinese Bama pigs,
which substantially accelerated the growth rate and muscle
growth. It is acknowledged that genome editing tools can
protect pigs from porcine reproductive and respiratory
syndrome (PRRS), which is a viral disease affecting domestic
pigs (Whitworth et al., 2016). Several studies have shown that
modification of CD163 gene inhibits PRRS, and accordingly have
positive impacts on growth rate in pigs (Chen et al., 2019; Guo
et al., 2019). In a similar fashion, working on the modification of
the pig genome, researchers can improve the FE of pigs in the
future.

However, the introduction of gene-editing technology will
need to meet the global concerns of using this technology in
food products and determine well-designed breeding programs
offered by top breeding companies. In recent years, numerous
“omics” technologies such as proteomics, transcriptomics,
metabolomics, epigenomics, and metagenomics have
generated valuable data in the research of FE in pigs. For
instances, transcriptomic studies have reported many non-
coding RNAs involving in regulation of feed efficiency in
pigs (Hu G et al., 2022). Over time, integrating such
technologies can give us more accurate selection of animals
with better FE. The integration, joint modeling, and analyses of
different “omics” data through system genetics would increase
the power of identifying causal genes, regulatory networks and
pathways that might lead to improve economically important
traits like FE. Ultimately, the information derived from the
integration such as biomarkers and gene networks or causal
genes and variants can be incorporated into genomic selection

programs to achieve higher accuracy and genetic gain in the pig
industry.
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