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Abstract

Newly discovered IL-9–producing CD4+ helper T cells (Th9 cells) have been reported to contribute to tissue inflammation
and immune responses, however, differentiation and immune regulation of Th9 cells in tuberculosis remain unknown. In the
present study, our data showed that increased Th9 cells with the phenotype of effector memory cells were found to be in
tuberculous pleural effusion as compared with blood. TGF-b was essential for Th9 cell differentiation from naı̈ve CD4+ T cells
stimulated with PMA and ionomycin in vitro for 5 h, and addition of IL-1b, IL-4 or IL-6 further augmented Th9 cell
differentiation. Tuberculous pleural effusion and supernatants of cultured pleural mesothelial cells were chemotactic for Th9
cells, and this activity was partly blocked by anti-CCL20 antibody. IL-9 promoted the pleural mesothelial cell repairing and
inhibited IFN-c-induced pleural mesothelial cell apoptosis. Moreover, pleural mesothelial cells promoted Th9 cell
differentiation by presenting antigen. Collectively, these data provide new information concerning Th9 cells, in particular
the collaborative immune regulation between Th9 cells and pleural mesothelial cells in human M. tuberculosis infection. In
particular, pleural mesothelial cells were able to function as antigen-presenting cells to stimulate Th9 cell differentiation.
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Introduction

Tuberculosis presents a challenging worldwide public heath

problem. According to the World Health Organization, one third

of the world’s population are thought to be infected with M.

tuberculosis, but only 10% of the infected individuals would develop

active tuberculosis [1]. Most infected individuals will stay healthy

throughout their lifetime and develop a latent infection with no

sign of disease. They can be regarded as being protected against

the disease by the immune response induced through natural

infection. Infection with M. tuberculosis elicits humoral and cellular

immune responses, and T cell-mediated immunity, comprising

CD4+ and CD8+ cells, is thought to be important for effective

prevention of disease after M. tuberculosis infection [2]. M.

tuberculosis are seldom eradicated, however, and a few M. tuberculosis

can persist for years, residing inside macrophages in granulomas

and evading elimination by the host immune response [3].

Tuberculous pleural effusion (TPE) is caused by a severe delayed-

type hypersensitivity reaction in response to the rupture of a

subpleural focus of M. tuberculosis infection. An accumulation of

lymphocytes, especially CD4+ T cells, in TPE has been well

documented [4]. Actually, more and more data have demonstrated

that several Th subsets, such as Th1 cells [5], Th17 cells [6], and

regulatory T cells [7], etc. are involved in the pathogenesis of TPE.

The cytokine IL-9 was identified, and its basic features were

described more than two decades ago [8,9]. IL-9 has long been

thought to be a Th2 cytokine, as it promotes allergic inflammation

and is associated with various Th2 responses [10]. More recent

studies revealed the multifunction activities of this cytokine. Of

significant importance is the recent discovery of a Th subset of IL-

9–producing CD4+ T cells (Th9 cells) distinct from Th1, Th2, or

Th17 cells [11,12]. Th9 cells are characterized by production of

IL-9 and IL-10 and develop from naı̈ve CD4+ precursors driven

by the combined effects of TGF-b and IL-4 [11,12]. Th9 cells

have been reported to be capable of inducing tissue inflammation

in a colitis model [13]; however, whether Th9 cells are involved in

infection immunity, especially in M. tuberculosis infection, have not

been investigated.

Pleural mesothelial cells (PMCs), presented in a single layer

covering each pleural membrane, are exposed to a microenviron-

ment with high levels of cytokines and chemokines during

infection [14]. Early studies have demonstrated that PMCs

facilitate monocyte transmigration across pleural mesothelium

during M. tuberculosis infection [15]. In the present study, we
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investigated the distribution of Th9 cells in TPE, the phenotypic

characteristics of Th9 cells, the possible mechanisms of differen-

tiation and recruitment of Th9 cells into pleural space, and the

capabilities of PMCs to stimulate Th9 cell differentiation in

response to M. tuberculosis antigens.

Results

Increased proportions of Th9 cells in TPE
We first investigated the distribution of Th9 cells in relation to

Th1, Th2, Th17 cells and regulatory T cells (Tregs) in TPE. Flow

cytometry was performed on mononuclear cells from TPE and

peripheral blood with gating on CD3+ and CD82 T cells

(Figure 1A). We noted that IL-9-producing CD4+ T cells

presented in TPE and blood. Unlike murine Th9 cells [12],

human Th9 cells did not express IL-10 (data not shown). In

addition, we also observed some Th9/Th1 and Th9/Treg, to a

less extent, Th9/Th2 and Th9/Th17 cells in TPE or blood

(Figure 1A).

As shown in Table 1, we noted that the numbers Th cells in

TPE and blood with M. tuberculosis-specific stimulation were very

low, it would not be possible for us to investigate the phenotypic

characteristics of Th9 cells, we thus used PMA and ionomycin to

stimulate naı̈ve CD4+ T cells in vitro for 5 h throughout the whole

study.

As shown in Figure 1B, percentages of Th9 cells represented the

higher values in TPE (1.8260.14%), showing a significant increase

in comparison with those in the corresponding blood

(0.5860.09%, Wilcoxon signed-rank test, n = 14, p,0.001).

Similar increases were observed in pleural Th1, Th2, Th17 cells

and Tregs (40.4462.67%, 1.7060.12%, 2.7360.18% and

14.5360.96%, respectively), compared with their corresponding

Figure 1. Th9 cells increased in tuberculous pleural effusion (TPE). (A) Th9 cells within CD4+ T cells were identified based on their expression
of CD3 and not of CD8. The representative flow cytometric dot-plots of Th9, Th1, Th2 cells, Th17, and Tregs in TPE and blood are shown. (B)
Comparisons of percentages of Th9, Th1, Th2 cells, Th17, and Tregs in TPE and blood (n = 14). Horizontal bars indicate means. The percentages of Th
cells represented Th cell numbers in total CD4+ T cell numbers as determined by flow cytometry, comparison was made using a Wilcoxon signed-rank
test. The percentages of Th cells were determined by flow cytometry, comparison was made using a Wilcoxon signed-rank test. (C) Th9 cells
correlated negatively with Th1, Th2 cells, Th17, and Tregs in TPE (n = 14). Correlations were determined by Spearman rank correlation coefficients.
doi:10.1371/journal.pone.0031710.g001
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compartments in blood (8.0560.85%, 0.7660.07%, 0.5560.07%

and 5.4860.40%, respectively) (all p,0.001).

Since previous studies reported that IL-9 was also secreted by

Th17 cells [16,17] or Tregs [18], and that Th9 cells were tightly

associated with Th2 cells [11], we therefore explored the

correlationship between Th9 cells and the other subsets. Our

data showed that the numbers of Th9 cells were positively

correlated with the numbers of Th17 (r = 0.716, p = 0.004), but

not with Th1 (r = 0.334, p = 0.243), Th2 cells (r = 20.257,

p = 0.374), or Tregs (r = 0.136, p = 0.642) (Figure 1C).

Phenotypic characteristics of Th9 cells
We observed that most Th9 cells expressed high level of

CD45RO in both TPE and blood (79.8062.07% versus

76.3061.99%, n = 14, Wilcoxon signed-rank test, p = 0.224), low

levels of CD45RA (7.3360.61% versus 8.4360.77%, p = 0.034),

and low levels of CD62L (5.8860.37% versus 9.8960.76%,

p,0.001), indicating that they were memory cells, especially those

in TPE (Figure 2). Also as shown in Figure 2, pleural and blood

Table 1. Comparisons of Th cells in tuberculous pleural
effusion (TPE) and blood stimulated with PMA+ionomycin or
tuberculosis antigens*.

PMA+ionomycin Tuberculosis antigens

TPE Blood TPE Blood

Th9 cells (%). 1.8260.14{{ 0.5860.09{ 0.3160.02{ 0.1060.01

Th1 cells (%) 40.4462.67{{ 8.0560.85{ 2.0660.09{ 0.5260.03

Th2 cells (%) 1.7060.12{{ 0.7660.07{ 0.2660.03{ 0.0760.01

Th17 cells (%) 2.7360.18{{ 0.5560.07{ 0.4660.01{ 0.0960.01

*Values are presented as mean 6 SEM, n = 14.
{p,0.01 compared with the corresponding blood with the same stimulation
determined by Wilcoxon signed-rank test.
{p,0.01 compared with the corresponding compartments stimulated by
tuberculosis antigens determined by Wilcoxon signed-rank test.

doi:10.1371/journal.pone.0031710.t001

Figure 2. Phenotypic characteristics of Th9 in tuberculous pleural effusion (TPE). (A) The representative dot plots showing expressions of
IL-9 and CD45RO, CD45RA, CD62L, or CCR7 on CD4+ T cells. (B) Comparisons of percentages of CD45RO+, CD45RA+, CD62L+, CCR7+ cells in total Th9
cells in TPE and blood from patients with TPE (n = 14). The data are calculated by dividing the numbers in upper right quadrants by the numbers in
both upper and lower right quadrants. Horizontal bars indicate means; comparison was made using a Wilcoxon signed-rank test.
doi:10.1371/journal.pone.0031710.g002
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Th9 cells expressed certain level of CCR7 (36.6664.03% versus

38.7263.34%, p = 0.599).

Except for CCR7, the expression profiles of the other CCRs

studied on Th9 cells are shown in Figure 3. Overall, Th9 cells in

both TPE and blood expressed low levels of CCR2, CCR3 and

CCR4 and CCR5, and there were no differences between TPE

and blood (all p.0.05). We noted that most pleural Th9 cells were

positive for CCR6 (64.8263.36%), which were higher than blood

Th9 cells (60.5363.41%, p = 0.007).

Contribution of Cytokines to Differentiation of Th9 cells
We purified CD4+ T cells and cultured them ex vivo with plate-

bound anti-CD3 and soluble anti-CD28 mAbs in the presence of

one or more of IL-1b, IL-4, IL-6, IL-12, IL-21, IL-25, IFN-c and

TGF-b for 7 d. With IL-2–containing medium provided a baseline

for comparison, IL-1b, IL-4 and TGF-b alone could promote the

differentiation of Th9 cells from CD4+ T cells, and the most

significant effect was seen with TGF-b (Figure 4A). On the

contrary, IFN-c alone slightly suppressed Th9 cell differentiation

(Figure 4A). As expected, the addition of IL-1b, IL-4, IL-6, or their

combination enhanced TGF-b induced Th9 cell differentiation,

with TGF-b plus IL-4 eliciting the most amount of Th9 cells

(Figure 4B). Additionally, IFN-c exhibited a strong suppressive

capacity on Th9 cell differentiation induced by these cytokines.

Since TGF-b showed a potent capability to induce Th9 cell

differentiation, we further examined impact of TGF-b on kinetics

of Th9 differentiation, and found that the production of IL-9 was

induced by TGF-b in a dose-dependent and time-dependent

manner (Figure 4C and D).

We also noted that above mentioned proinflammatory cytokines

or their combinations could promote differentiation of Th9 cells

from blood naı̈ve CD4+ T cells in a similar manner (Figure 4).

Recruitment of Th9 cells into TPE might be induced by
chemokine CCL20

It was found that concentration of CCL20 in TPE was much

higher than that in serum, and that significant expression of

CCL20 was observed in all PMCs (our unpublished data).

These data suggested that PMCs might be the cell sources of

the elevated pleural CCL20. Taken together with our

Figure 3. Chemokine receptors expressed on Th9 cells. (A) Flow cytometric dot-plots of expressions of CCR2, CCR3, CCR4, CCR5, and CCR6 on
Th9 cells from tuberculous pleural effusion (TPE) and blood. (B) Comparisons of percentages of CCR2+, CCR3+, CCR4+, CCR5+, and CCR6+ cells in total
Th9 cells in TPE and blood from patients with TPE (n = 14). The data are calculated by dividing the numbers in upper right quadrants by the numbers
in both upper and lower right quadrants. Horizontal bars indicate means; comparisons of CCR expressions were made using a Wilcoxon signed-rank
test.
doi:10.1371/journal.pone.0031710.g003
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observation in the present study that Th9 cells expressed

relative high level of CCR6 (Figure 3), which is a ligand for

CCL20, we hypothesized that Th9 cells could migrate into the

pleural space in response to CCL20. Indeed, both TPE and

supernatants of cultured PMCs exerted a potent chemoattrac-

tant activity for circulating Th9 cells, an anti-CCL20 mAb

significantly suppressed Th9 cell chemotaxis (Figure 5).

Therefore, recruitment of Th9 cells into TPE might be

induced by PMCs via CCL20-CCR6 axis.

Effects of IL-9 on wound healing of PMCs
As shown in Figure 6A and B, substantial expressions of IL-9

receptor (IL-9R, 38.3663.63%, n = 5), IL-4R (24.6862.13%),

and IFN-cR (53.1464.82%) were observed on PMCs isolated

from TPE. We thus sought to investigate whether IL-9, IL-4,

or IFN-c were involved in the regulation of mesothelial

membrane repairing. To evaluate effects of these cytokines on

growth of PMCs in early stage of repairing, an in vitro injury

model was used. As soon as 16 h after wounding, both IL-9

and IL-4 had substantial and persistent improving effects on

PMC layer closure. Unexpectedly, IFN-c was noted to be

Figure 4. Differentiation of human Th9 cells from naı̈ve CD4+ T cells stimulated by different cytokines. Purified naı̈ve CD4+ T cells
isolated from tuberculous pleural effusion (TPE) and blood (both n = 5) were stimulated with plate-bound anti-CD3 and soluble anti-CD28 mAbs in
the presence of the indicated cytokines, either alone (A) or in various combinations (B). Seven days after activation, the cells were stimulated with
PMA and ionomycin for 5 h and analyzed for IL-9 expression after intracellular staining. The comparisons were determined by Kruskal-Wallis one-way
analysis of variance on ranks. * p,0.05 compared with medium control. Naı̈ve CD4+ T cells from TPE and blood (both n = 5) were cultured and
stimulated with indicated concentrations of TGF-b for 7 d (C), or with 5 ng/ml of TGF-b for indicated time points (D), the percentages of Th9 cells
determined by flow cytometry. Comparisons were determined by Kruskal-Wallis one-way analysis of variance on ranks. * p,0.05 compared with
baseline values.
doi:10.1371/journal.pone.0031710.g004

Figure 5. Chemokine CCL20 in tuberculous pleural effusion
(TPE) was chemotactic for Th9 cells in vitro. TPE and supernatants
of cultured pleural mesothelial cells (both n = 5) were used to stimulate
chemotaxis of Th9 cells in the absence of presence of anti–CCL20 mAb
or an irrelevant isotype control. The comparisons were determined by
Kruskal-Wallis one-way analysis of variance on ranks. *p,0.05
compared with the irrelevant isotype control.
doi:10.1371/journal.pone.0031710.g005
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harmful to PMC wound healing during the whole 48 h-culture

(Figure 6C and D).

Besides early stage of repairing, long term restoring might

further reflect the local remodeling of mesothelial wounded area.

In in vitro experiments of long term culture of PMCs designed for

evaluating effects of the above cytokines on growth of PMCs in

late stage of repairing, both IL-9 and IL-4 could significantly

improve long term restoring of PMCs represented by the density

of cells; in contrast, IFN-c even severely impaired this restoring

(Figure 7).

Figure 6. Effects of IL-9, IL-4 and IFN-c on wound healing of in vitro injury model of pleural mesothelial cells. (A) Pleural mesothelial
cells was identified by expression of calretinin and sideward scatter (SSC) using flow cytometry, the representative flow cytometric dot-plots are
showing expression of IL-9R, IL-4R, and IFN-cR1 on PMCs from tuberculous pleural effusion. (B) Summary dada of percentages of IL-9R+, IL-4R+, and
IFN-cR1+ PMCs (n = 5). (C) Microscopic photography after wound induction on a confluent monolayer of PMCs in a time course from 16 to 48 h
revealed that wound healing was enhanced by IL-9 or IL-4 and retarded by IFN-c (Original magnification: 6200). (D) Graphs show relative wound
closure over time, based on the wound gap compared with initial wound size. Mean 6 SEM of 5 independent experiments. The comparisons were
determined by Kruskal-Wallis one-way analysis of variance on ranks, *p,0.05 compared with medium control at the same time points.
doi:10.1371/journal.pone.0031710.g006
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Apoptosis of PMCs was induced by IFN-c and inhibited
by IL-9 and IL-4

Apoptosis is an essential form of cell death important in

development, in physiological cell turnover and in deletion of

damaged cells [19]. Under normal circumstances, PMC

population turns over slowly, with proliferation balanced by cell

death. Exposure of PMCs to injury or inflammation disrupts this

balance. Little is known about the role of apoptosis in PMC

biology. Most of the studies that have addressed this issue have

focused on the mesothelial response to asbestos [20]. Together

with the negative effect of IFN-c in PMC wound healing and

long term restoring as above mentioned, we hypothesized that

IFN-c might be responsible for the cell death of PMCs. Indeed,

neither IL-9 nor IL-4 affected apoptosis of PMCs, whereas IFN-

c could induce significantly PMC apoptosis. We further noted

that both IL-9 and IL-4 inhibited IFN-c-induced PMC apoptosis

(Figure 8).

Antigen presentation to CD4+ T cells by PMCs in vitro
We have found that Class II MHC protein, HLA-DR, was well

expressed on PMCs, and that these PMCs also expressed high

levels of CD80 and CD86, two proteins with important roles as co-

stimulatory signals for T cell responses (our unpublished data)

[21]. To assess the capacity of PMCs to function as antigen-

presenting cells to stimulate Th9 cell differentiation, purified naı̈ve

CD4+ T cells from blood were cultured alone or with PMCs at a

ratio of 5 : 1 for 5 d. We noted that in the absence of PMCs, the

numbers of Th9 cells were quite low even in the presence of

10 mg/ml of exogenous M. tuberculosis-specific peptides of early

secretory antigenic target-6 kDa/culture filtrate protein-10

(ESAT-6/CFP-10); the addition of PMCs yielded an significant

increase in Th9 cells even in the absence of ESAT-6/CFP-10,

compatible with PMCs presenting processed endogenous antigen

to which they were might expose within TPE environment to

CD4+ T cells. The addition of exogenous ESAT-6/CFP-10 to the

Figure 7. Effects of IL-9, IL-4 and IFN-c on long-term restoring of pleural mesothelial cells (PMCs). (A) Pleural mesothelial cells were
seeded in Petri dishes in complete medium in the presence of IL-9, IL-4 or IFN-c for 14 d to allow for their growth. Representative of 5 independent
experiments (Original magnification: 6400). (B) Comparisons of PMC numbers in each group (n = 5). The comparisons were determined by Kruskal-
Wallis one-way analysis of variance on ranks, *p,0.05 compared with medium control at the same time points.
doi:10.1371/journal.pone.0031710.g007
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PMC-CD4+ T cell co-culture resulted in even greater Th9 cell

differentiation indicative that PMCs in vitro were capable of

processing antigen (Figure 9A). We also noted that IL-9 but not

IL-4, significantly enhanced Th9 cell differentiation induced by

antigen presentation of PMCs. In contrast, IFN-c inhibited its

differentiation (Figure 9A).

To further evaluate whether PMCs were providing requisite B7

costimulatory signals for their antigen-presenting function [21], we

assessed the roles of CD80 and CD86 as co-stimulatory signals in

PMC antigen presentation to CD4+ T cells in vitro. We cultured

CD4+ T cells and PMCs with ESAT-6/CFP-10 in the presence or

absence of inhibitory concentrations of anti-CD80 mAb, anti-

CD86 mAb, a combination of both, or a soluble fusion protein of

extracellular domain of cytotoxic T lymphocyte-associated anti-

gen-4 and the Fc portion of IgG (CTLA-4Ig). Anti-CD80 and anti-

CD86 mAb alone partially blocked Th9 cell differentiation; a

combination of both anti-CD80 and anti-CD86 blocking mAbs

and CTLA-4Ig yielded even greater inhibition of PMC-elicited

Th9 cell differentiation (Figure 9B).

Discussion

Since the identification of Th1/Th2 cells more than two

decades ago, followed by Tregs and Th17 cells, and now Th9 cells

have been added to the ‘portfolio’ of Th cells. Although Th9 cells

have been described in mice [11,12], they are not very well

characterized in human; especially, no data concerning whether

Th9 cells are involved in infection are available so far. Although

some studies have demonstrated that Th9 might elicit inflamma-

tion [12] and contribute to the development of allergic diseases

[22,23], the role of this new Th subset in immune response

remains to be further elucidated. To the best of our knowledge, the

present study was the first one investigating the role of Th9 cells in

human tuberculosis.

In the present study, we have demonstrated that Th9 cells were

present in TPE, and the numbers of Th9 cells represented in TPE

were much higher than those in the corresponding blood. Majority

of these pleural Th9 cells displayed the phenotype of effector

memory cells, since they expressed high levels of CD45RO, very

low levels of CD62L and relative low levels of CCR7. The

molecular mechanisms underlying the generation and differenti-

ation of human Th9 cells are not elucidated completely. Studies in

mice have shown that TGF-b derived Th2 cells to lose their

characteristic profile and switched to Th9 cells or, in combination

with IL-4, promoted the differentiation of Th9 cells directly [11],

and that IL-4 blocked the generation of TGF-b-induced Tregs and

instead induced the development of Th9 cells that could also

produced IL-10 [12]. It has been reported that the transcription

factor PU.1 and IFN-regulatory factor 4 were required for the

development of murine Th9 cells [22,23]. In human, memory

CD4+ T cells have been reported to be induced to become Th9

cells [24]. Similar to the findings in mouse studies, TGF-b and IL-

4 induced the differentiation of human Th9 cells in vitro; and IL-

1b, IL-6, IL-10, IFN-a, IFN-b or IL-21 could augment Th9

differentiation, while IFN-c and IL-27 partially suppressed Th9

differentiation [25]. Our study draw the similar conclusion,

showing that TGF-b was essential for Th9 differentiation from

naı̈ve CD4+ T cells isolated from TPE or blood, addition of IL-4,

IL-1b, or IL-6 augmented IL-9 production, and the production of

IL-9 induced by TGF-b was in a dose- and time-dependent

manner. Consistent with Wong et al. [25], we showed that IFN-c
significantly suppressed IL-9 production induced by TGF-b. The

fact that although the concentration of IFN-c in TPE was much

higher than that in serum [26], the numbers of Th9 cells were

higher in TPE than in blood, indicated that there was complex

cytokine network in the regulation of Th9 cell differentiation in

TPE, and there might exist other mechanisms besides local

differentiation leading to Th9 cells increase in TPE.

On the other hand, an increase in numbers of Th9 cells in TPE

might also be due to Th9 cell recruitment from peripheral blood.

In the previous study, we provided direct evidence that IL-16 is

capable of inducing CD4+ T cell infiltration into the pleural space

[27]. Therefore, as a subpopulation of CD4+ T cells, Th9 cells

might also be recruited in to TPE by local production of IL-16,

since IL-16 level is significantly higher in TPE than in serum [27].

In the present study, we were prompted to evaluate whether

chemokine/CCR axis was responsible for the influx of Th9 cells. It

was found that all PMCs from TPE expressed CCL20, and that

Figure 8. Effects of IL-9, IL-4 and IFN-c on apoptosis of pleural mesothelial cells (PMCs). PMCs were seeded in Petri dishes in complete
medium in the presence of one or more of IL-9, IL-4, and IFN-c for 48 h. (A) The representative flow cytometric dot-plots are showing Annexin V/
propidium iodide co-staining for identification of apoptotic PMCs. (B) Comparisons of apoptotic PMCs in each group (n = 5). The comparisons were
determined by Kruskal-Wallis one-way analysis of variance on ranks, *p,0.05 compared with medium control, {p,0.05 compared with IFN-c alone.
doi:10.1371/journal.pone.0031710.g008
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CCL20 concentration in TPE was much higher than those in

serum (our unpublished data), and that Th9 cells in both TPE and

blood expressed high level of CCR6 on their surface. These data

suggested that CCL20/CCR6 axis might be related to the

accumulation of Th9 cells in TPE. Indeed, an in vitro migration

assay further confirmed that both TPE and supernatants of

cultured PMCs could induce the migration of Th9 cells, and that

anti–CCL20 mAb significantly inhibited the ability of TPE or

supernatants to stimulate Th9 cell chemotaxis. Therefore, PMC-

produced CCL20 might be able to chemoattract Th9 cell

recruitment into pleural space during M. tuberculosis infection.

Our data also showed that the numbers of Th9 cells in TPE

positively correlated with that of Th17 cells, but not of Th1, Th2,

or Tregs. We supposed the finding that IL-9 together with TGF-b
promoted Th17 differentiation from naı̈ve CD4+ T cells [28]

might account for this correlation. In addition, Zhou et al. [29] has

reported that IL-9 promoted Th17 cell migration into the central

nervous system via CCL20 produced by astrocytes, and we

speculated that IL-9 may also contribute to Th17 migration into

TPE, which need to be further investigated.

The pathophysiological functions of Th9 cells in M. tuberculosis

infection have not been investigated. Findings from one in vitro

study suggested that increased expression of IL-9 may contribute

to the development of tuberculosis [30]. Since PMCs are an

important component of the pleural environment, they may

collaborate with the other kinds of cells, including Th9 cells, in the

generation of local cell-mediated immunity to various pathogens,

including M. tuberculosis. The mesothelium is a slowly renewing

tissue that can be stimulated by a variety of agents and direct

physical damage to increase its turnover rate [31]. We investigated

whether Th9, Th2, or Th1 cells were involved in the regulation of

mesothelial membrane repairing. Indeed, our in vitro experiments

showed that both IL-9 and IL-4 significantly improved wound

healing and long term restoring of PMCs; in contrast, IFN-c even

severely impaired this wound healing and restoring.

It has become clear that both cell proliferation and apoptosis are

highly regulated processes within the cell with very specific signals

regulating the stepwise processes. Apoptosis is genetically pro-

grammed cell death triggered by external stimuli, and is an

important process for normal tissue development and homeostasis

[20]. An understanding of the balance between proliferation and

apoptosis in PMCs exposed to environmental inflammation is

critical to further understanding of the mechanisms and patterns of

pleural injury and fibrogenesis, which occur frequently during M.

tuberculosis infection [32]. Our data showed as Th1 cell-derived

cytokine, IFN-c not only impaired PMC wound healing but also

induced PMC apoptosis, we hypothesized that IFN-c might be

responsible for the cell death of PMCs. In contrast, neither IL-9

nor IL-4 affected apoptosis of PMCs, both cytokines further

inhibited IFN-c-induced PMC apoptosis.

In the present study, we were also interested in knowing

whether PMCs could promote differentiation of pleural Th9 cells

in M. tuberculosis infection. We found in the present study that in

the coculture with purified naı̈ve CD4+ T cells, PMCs promoted

significantly differentiation of Th9 cells could be observed even in

the absence of exogenous M. tuberculosis-specific peptides of ESAT-

6/CFP-10; the addition of exogenous ESAT-6/CFP-10 yielded a

more intensive differentiation of Th9 cells in CD80- and CD86-

dependent means. These data suggested that exposures of PMCs

to M. tuberculosis-related antigen was shown to be sufficient for

these PMCs serving as antigen-presenting cells to present antigens

to CD4+ T cells in in vitro assays, and that PMCs could further

process exogenous antigen during in vitro culture.

Additionally, we found that IL-9 intensively amplified Th9 cell

differentiation induced by antigen presentation of PMCs. We

reasoned this amplification might result from that IL-9 prevented

PMCs from apoptosis and improved wound healing along with

long term restoring of PMCs. As expected, IFN-c inhibited Th9

cell differentiation induced by antigen presentation of PMCs due

to that it impaired PMC wound healing and induced PMC

apoptosis. Interestingly, although IL-4 also showed the impacts of

anti-apoptosis on PMCs, it did not amplify Th9 cell differentiation

induced by antigen presentation of PMCs. Since our study

suggested that specific accessory molecules played an important

role in PMCs antigen presentation, we wondered whether IL-9 or

IL-4 affected PMCs antigen presentation function by regulating

these co-stimulatory molecules expression (our ongoing study).

Figure 9. In vitro stimulation of Th9 cell differentiation by
antigen presentation of pleural mesothelial cells (PMCs).
Purified naı̈ve CD4+ T cells from blood were cultured with autologous
PMCs at a ratio of 5 : 1 for 5 d in the absence or presence of exogenous
antigen ESAT-6/CFP-10, IL-9, IL-4 or IFN-c (A), or anti–CD80, –CD86 mAb,
a combination of anti–CD80 and –CD86 mAbs, CTLA-4Ig or control Ig
(B) was added into the coculture, the frequencies of Th9 cells were
determined by flow cytometry. The results are reported as mean 6 SEM
from 5 independent experiments. The comparisons were determined
by Kruskal-Wallis one-way analysis of variance on ranks. * p,0.05
compared with medium control, {p,0.05 compared with PMCs plus
ESAT-6/CFP-10 (or plus control IgG).
doi:10.1371/journal.pone.0031710.g009
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An obvious limitation of this study was that we did not know the

exact duration of TPE, since the development of TPE had

occurred before the patients’ hospitalization. It should be

interesting to elucidate whether collecting pleural fluid at the

starting or the resolution point of the disease would affect the

functional findings of Th9 cells observed in the current study. It

should also be noted that Th9 cells from patients with an earlier

stage of TPE might show a different phenotype compared to those

from patients with advanced/progressed stages of the disease.

However, there was no way to classify patients with TPE into early

and advanced/progressed stages so far.

Another important issue was that for the Th9 phenotypic

studies, intra- and surface markers were measured in T-cells after

stimulation with PMA and ionomycin, but not with tuberculosis-

specific antigen, although the polyclonal stimulation with PMA

and ionomycin could not represent M. tuberculosis-specific immune

responses, and might also increase the expression levels of all

markers. Our current data confirmed that Th9 cell numbers in

TPE and blood with tuberculosis-specific stimulation were very

low, they would not be sufficient for investigating the phenotypic

characteristics of Th9 cells. We therefore used PMA plus

ionomycin to stimulate naı̈ve CD4+ T cells in vitro for 5 h.

In conclusion, our data showed that the numbers of Th9 cells

with the phenotype of effector memory cells in TPE were

significantly increased when compared with their compartments

in blood, and that overrepresentation of Th9 cells in TPE may be

due to the increased local proinflammatory cytokines and to PMC-

produced CCL20. Our data also showed that IL-9 significantly

improved PMC wound healing and long term restoring and

inhibited IFN-c-induced PMC apoptosis. Moreover, PMCs were

able to function as antigen-presenting cells to stimulate Th9 cell

differentiation in response to M. tuberculosis antigens.

Materials and Methods

Subjects
The study protocol was approved by our institutional review

boards for human studies, and informed consent was obtained

from all subjects. Fourteen patients (age range: 21 to 64 yr) were

proven to have TPE, as evidenced by growth of M. tuberculosis from

pleural fluid or by demonstration of granulomatous pleurisy on

closed pleural biopsy specimen in the absence of any evidence of

other granulomatous diseases. All TPE patients were anti-human

immunodeficiency virus antibody negative and were recruited

from Department of Internal Medicine, Wuhan Institute of

Tuberculosis Prevention and Control. After anti-tuberculosis

chemotherapy, the resolution of TPE and clinical symptoms was

observed in all patients.

The patients were excluded if they had accepted any invasive

procedures directed into the pleural cavity or if any chest trauma

was occurred within 3 months prior to their hospitalization, or if

the existence of a pleural effusion of origin unknown. At the time

of sample collection, none of the patients had received any anti-

tuberculosis therapy, corticosteroids, or other nonsteroid anti-

inflammatory drugs.

Sample collection and processing
Five-hundred to 1,000 ml of TPE samples from each patient

were collected in heparin-treated tubes, through a standard

thoracocentesis technique within 24 h after hospitalization.

Twenty milliliters of blood were drawn simultaneously. TPE

specimens were immersed in ice immediately and were then

centrifuged at 1,200 g for 5 min. The cell pellets of TPE were

resuspended in HBSS, and mononuclear cells were isolated by

Ficoll-Hypaque gradient centrifugation (Pharmacia, Uppsala,

Sweden) to determine the T cell subsets within 1 h. A pleural

biopsy was performed when the results of pleural fluid analysis

were suggestive of tuberculosis.

Flow cytometry
The expression of markers on T cells from TPE and blood were

determined by flow cytometry as previously described [33] after

surface or intracellular staining with anti-human-specific Abs

conjugated with FITC, PE, PEcy7, PerCP, PerCP-cy5.5, APC, or

eFluor 660. These human Abs included anti–CD3, –CD4, –CD8,

–CD45RA, –CD45RO, –CD62L, –CCR2, –CCR3, –CCR4, –

CCR5, –CCR6, –CCR7, –IL-9, –IL-17, –IL-4, and –IFN-c
mAbs, which were purchased from BD Biosciences (Franklin

Lakes, NJ), eBioscience (San Diego, CA), or R&D systems

(Minneapolis, MN). Intracellular staining for IL-9, IL-17, IL-4,

or IFN-c was performed on T cells stimulated with phorbol

myristate acetate (PMA, 50 ng/ml; Sigma-Aldrich St. Louis, MO)

and ionomycin (1 mM; Sigma-Aldrich) in the presence of Golgi-

Stop (BD Biosciences) for 5 h, and then stained with anti–IL-9, –

IL-17, –IL-4, –IFN-c, or –Foxp3 mAb conjugated with PE,

PerCP-cy5.5, or PEcy7 (BD Biosciences or eBioscience). Intracel-

lular staining for calretinin, a marker of mesothelial cells [34], was

performed to identify PMCs. Fixed and permeabilized PMCs were

primarily stained with mouse anti–human calretinin mAb (BD

Biosciences), and then stained with FITC goat anti–mouse Igs (BD

Biosciences). Appropriate species matched Abs served as isotype

control. To explore the expression of molecules on PMCs, anti–

IL-9R, –IL-4R, and –IFN-cR1 mAbs (R&D systems) conjugated

with PE, PEcy7, PerCP or APC were used. Flow cytometry was

performed on a FACS Canto II (BD Biosciences) and analyzed

using BD FCSDiva Software and FCS Epress 4 software (De Novo

Software, Los Angeles, CA).

Cell isolation
Naı̈ve CD4+ T cells were isolated from both TPE and blood by

MACS based on negative selection using the Naı̈ve CD4+ T cell

isolation kit II (Miltenyi Biotec, Bergisch-Gladbach, Germany)

according to the manufacturer’s instructions. The purity of naı̈ve

CD4+CD45RA+ T cells was .97%, as measured by flow

cytometry.

For isolating PMCs, the cell pellets of TPE were resuspended in

RPMI-1640 (Gibco, Invitrogen, Carlsbad, CA) containing 20%

heat-inactivated fetal bovine serum (FBS; Gibco), 20 ng/ml

epidermal growth factor (R&D systems), and 50 mg/ml gentamy-

cin. The cells were seeded into 25-cm2 flasks at a density of 16l04

cells/cm2 and placed in an incubator at 37uC in 5% CO2. After

24 h the monolayers were washed with HBSS to remove

nonadherent cells and fresh media was added. The monolayers

were monitored until confluent (7–10 d), then trypsinized, and

subcultured for 5 to 6 passages. After each passage the cells grew to

confluence within 4–5 d. In general, PMCs could be maintained

for 6 to 7 passages before they became senescent.

Differentiation of Th9 cells
Purified naı̈ve CD4+ T cells from both TPE and blood (56105)

were cultured in 1 ml of complete medium containing human IL-2

(2 ng/ml) in 48-well plates and stimulated with plate-bound anti-

CD3 (OKT3; 1 mg/ml) and soluble anti-CD28 mAbs (1 mg/ml)

for 7 d. The exogenous cytokines used were IL-1b (20 ng/ml), IL-

4 (20 ng/ml), IL-6 (100 ng/ml), IL-12 (20 ng/ml), IL-21 (50 ng/

ml), IL-25 (100 ng/ml), IFN-c (30 ng/ml), and TGF-b (5 ng/ml).

Recombinant human IL-1b, IL-4, IL-6, IL-12, IL-21, IL-25, IFN-

c and TGF-b were purchased from R&D Systems. In some
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experiments, designated numbers of PMCs were added into the

culture.

Th9 cell chemotaxis assays
Th9 cell in vitro chemotaxis assays were performed as previously

described [33] with slight modifications. In briefly, the 8-mm pore

polycarbonate filters in 24-well Transwell chambers (Corning

Costar, Corning, NY) were used. Transwell membranes were

coated with fibronectin (5 mg/ml; Chemicon International,

Schwalbach, Germany) for 30 min at 37uC. Purified CD4+ T

cells from blood (26105) were added into the top chamber

resuspended in RPMI 1640 medium with 0.5% FBS in the final

volume of 100 ml, TPE or supernatants of cultured PMCs were

placed in the bottom chamber in a volume of 600 ml, and the

chambers were incubated at 37uC in 5% CO2 atmosphere for 3 h.

Finally, the total cells migrated into the bottom chamber were

harvested and intracellular stained for IL-9 and then analyzed by

flow cytometry as above described. The chemotaxis index was

calculated by dividing Th9 cell numbers migrated in response to

TPE or supernatants by Th9 cell numbers migrated in response to

medium alone. To investigate whether CCL20 contributed to Th9

cell migration, blocking experiments were performed by mixing

the TPE or supernatants with 100 ng/ml anti-CCL20 mAb or

mouse IgG irrelevant isotype control (R&D systems).

PMC in vitro injury model and long term restoring
Confluent monolayers of cultured PMCs were scratched with

the tip of a p-200 pipette to create a uniform cell-free zone in each

well. Cellular debris was removed by PBS washing. Wounded

monolayers were then incubated in the presence of medium alone,

IL-9 (100 ng/ml; R&D Systems), IL-4 (100 ng/ml; R&D

Systems), or IFN-c (30 ng/ml; R&D Systems). No epidermal

growth factor was added into the culture. Microscopy pictures

were taken at different time points after injury with a digital

camera. The residual gap between migrating PMCs was measured

with a computer-assisted image analysis system (Axiovision; Zeiss)

and expressed as a percentage of the initial scratched area.

For long term restoring study, PMCs were cultured in the same

conditions as the above wound healing experiments for up to 14 d,

and then were photographed in the 0, 7, and 14 d and analyzed by

calculating PMCs density using the same system.

Apoptosis of PMCs in vitro
Confluent monolayers of PMCs were cultured in the presence of

medium alone, IL-9 (100 ng/ml), IL-4 (100 ng/ml), IFN-c

(30 ng/ml) or their various combinations. After 48 h, PMCs were

trypsinized and harvested, then stained with APC conjugated

Annexin V and propidium iodide (Annexin V Apoptosis Detection

Kit APC; eBioscience) and incubated at room temperature in dark

for 10 min. Finally, the proportional apoptosis of PMCs was

determined by flow cytometry.

Antigen presentation to CD4+ T Cells by PMCs in vitro
Purified naı̈ve CD4+ T cells (26105) from blood were cultured

with autologous PMCs at a ratio of 5 : 1 in RPMI-1640

supplemented with penicillin (100 U/ml), streptomycin (100 mg/

ml), L-glutamine (2 mM), HEPES (10 mM), 10% type AB human

serum in flat bottomed 96-well plates. In some experiments, IL-9

(100 ng/ml), IL-4 (100 ng/ml), IFN-c (30 ng/ml), or ESAT-6/

CFP-10 (10 mg/ml, State Key Laboratory of Agricultural

Microbiology, Huazhong Agricultural University, Wuhan, China)

were added into the culture. Suspension cells were harvested at

5 d, then Th9 cells within CD4+ T cells were determined by flow

cytometry as above described.

In some experiments, anti-CD80 (10 mg/ml) or/and anti-CD86

(10 mg/ml) mAbs (eBioscience), or CTLA-4Ig (5 mg/ml; R&D

systems) or control Igs (mouse IgG1k (10 mg/ml) for anti-CD80

and anti-CD86 and mouse IgG2a (5 mg/ml) for CTLA-4Ig) were

added. To calculate percentage inhibition, basal unstimulated

proliferation was subtracted and then percentage inhibition was

calculated relative to its mAb control.

Statistics
Data are expressed as mean 6 SEM. Comparisons of the data

between different groups were performed using a Kruskal-Wallis

one-way analysis of variance on ranks. For variables in TPE and in

corresponding blood, paired data comparisons were made using a

Wilcoxon signed-rank test. The correlations between variables

were determined by Spearman rank correlation coefficients.

Analysis was completed with SPSS version 16.0 Statistical

Software (Chicago, IL, USA), and p values of less than 0.05 were

considered to indicate statistical significance.
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