
Citation: Farooq, M.A.; Ma, W.; Shen,

S.; Gu, A. Underlying Biochemical

and Molecular Mechanisms for Seed

Germination. Int. J. Mol. Sci. 2022, 23,

8502. https://doi.org/10.3390/

ijms23158502

Academic Editor:

Cristina Martínez-Villaluenga

Received: 9 July 2022

Accepted: 29 July 2022

Published: 31 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Underlying Biochemical and Molecular Mechanisms for
Seed Germination
Muhammad Awais Farooq † , Wei Ma †, Shuxing Shen * and Aixia Gu *

State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable
Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei,
College of Horticulture, Hebei Agricultural University, Baoding 071000, China;
awaisfarooq724@gmail.com (M.A.F.); mawei0720@163.com (W.M.)
* Correspondence: shensx@hebau.edu.cn (S.S.); aixiagu@126.com (A.G.)
† These authors contributed equally to this work.

Abstract: With the burgeoning population of the world, the successful germination of seeds to achieve
maximum crop production is very important. Seed germination is a precise balance of phytohor-
mones, light, and temperature that induces endosperm decay. Abscisic acid and gibberellins—mainly
with auxins, ethylene, and jasmonic and salicylic acid through interdependent molecular pathways—
lead to the rupture of the seed testa, after which the radicle protrudes out and the endosperm
provides nutrients according to its growing energy demand. The incident light wavelength and
low and supra-optimal temperature modulates phytohormone signaling pathways that induce the
synthesis of ROS, which results in the maintenance of seed dormancy and germination. In this review,
we have summarized in detail the biochemical and molecular processes occurring in the seed that
lead to the germination of the seed. Moreover, an accurate explanation in chronological order of how
phytohormones inside the seed act in accordance with the temperature and light signals from outside
to degenerate the seed testa for the thriving seed’s germination has also been discussed.

Keywords: seed germination and dormancy; phytohormones; light; temperature and endosperm decay

1. Introduction

The germination of seeds plays a significant role in crop production, and it is an
intricate process that occurs due to the precise optimization of endogenous (phytohormones,
endosperm decay) and exogenous factors (light and temperature) [1]. The transition from
dormancy to germination begins when the dry seed comes in contact with water and
ends when the radicle has emerged through all the coats of the developing embryo [2].
This encounter activates the internal metabolic process, involving the careful equilibrium
phytohormones [3] in the presence of optimum light and temperature to overcome the
seed’s dormancy [4] Nevertheless, a deeper and sequential understanding of the interplay
of intrinsic and extrinsic factors for seed germination is a prerequisite for the improvement
of seed germination potential in various crops.

Abscisic acid (ABA) and gibberellic acid (GA) play a key role in a number of physio-
logical processes during seed germination [5]. ABA induces dormancy, while GA plays
a key role in the release of dormancy and germination. A high ABA:GA ratio maintains
dormancy, while dormancy release involves a net shift to increased biosynthesis of GA and
ABA degradation resulting in a low ABA:GA ratio. These two hormones may also act in an
antagonistic manner in the promotion of testa and endosperm rupture [6].

The degree of seed dormancy is established during seed maturation and governs the
behavior of the seed after shedding or even while still attached to the mother plant [7].
The initiation of seed dormancy is coordinated in zygotic tissues by environmental factors
that also perform overlapping roles in the control of embryonic identity, storage reserve
accumulation, and onset of desiccation tolerance. In addition to the metabolic pathways
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triggering under the influence of environmental cues, for the seed to rupture, it must go
through a series of checks in a sequential manner that leads to testa and endosperm rupture.
In many species, seed covering layers impose a physical constraint to radical protrusion,
which must be overcome by the growth potential of the embryo [8].

Numerous extrinsic factors can prolong or terminate seed dormancy and promote
seed germination and development. Light [9], temperature [10], and soil conditions [11]
are major signals that can be perceived by seeds to regulate the timing of germination. The
regulatory effect of light on seed germination depends on its spectrum [12]. Blue light
activates ABA and delays seed germination, whereas red or far-red light plays a key role in
the activation of seed germination via the activation of GA biosynthesis and restricting the
production of ABA [13]. Seed germination is dependent on the surrounding temperature,
which can delay or expedite the germination process after sowing. Most species germinate
in the presence of temperatures between 15–30 ◦C [14]. Weakening of the endosperm is a
prerequisite for the initiation of seed germination and is driven by various internal and
external factors. The decay of the endosperm is directly linked to the production of ROS in
response to the availability of external environmental signals [15]. This article summarizes
the roles of environmental factors (temperature and light), phytohormones, and endosperm
decay in seed germination (Figure 1).
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Figure 1. Graphical abstract: driving forces of seed germination: phytohormones, high tempera-
ture, light, and endosperm decay. R (Red), FR (Far-red), Sleepy (SLY), ABA (Abscisic acid), GA
(Gibberellins), Reactive oxygen species (ROS), Reduced Dormancy 5 (RD05), RGA-LIKE2 (RGL2),
SPINDLY (SPY), Teosinte branches 1/cycloidea/proliferating cell factor (TCP), Ethylene (ETH),
Indole-3-acetic acid (IAA), Salicylic acid (SA), PHY-INTERACTING FACTORS (PIF), Delay of Germi-
nation (DOG), Brassinosteroids (BRs), ABA HYPERSENSITIVE GERMINATION1 (AHG1), Super
oxidase dismutase (SOD), Ascorbate peroxidase (APX), Catalase (CAT), Glutathione reductase (GR),
MOTHER OF FT and TFL1 (MFT), ABA-insensitive (ABI), Phytochrome (Phy), Serine palmitoyl-
transferase (SPT), auxin-responsive factors (ARF), Ethylene responsive transcription factor (ERF),
ICE1 (Inducer of CBF Expression 1), Diacylglycerol (DAG), Auxin (AUX), Repressor of ga1-3 (RGA),
ABI3-interacting protein (AIP), ETHYLENE RESPONSE1 (ETR1), SOMNUS (SOM, a set of 98 genes),
Resolvin E1 (RVE1).
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2. Main Text
2.1. Phytohormone Regulation of Dormancy and Germination

Seed germination and dormancy are strictly regulated by hormones, particularly ABA
and GA, which have antagonistic effects. ABA biosynthesis takes place mainly due to
carotenoid cleavage dioxygenase gene 6 (NCED 6), NCED 9, and other genes, such as
ABA-deficient (ABA2) and abscisic aldehyde oxidase 3 (AAO3) during seed development
to maintain seed dormancy. ABA-insensitive (ABI) genes, i.e., ABI3, ABI4, and ABI5
are more plentiful in dormant seeds than in seeds with reduced seed dormancy levels.
Among ABI genes, ABI3 expressed in the developing seeds also regulates the accumulation
of chlorophyll, anthocyanins, and storage proteins together with two other seed-related
regulators, FUSCA3 (FUS3) and leafy cotyledon 1 (LEC1). ABA levels in seeds depend on
the degradation process. The catabolism of ABA is mediated by ABA8 hydroxylase encoded
by P450 (CYP707A) genes and is induced by imbibition and stratification; the concentration
of ABA declines and that of GA increases [16]. ABA-dependent pathways are also very
important in the regulation of seed germination. ABA signaling must be terminated by
a process in which the membrane-associated transcription factor peptidases S1P (Site-1
Protease) and S2P translocate the bZIP17 protein from the endoplasmic reticulum (ER)
to the Golgi apparatus and then to the nucleus. There, activated bZIP17 regulates the
transcription of downstream negative regulators of ABA signaling [17]. ABA acts through
the PYR/PYL/-RCAR-PP2C-SnRKs signaling cascade. The PP2C proteins ABI1 and ABI2
bind to ABA receptors to inhibit signaling [18,19]. Their dominant negative mutants, abi1-1
and abi2-2, show reduced dormancy due to the impaired interaction between the mutated
proteins and their receptors. The other PP2C HONSU (HON) protein also influences
seed germination by downregulating ABA signaling and upregulating GA signaling [20].
In addition, another PP2C gene, RD05 (reduced dormancy 5), has a positive role in the
reduction of seed dormancy [21]. Genetic and bioinformatic analysis showed that RD05
controls seed dormancy by mediating transcription of the PUF family RNA-binding genes
APUM9 (Arabidopsis PUMILI09) and APUM11 [21]. However, RD05 appears to function
independently of the ABA pathway, and further research is needed to accurately delineate
its role in seed germination processes.

GA biosynthesis mainly occurs in the radicle of the embryo, which in turn ensures
germination progression. However, high exogenous concentrations of GA can negatively
influence the germination process [22]. The activation of GA-responsive genes induces
cell-wall-remodeling enzymes, such as endo-β mannase, xyloglucan endotransglycolase,
expansin, and β 1,3-mannase. Their activity leads to the weakening of the surrounding
embryo layers. GA breaks dormancy by antagonistically suppressing ABA-triggered seed
dormancy. This process appears to involve the secretion of hydrolytic enzymes gibberellin
3-oxidase 1 (GA3ox1), GA20ox3, and ENT-kaurene oxidase 1 (KO1) to weaken the seed testa,
although detailed and precise information about this mechanism is lacking. GA-deficient
mutants, such as ga1 and ga2, show strong dormancy and cannot germinate without
external GA application [22]. Mutations in DELLA genes, including RGL2 (RGA-LIKE2)
and SPY (SPINDLY), two negative regulators of the GA signaling pathway, can rescue
the non-germination phenotype of ga1. DELLAs also maintain the seed in a quiescent
state of cell cycle progression by repressing the activities of TCP14 (Teosinte branches
1/cycloidea/proliferating cell factor) and TCP15 [23]. The sleepy1 (SLY1) is an F-box
protein which enables 26S-proteasome-mediated degradation of DELLA proteins in the
presence of active GA. sly1 mutants show reduced germination even after the application
of exogenous GA [24].

Genes in hormone signaling pathways also play an important role in regulating seed
germination. The expression levels of numerous genes are up- and downregulated to medi-
ate seed dormancy and germination (Table 1). The APETALA 2 (AP2) domain containing
transcription factor ABI4 plays a significant role in seed dormancy regulation. ABI4 controls
many signaling pathways, including responses to ABA, glucose, sucrose, ethylene (ET),
and salt stress. ABI4 positively regulates ABA catabolism genes and negatively regulates
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GA biogenesis genes. The loss of ABI4 function increases the expression of GA biosynthesis
genes but decreases the expression of GA inactivation genes; together, these changes lead
to decreased primary seed dormancy in the abi4 mutant [25]. Furthermore, ABI4 binds to
the promoters of CYP707A1 and CYP707A2, which mediate ABA catabolism, inhibiting
their transcription and thereby promoting the accumulation of ABA. However, no direct
role of ABI4 in GA metabolism has been identified, and ABI4 may not directly bind to
the promoters of GA biosynthesis genes. Instead, it may recruit additional seed-specific
transcription factors to repress the transcription of GA metabolism genes [26]. Clearly, the
AP2 domain plays an important role in the dual regulation of ABA and GA biosynthesis to
optimize seed dormancy and germination.

Table 1. Genes involved in seed dormancy and germination.

Name of Gene Mutant Dormancy Level General Description of Gene References

ABI3 Decreased Positively regulates ABA signaling and represses
seed germination [27]

ABI4 Decreased Positively regulates ABA signaling and represses
seed germination [28,29]

ABI5 Not Changed Positively regulates ABA signaling and represses
seed germination [30,31]

NCED5 Decreased ABA-biosynthesis gene; the ABA content is
decreased [32]

CYP707A1/2 Enhanced ABI4 negatively regulates its transcription [33]

GAI/2 Enhanced GA-biosynthesis genes; GA content is decreased
in mutants [23]

GA2oxs Decreased GA-inactivate genes; GA content is upregulated
in mutants [34]

RGL2/SPY Enhanced GA signaling is blocked in mutants [35]

MYB96 Decreased Decreases transcription of ABI4 and some ABA
biogenesis genes [36,37]

DOG1 Enhanced ABA sensitivity of dog1 seeds is unchanged [38,39]

SUVH4/SUVH5 Enhanced Repress DOG1 and ABI3 transcription [40]

LDL1/LDL2 Enhanced Repress seed dormancy by negatively regulating
DOG1 [17]

WRKY41 Decreased WRKY41 directly promotes ABI3 transcription [41]

RAF10/RAF11 Decreased Directly enhances ABI3 transcription [42]

DEP Decreased Promotes ABI3 transcription [43]

SPT Decreased in Ler but enhanced
in Col background Opposite roles in Ler and Col ecotypes [44,45]

ARF10/ARF16 Decreased ARF10/ARF16 directly promote ABI3
transcription [46]

BIN2 Not mentioned Phosphorylates and stabilizes ABI5 to enhance
ABA signaling [47]

PKS5 Not mentioned Phosphorylates ABI5 (Ser42) and controls
transcription of ABA-responsive genes [48]
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Table 1. Cont.

Name of Gene Mutant Dormancy Level General Description of Gene References

HONSU Enhanced A PP2C protein that impairs ABA signaling [20]

RDO5 Enhanced Its ABA sensitivity and content remain
unchanged [21]

ABI1/2 Decreased Dominant-negative mutants; the mutated
proteins cannot interact with ABA receptors [49]

CHO1 Decreased Acts upstream on ABI4 genetically [50]

OsAP2-39 Decreased
Promotes OsNCEDI and OsEUI, thereby

enhancing ABA biogenesis and impairing GA
accumulation

[51]

DDF1 Decreased Directly promotes GAox7 and thus decreases GA
content [52]

Auxin is involved in all stages of plant development and in the response to a multitude
of environmental cues. Exogenous auxin application triggers seed dormancy under salt
stress, indicating its role in seed germination [53]. IAA (indole-3-acetic acid) delays seed
germination and inhibits preharvest sprouting in wheat [54]. Seed dormancy and germi-
nation are controlled by auxin-related genes. Biochemical studies have shown that when
auxin levels are low due to the suppression of auxin-responsive factors 10 (ARF10) and
ARF16 by AXR2/3, the expression of AB13 is not activated and seed dormancy is released.
Contrarily, when auxin levels are high, ARF10 and ARF16 are released to activate AB13
transcription and seed dormancy is maintained [55]. Increases in the biosynthesis of auxins
can be linked to the release of dormancy in monocots. Furthermore, TaAuxin-resistant
1 (TaAXR1), TaUbiquitin-related protein 1 (TaRUB1), and TaARF@ were upregulated in
the ripened wheat seeds. TaAXR1 is associated with AUX/IAA-proteasome-mediated
degradation, whereas TaRUB1 is related to ubiquitin action. The higher expression of
TaAXR1 and TaRUB1 can exert a negative impact on auxin signaling [46].

Ethylene (ET) breaks seed dormancy and enhances seed germination by reducing
the effects of ABA. Changes in positive regulators of the ET signaling pathway cause
severe dormancy, whereas mutations in the negative ET regulator Ctr1 (Constitutive Triple
Response 1) lead to rapid or early seed germination [56]. Brassinosteroids (BRs) have been
reported to act in opposition to ABA to improve seed germination, partly through an MFT
(MOTHER OF FT and TFL1)-mediated pathway that generates a negative feedback loop
to modulate ABA signaling. The ABA response of BR mutants or BR-deficient plants is
stronger than that of wild-type seeds, indicating that BR overcomes the inhibitory effect of
ABA on germination [57]. Salicylic acid (SA) controls seed germination by inhibiting the
expression of GA-induced α-amylase genes under normal growth conditions. Moreover,
SA has been found to promote seed germination under salt stress through another signaling
pathway that reduces oxidative damage [58]. Cytokinins (CTKs) improve seed germination
by reducing the impact of ABA, specifically by the downregulation of AB15 transcription.
A recent study has shown that AB15 plays an important role in ABA and CTK signaling at
both the mRNA and protein levels [59]. Jasmonic acid (JA) has an antagonistic relationship
with ABA: it not only suppresses ABA biosynthesis genes but also inhibits ABA inactivating
genes (Figure 2) [60].
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Figure 2. Model showing the effects of extrinsic and intrinsic factors on seed dormancy and germina-
tion. During the maturation of the seed (MS), intrinsic ABA is upregulated, and GA is downregulated
to inhibit preharvest sprouting (PHS) on the mother plant. After harvest, stratification (STR) and
reactive oxygen species (ROS) increase GA biosynthesis and repress ABA biosynthesis, turning the
quiescent seed (QS) into a germinating seed (GS). Red bars indicate an inhibition effect, whereas
green arrows indicate a promotion effect.

2.2. Light Controls Seed Germination and Dormancy

Light is indispensable for germination, although the exact functions of light in seed
germination require additional study. Light regulates various plant physiological pro-
cesses, such as seed germination and dormancy, photomorphogenesis, phototropism, and
flowering. There are many factors involved in light regulation of seed dormancy and ger-
mination (Table 2). At least five kinds of photoreceptors in plants that monitor surrounding
light signals have been reported [14]. Blue light (320–500 nm wavelength) is absorbed by
photosensory receptors, including the cryptochromes (CRYs), FLAVIN-BINDING KELCH
REPEAT F-BOX1/ ZEITLUPE /LOV KELCH PROTEIN2, and phototropins. Numerous
genetics studies have indicated that alterations in these photoreceptors can cause changes in
seed germination and agronomical traits. Blue light has been identified to play a role in seed
germination inhibition. Cryptochrome 1 mediates this inhibition by downregulating CRY1a
and CRY1b products in barley through an RNA interference (RNAi) approach that results
in reduced blue light inhibition of grain germination, suggesting the specific role of cry1
in promoting seed dormancy in this monocot. This effect is due to the induction of ABA
biosynthetic gene 9-CIS-EPOXYCAROTENOID DIOXYGENASE 1 (NCED1) with conse-
quent ABA biosynthesis. Blue light does not induce NCED 1 in germinating CRY1a/CRY1b
RNAi seed, whereas ABA-catabolic gene ABA8′OH-1 is upregulated during early phases
of germination [61,62]. The blue light receptor cryptochrome circadian regulator 1 (CrY1)
mediates the stimulatory effects of blue light on the expression of NCED1, which increases
ABA content and inhibits seed germination in dormant barley [61,63]. Blue light has also
been reported to inhibit seed germination in Brachypodium distachyon [14]. Previous
studies have suggested that blue light represses seed germination by enhancing the tran-
scription of ABA biosynthesis genes and repressing the expression of ABA catabolism
genes [60].
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Table 2. The factors involved in the light regulation of seed dormancy and germination.

Protein Locus Possible Biochemical Function Loss of Function Phenotype References

PHYA AT1G09570 Regulates GA/ABA biosynthesis
and signaling Reduced germination in FR and R [64]

PHYB AT2G18970 Regulates GA/ABA biosynthesis
and signaling

Reduced germination in FR and R,
increased dormancy [65]

PHYC AT5G35840 Regulates GA biosynthesis Increased germination in FR [66]

PHYD AT4G16250 Regulates GA biosynthesis Reduced germination in FR [66]

PHYE AT4G18130 Regulates GA biosynthesis Reduced germination in FR [65]

PIF1 AT2G20180

Directly activates SOM, RGA, and
GAI expression; indirectly activates

ABA biosynthesis genes and
represses an ABA catabolic gene

Increased germination in FR [67]

SOM AT1G03790 Regulates the expression of GA and
ABA metabolic genes Increased germination in FR [67]

JMJ20 AT5G63080 Increases H4R3me2 in GA3ox1 and
GA3ox2 chromatin

Reduced germination in jmj20jmj22
double mutant seeds in R [68]

JMJ22 AT5G06550 Increases H4R3me2 in GA3ox1 and
GA3ox2 chromatin

Reduced germination in jmj20jmj22
double mutant seeds in R [68]

CTG10 AT4G19330 Promotes PIF1 degradation Reduced germination in FR [69]

COP1 AT2G32950 Promotes PIF1 degradation Reduced germination in FR [70]

SPA1 AT2G46340 Promotes PIF1 degradation Reduced germination in spaQ, R,
and FR [70]

SPA2 AT4G11110 Promotes PIF1 degradation Reduced germination in spaQ, R,
and FR [70]

SPA3 AT3G15354 Promotes PIF1 degradation Reduced germination in spaQ, R,
and FR [70]

SPA4 AT1G53090 Promotes PIF1 degradation Reduced germination in spaQ, R,
and FR [70]

COP10 AT3G13550 Enhances PIF1 stability Increased germination in FR [71]

DET1 AT4G10180 Enhances PIF1 stability Increased germination in FR [71]

HEC2 AT3G50330 Blocks PIF1 transcriptional activity Reduced germination in R [72]

LUH AT2G32700 Serves as a co-regulator of PIF1 Increased germination in FR [73]

HFR1 AT1G02340 Blocks PIF1 transcriptional activity Reduced germination in FR [74]

CSN1 AT3G61140 Stimulates RGL2 degradation and
further inhibits ABI5 activity Delayed/ reduced germination [75]

CSN5A AT1G22920 Inhibits ABI5 accumulation Delayed/ reduced germination [75]

FHY3 AT3G22170 Directly activates ABI5 expression Increased germination in ABA [76]

FAR1 AT4G15090 Activates ABI5 expression Increased germination in ABA [76]

HY5 AT5G11260 Directly induces ABI5 transcription Increased germination in ABA [77]

BBX21 AT1G75540 Interferes with HY5′ binding to
ABI5 Reduced germination in ABA [78]

IMB1 AT3G07610 N/A Reduced germination in ABA [79]
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Table 2. Cont.

Protein Locus Possible Biochemical Function Loss of Function Phenotype References

CCA1 AT2G46830 Regulates the expression of GA/
ABA related genes

Reduced dormancy in cca1lhy;
overexpression increases dormancy [80]

LHY AT1G01060 Regulates the expression of
GA/ABA related genes

Reduced dormancy in cca1lhy;
overexpression increases dormancy [80]

PIF6 AT3G62090 N/A Increased dormancy [81]

RVE1 AT5G17300
Directly inhibits GA3ox2

expression, prevents RGL2
degradation

Reduced dormancy, increased
germination in R [82]

RVE2 AT5G37260 Directly inhibits GA3ox2
expression

Reduced dormancy, increased
germination in R [82]

DAG1 AT3G61850 Directly inhibits GA3ox1
expression

Reduced dormancy and increased
germination in R [83]

SPT AT4G36930

Induces RGL3 and ABI5 expression
in the Col background; suppresses
RGA and ABI4 expression in the

Ler background

Reduced dormancy in Col
background; increased dormancy

in Ler background
[84]

ELF3 AT2G25930 Inhibits DOG1 expression Increased dormancy [85]

LUX AT3G46640 Directly inhibits DOG1 expression Increased dormancy [85]

PKL AT2G25170
Inhibits DOG1 expression by

regulating its H3K27me3; interacts
with LUX

Increased dormancy [85]

Phytochromes are necessary for the light-induced promotion of seed germination.
PhyB occupies the most important position. PhyB mediates the red/far-red photo-reversible
response (LFR) to induce the early stages of seed germination. In response to long nights
and imbibition, phyA mediates the very low fluence response (VLFR) to different light
spectra (UV-A-FR) and the R/FR high irradiance response (R/FR-HIR) to accelerate seed
germination in the absence of active phyB [14]. PhyA- and phyB-dependent germination
induction are spatially separated and occur in the endosperm and embryo, respectively [86].
PhyE is required for germination in the presence of continuous far-red light [87]. PhyE and
phyD stimulate germination at very low red/far-red ratios, whereas phyC antagonizes the
promotion of germination by light [65].

Basic helix–loop–helix (bHLH) transcription factors from the PHY-INTERACTING
FACTORS (PIF) family negatively regulate the phytochrome-mediated light-signaling
pathway [84]. The Arabidopsis genome encodes eight PIFs: PIF1, PIF2/PIL1, and PIF3–
PIF8. The interaction between the phytochromes and the PIFs depends mainly on short
domains located in the amino termini of the PIFs: APB for Pfr phyB binding and APA for
Pfr phyA binding. Light-activated Phys modulate the functions of PIFs through different
mechanisms. For example, the phyB-PIF interaction lowers the DNA-binding capacity of
PIF1, PIF3, and PIF4 [88]. However, there is still much to learn about the regulation of seed
germination by light of different wavelengths in order to devise appropriate strategies for
individual plant species.

Red or far-red light (600–750 nm) is perceived by the phytochromes [89], and UV-B
light (280–320 nm) is perceived by UV RESISTANCE LOCUS8 (UVR8). These photore-
ceptors mediate light signals to remodel global transcriptional programs by selectively
interacting with transcription factors or E3 ubiquitin ligases that regulate the stability of
transcription factors [90]. Studies have demonstrated that red and far-red light modulates
seed germination through interactions between phys and PIF1, which in turn controls ABA
and GA pathways [91]. Phytochromes were first identified in lettuce as regulators of seed
germination. Red light can induce seed germination, whereas far-red light has an inhibitory
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effect [92]. These effects have been confirmed repeatedly in multiple plant species. Both
the inactive form (Pr) and the active form (Pfr) of phytochromes are present in plants. Pr is
converted into Pfr by the absorption of red light and promotes seed germination, whereas
Pfr is converted into Pr in the presence of far-red light. Pfr translocates to the nucleus,
where it controls the transcription of GA- and ABA-related genes by altering the stability
or mRNA abundance of several transcription factors [93].

In summary, the germination of a seed is dependent on the precise balance of ABA
and GA. ABA is a key player for the entrance and the establishment of seed dormancy and
is necessary for the quiescent stage of the seeds, whereas the GA-mediated pathway is an
important regulator for the promotion of seed germination in favorable conditions. Many
components of the ABA and GA pathways, i.e., ABI3, ABI4, ABI5, RGL2, MFT, and DOG1,
effectively control the germination of the seed. Moreover, auxin, jasmonic acid, brassi-
nosteroids, and ethylene modulate the ABA pathway in seeds, which indicates that seed
germination is an extensive process which occurs due to the crosstalk of phytohormones.

2.3. Optimum Temperature Enables Seed Germination

High or low temperature can cause a delay in the germination of seeds due to the
obstruction of various molecular and physiological processes [94]. Time to germinate
extends when temperatures remain low [95], and dormancy procrastinates due to prolonged
low temperatures experienced by the mother plant before flowering. The temperature of the
soil in which the seed is sown also regulates seed germination [8]. For optimal germination,
most seeds require temperatures between 15–30 ◦C. The delay in germination at the low
temperature of 5 ◦C prevents the protrusion of the radicle, which ensures that germination
occurs in suitable conditions that lead to the seedling’s successful establishment. Delay in
the germination time prolongs the imbibition period of the seed, leading to the production
of necessary proteins synthesis in wheat embryos. These proteins play a significant role in
breaking the dormancy of the seeds, which is why cold seems to have an advantageous
effect on germination [96]. However, the nature of germination and intensity of response
varies among plant species and in different cultivars of the same species [97,98]. On the
other hand, when heat stress was applied, seeds showed a decrease in metabolites and
rate of reserve mobilization, which is directly linked to the loss of seed viability [99].
The efficiency of seed reserve utilization decreases with the increase in temperature [100].
Wheat seeds have the capacity to germinate at 45 ◦C but the germination percentage
remained only 12% due to cell death and embryo damage [101,102]. Under moderate heat
stress, the cellular damage may occur if the stress prevailed at a longer period of time [96].
These injuries may include protein denaturation, aggregation, and increased fluidity of
membrane lipids. Indirect and slower heat injuries cause inactivation of enzymes in the
chloroplast and mitochondria, inhibition of protein synthesis, protein degradation and
loss of membrane integrity [103]. High temperature negatively affects seed development
due to the accumulation of ROS (especially H2O2) due to lipid peroxidation. H2O2 has a
dual role; it acts as signal transduction in cell growth and development and also triggers
a wide range of stressful environments that lead to programmed cell death (PCD). In
response to ROS, many detoxifying enzymes, i.e., SOD, APX, CAT, and GR, are produced
and are disrupted and inactivated due to the heat stress [104]. The inability of the cell
detoxification mechanism to work against ROS causes the rise of ROS inside the cell that
damages internal organelles, especially cell walls, membranes, and mitochondria, which
leads to endosperm decay [105]. Temperature, phytohormones, ROS, and light regulate
seed germination in four sequential steps, i.e., embryo growth, testa rupture, endosperm
rupture (radicle emergence), and growth of epicotyl for seed germination [106].

Low temperature promotes DOG1 transcript accumulation, inducing prolonged seed
dormancy due to zygotic tissues rather than seed coat tissues, which are not living. Peri-
carp thickness and integrity plays a decisive role in seed dormancy, which can be released
through seed stratification [107]. The depth of the dormancy depends on the presence of
DOG1 proteins in the mature seeds. In addition to the developmental pathway in zygotic tis-
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sues, seed coat pigmentation—which is determined by flavonoid concentrations—plays an
important role in seed fate. High seed pigmentations cause strong seed dormancy, whereas
the seeds with transparent testae have high germination rates. Transcripts of flavonoid
biosynthetic pathway genes were upregulated in response to the low temperature, in-
cluding the regulatory MYB, basic helix–loop–helix (bHLH) transcription factors, and
procyanidin-synthesizing enzyme BANYULS [107,108]. However, in Arabidopsis thaliana,
flavonol-deficient fls1-3 mutant—which shows a severe reduction in flavonol concentration
but normal soluble proanthocyanidins (PAs)—indicated that flavnols do not have a signifi-
cant role in seed germination. In contrast, three alleles of BANYULS/ANTHOCYANIDIN
REDUCTASE demonstrated low dormancy which had required levels of PA. However, leu-
canthocyanidin dioxygenase (ldox/tt18) and dihydroflavonol reductase (dfr/tt3-1) mutants
which produced less PA showed reduced germination. Furthermore, temperature during
seed production affects tannin biosynthetic gene expression because tannins are known
to regulate seed permeability. At low temperatures, procyanidin content increases due to
the high production of monomers that polymerize to form condensed tannins. Therefore,
with the change in temperature, the synthesis of procyanidins is altered, which might be
due to the changed transcript abundance regulation of the enzymes required for tannin
synthesis [4].

In high temperatures, FUS3 controls the ABA/GA ratio by negatively regulating GA
and positively regulating ABA during postembryonic development. Seeds imbibed at
32 ◦C rapidly degrade FUS3 mRNA stored in the seed and induce de novo FUS3 mRNA
synthesis within 12 h, which leads to the accumulation of FUS3 proteins by 48 h due to
translational or posttranslational regulation induced by HS. Interestingly, FUS3 can only
be detected in the seeds which commence their germination at 32 ◦C, whereas FUS3 was
not detected in those seeds which remained in a dormant state. This indicates that FUS3
is only active in a small developmental window to delay the seed germination process
through the activation of de novo ABA biosynthesis. Among the ABA biosynthetic genes,
NCED1, NCED5, NCED9, ABA1, and ABA2 showed increased expression at 12 and/or
24 h, while CYP707A2, the most abundant ABA catabolic gene during germination, showed
a transient reduction of expression at 12 h. These changes in gene expression are consistent
with previous quantifications of transcript levels of several ABA metabolic genes during
imbibition at 34 ◦C [109]. The increase in FUS3 mRNA level at 12 and 24 h parallels that
of the ABA biosynthetic genes. Interestingly, all ABA metabolic genes identified in this
microarray, with the exception of NCED1, contain RY elements, which interact with B3-
domain proteins [110,111]. Since FUS3 positively regulates ABA levels, these genes may be
directly regulated by FUS3 and/or other B3-domain proteins [112].

2.4. Endosperm Decay, A Prerequisite for Embryo Growth

Germination is deemed successful when the radicle protrudes through the outer cov-
ering layers of the seed, leading to seedling establishment (Figure 3) [112]. During seed
ripening, protein oxidation by ROS occurs in the dry seeds, which intensifies with the
perpetual dry state of the seeds [113,114]. Protection against oxidative damage by ROS is
provided by small amounts of antioxidants present in the seed, mainly glutathione (GSH).
ROS oxidizes GSH to its dimer GSSG, which accumulates during seed storage [115]. The
lipophilic antioxidant tocopherol prevents membrane lipid peroxidation, improving seed
longevity and germination [116]. A third antioxidant is ascorbate, which is present in
minute amounts to regulate redox reactions in the dry state [117]. A controlled process of
oxidation leads to the loss of dormancy, but if the oxidative damage intensifies, deterio-
ration and loss of viability can occur. Dry seeds contain up to 10,000 mRNA transcripts,
representing the installed mechanisms for surviving severe dry conditions and the po-
tential oxidative damage from ROS (Table 3) [118]. The accumulation of transcripts in
seeds is tissue-specific: transcripts that accumulate in the embryo are different from those
accumulated and activated in the endosperm during germination and development [119].
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Table 3. Transcription factors expressed in endosperms involved in the germination of seeds.

Gene Species Binding Site Target Gene Expression Phenotypes References

bZIP Transcription Factors

Opaque2 (O2) Maize
GCN4-like

motif
(TGASTCA)

a-zein, 32 kDa
albumin (b-32)

Endosperm-
specific

Soft and chalky
endosperm with
high lysine and

tryptophan

[120]

BLZ1 Barley Ltr1 Endosperm, roots,
and leaves NA [121]

BLZ2 Barley Hor-2 Endosperm-
specific NA [122]

SPA Wheat LMWG-1D1 Seed-specific NA [123]

RISBZ1 Rice OsLKR/SDH Endosperm-
specific

Higher lysine
contents [124]

TRAB1 Rice ABRE (ACGT
box) Osem Embryo roots and

leaves NA [125]

HvABI5 Barley HVA1, HVA22 Aleurone layer

HvABI5 RNAi
inhibits the ABA

activation of
ABRC-GUS

[126]

AtABI5 Arabidopsis AtEm6, AtEm1
Embryo and
micropylar
endosperm

Reduced sensitivity
to ABA inhibition

of germination
[127]

AtbZIP44 Arabidopsis G box
(CACGTG) AtMAN7

Embryo and
micropylar
endosperm

Delayed
germination [128]
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Table 3. Cont.

Gene Species Binding Site Target Gene Expression Phenotypes References

DOF Transcription Factors

PBF Maize Prolamin box
(TGHAAAG) γ-ZEIN Endosperm-

specific NA [129]

WPBF Wheat α-gliadin
Root, cotyledon,

leaf, stem, flower,
seeds

NA [130]

HvDOF24/
BPBF Barley Hor-2, Al21,

Amy2/32b
Endosperm-

specific NA [131]

HvDOF23/SAD Barley Ltr1, Hor-2, and
Al21

Starchy endosperm,
aleurone cells,

nucellar projection,
vascular tissues,
and immature

embryo

NA [132]

HvDOF19 Barley Al21 Aleurone layer and
embryo NA [133]

GAMYB Transcription Factors

HvGAMYB Barley G-ARE (T/C)
AAC (A/T) AC Hor-2 and ltr1 Aleurone layer,

starchy endosperm

Transient
expression of

HvGANYB RNAi
blocks gibberellin-

induced
vacuolation in
aleurone cells

[134]

OsGAMYB Rice GARE
(TAACAAA) RAmy1A Aleurone cells and

anthers

Defects in
gibberellin induced
gene expression in

the endosperm,
incomplete

heading, sterile
panicle

[135]

AtMYB101,
AtMYB33,
AtMYB65

Arabidopsis NA NA

Endosperm,
embryo, anthers;

MYB101 is
endosperm specific

Defects in
gibberellin induced

vacuolation in
germinating
endosperm

[127]

DELLA Proteins

SLN1 Barley NA NA NA

Constitutive
expression of
α-amylase in

aleurone layer,
slender plants

[136]

SLR1 Rice NA NA NA

Constitutive
expression of
α-amylase in

aleurone layer,
slender plants

[137]

RGL2 Arabidopsis NA NA NA
Inability to secrete

ABA from the
endosperm

[138]
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Table 3. Cont.

Gene Species Binding Site Target Gene Expression Phenotypes References

B3 Domain Transcription Factors

Viviparous
(VP1) Maize RY/SPH motif

(CATGCA)

C1, a regulator
for anthocyanin

biosynthesis

Embryo and
aleurone layer

ABA-insensitive
seed, reduced

accumulation of
anthocyanins in
kernels, vivipary

[139]

OsVP1 Rice Osem Embryo and
aleurone layer NA [140]

AtABI3 Arabidopsis
SOMNUS

(SOM, a set of
98 genes)

Embryo and
endosperm

ABA insensitive
seed, severe defects
in seed maturation,

desiccation
intolerant seeds

[127]

HvFUS3 Barley Hor-2 and ltr1
Embryo,

endosperm, and
aleurone cells

HvFUS3
complements

Arabidopsis fus3
mutants

[141]

bHLH Transcription Factors

AtPIL5 Arabidopsis G-box
(CAGGTG)

SOMNUS
(SOM), GAI,

RGA

Both embryo and
endosperm in

germinating seeds

PhyB independent
germination,

dissected
endosperm secretes

ABA in light
dependent manner

[142]

WRKY Transcription Factors

HvWRKY38 Barley W-box
(TTGACY) Amy32b NA NA [143]

Testa rupture begins when the dry seed starts to imbibe water from the soil [144].
During the imbibition process, the seed rapidly swells and changes in size and shape.
The micropyle is the major entry point for water uptake in the Arabidopsis seed, and
this phenomenon has also been observed in pea, tobacco, and other species by H-NMR
image analysis [114]. The Arabidopsis seed surface is characterized by volcano-shaped cell
wall structures called columellae, from which mucilage is released during imbibition [145].
This mucilage is composed of rhamnogalacturonan pectins and cellulose arranged in an
outer water-soluble layer, and an inner layer is covalently bound to the testa by cellulose
microfibrils [146]. This mucilage helps the seed to travel long distances for effective
dispersal by attaching to the skin of animals; it also assists in germination under drought
and salt stress conditions [147]. Imbibition causes the leakage of cellular solutes that triggers
the germination process and reduces the concentration of inhibitors. Leakage also damages
cellular membranes because of rapid and non-uniform rehydration after a long period
of dehydration and storage [148]. The seed activates repair mechanisms for membranes
and proteins whose aspartyl residues have been damaged by conversion to isoaspartyl.
Isoaspartyl methyltransferase can catalyze the transformation of isoaspartyl back to its
original form.

The testa ruptures in response to the cumulative effects of many factors, including low
pigmentation, hormone sensitivity, and altered morphology (Figure 4) [149]. During the
first phase of imbibition, the seed reaches its capacity for water uptake, attains a constant
size and shape, and moves into phase II, i.e., testa rupture. During phase II, the water
content stays the same; the duration of this phase varies, and it ends with the rupture of the
testa [150,151]. Testa rupture begins at the micropylar end that covers the radicle. Tobacco
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seeds have predetermined breaking points for testa rupture that are assisted by channel-like
structures underlying the ridges. After rupture, phase III begins: the endosperm ruptures
and the radicle protrudes from the seed, and this is called germination sensu stricto [8].

Int. J. Mol. Sci. 2022, 23, 8502 12 of 21 
 

 

This mucilage is composed of rhamnogalacturonan pectins and cellulose arranged in an 
outer water-soluble layer, and an inner layer is covalently bound to the testa by cellulose 
microfibrils [146]. This mucilage helps the seed to travel long distances for effective dis-
persal by attaching to the skin of animals; it also assists in germination under drought and 
salt stress conditions [147]. Imbibition causes the leakage of cellular solutes that triggers 
the germination process and reduces the concentration of inhibitors. Leakage also dam-
ages cellular membranes because of rapid and non-uniform rehydration after a long pe-
riod of dehydration and storage [148]. The seed activates repair mechanisms for mem-
branes and proteins whose aspartyl residues have been damaged by conversion to isoas-
partyl. Isoaspartyl methyltransferase can catalyze the transformation of isoaspartyl back 
to its original form. 

The testa ruptures in response to the cumulative effects of many factors, including 
low pigmentation, hormone sensitivity, and altered morphology (Figure 4) [149]. During 
the first phase of imbibition, the seed reaches its capacity for water uptake, attains a con-
stant size and shape, and moves into phase Ⅱ, i.e., testa rupture. During phase Ⅱ, the 
water content stays the same; the duration of this phase varies, and it ends with the rup-
ture of the testa [150,151]. Testa rupture begins at the micropylar end that covers the rad-
icle. Tobacco seeds have predetermined breaking points for testa rupture that are assisted 
by channel-like structures underlying the ridges. After rupture, phase Ⅲ begins: the en-
dosperm ruptures and the radicle protrudes from the seed, and this is called germination 
sensu stricto [8]. 

 
Figure 4. Timeline of crucial processes during the germination of eudicot seeds that exhibit separate 
testa and endosperm rupture (two-step germination). Water uptake, testa and endosperm rupture, 
and the effect of ABA on these processes are shown for Arabidopsis thaliana seed; control and with-
out hormone CON. Critical biochemical, biophysical, and cellular events during germination are 
triggered by water uptake and are shown in the diagram. Water uptake phases: Imbibition (I), Post-
imbibition (II), and Post germination reserve mobilization (III). The diagram is based on the under-
standing from [152–155]. 

The development of the endosperm occurs in several phases: formation of the nuclear 
endosperm, cellularization, differentiation, maturation, and cell death [156]. There are 
four types of cells in the endosperm: starchy endosperm, the aleurone layer, transfer cells, 
and the region surrounding the embryo. The starchy endosperm is the main source of 
nutrients and energy for embryo development, seed germination, and seedling 

Figure 4. Timeline of crucial processes during the germination of eudicot seeds that exhibit separate
testa and endosperm rupture (two-step germination). Water uptake, testa and endosperm rupture,
and the effect of ABA on these processes are shown for Arabidopsis thaliana seed; control and
without hormone CON. Critical biochemical, biophysical, and cellular events during germination
are triggered by water uptake and are shown in the diagram. Water uptake phases: Imbibition (I),
Post-imbibition (II), and Post germination reserve mobilization (III). The diagram is based on the
understanding from [152–155].

The development of the endosperm occurs in several phases: formation of the nuclear
endosperm, cellularization, differentiation, maturation, and cell death [156]. There are four
types of cells in the endosperm: starchy endosperm, the aleurone layer, transfer cells, and
the region surrounding the embryo. The starchy endosperm is the main source of nutrients
and energy for embryo development, seed germination, and seedling establishment [157].
The endosperm next to the radicle is called the micropylar endosperm (ME). The ME
expresses endosperm-specific genes that assist in the loosening of the cell wall [158]. Seed
cell wall thickness varies between different plants. Thick cell walls like those of tomato
seeds must undergo a long process of weakening to enable seed germination. By contrast,
the seed cell walls of Arabidopsis are thin and made up of an aleurone-like cell layer.
The aleurone layer functions to inhibit seed germination by acting as a mechanical bar-
rier and also provides nutrients to germinating seeds [159]. The aleurone layer secretes
hydrolytic enzymes that catabolize proteins and starch to provide nitrogen and carbon
for seed germination [160]. The Arabidopsis endosperm accumulates lipids in the form
of triacylglycerols (TAGs) that are catabolized into sucrose by gluconeogenesis during
and after seed germination. Lipids stored in the endosperm differ from proteins stored in
the embryo in both their chemical composition and their mechanism of catabolism [161].
During germination, cress seeds accumulate proteins that are involved in protein folding,
protein stability, energy production, and defense. Their abundance is linked temporally,
spatially, and hormonally to the weakening and rupturing of the ME, and the ME of cress
therefore has a regulatory function through cell wall modification and does not act solely
as a source of nutrients for seed germination [162].
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The loosening of the endosperm cell wall is a prerequisite for seed germination. The
cell wall is composed of cellulose, hemicellulose, and pectin and functions to regulate
seed germination [163]. Cellulose is a linear polymer of β(1→4) linked glucose units,
whereas hemicellulose and pectin are heteropolysaccharides composed of different sugar
monomers [164]. The activities of cell-wall-remodeling enzymes (CWREs) are important
for the loosening of the cell wall. The cell wall reacts to its surroundings, and ABA inhibits
germination by preventing the weakening of the endosperm, whereas gibberellin stim-
ulates germination by regulating the abundance of CWREs [165]. Delay of germination
1 (DOG1) is under negative epigenetic regulation mediated by KKYP/SUVH4, LDL1, and
LDL2, which positively regulates seed dormancy. DOG1 metabolizes GA in a temperature-
dependent manner, which increases the coat dormancy. DOG1 differentially regulates the
expression of GA biosynthesis genes such as GA3ox1 and GA20ox at 18 ◦C and 24 ◦C, respec-
tively, which leads to the inhibition of genes encoding CWREs: expansin 2 (EXPA2), EXPA9,
and xyloglucam endo-transglucosylase 19 (XTH19), but only at 24 ◦C. Therefore, DOG1
regulates the appropriate time of germination according to the environmental temperature.
PCD of aleurone cells during germination enhances the transport of stored nutrients re-
quired for seed germination and seedling growth. PCD of the starchy endosperm causes it
to degenerate, making way for radicle protrusion [166]. GA induces PCD in the aleurone
layer and improves the germination prospects of the seeds. GA-deficient tomatoes are
unable to germinate unless they are provided with exogenous GA, although the radicle
does emerge and protrude if the endosperm is removed [167]. Therefore, inhibition by
ABA can be eliminated if the mechanical barrier of the endosperm is removed [168]. When
cell wall loosening has occurred, water can move inward to increase turgor pressure and
generate cell expansion. This allows for embryo growth, depending upon the extensibility
of the cell wall [163].

In summary, seed dormancy and seed germination respond to an interplay of endoge-
nous and exogenous factors [169].

3. Conclusions and Future Perspectives

The germination of the seed is a prerequisite to attain the maximum potential of a
crop. It requires a deeper understanding of internal and external factors affecting the seed
germination and subsequent emergence so that they can be optimized to achieve the maximum
crop production. Phytohormone-, light-, and temperature-activated molecular pathways are
intertwined, which excites the ROS production that leads to the germination of the seed. Seed
germination therefore requires internal responsiveness to external environmental cues.

Reproduction is an important phase in the plant life history. Therefore, the genes
responsible for seed dormancy and seed germination have remained under the strongest
selection during the course of evolution. Although it has been well established that plant
hormones, along with environmental factors, regulate dormancy–germination transition
through a complex network, there are several gaps that are still needed to be filled to
increase comprehension of this process.

First, ABA suppresses GA synthesis and is a key dormancy inducer; however, we
know very little about GA biogenesis during seed dormancy establishment in seeds, which
requires further investigation. Secondly, where is the precise location of ABA and GA
synthesis molecular activities are taking place inside the seed. Do ABA and GA synthesize
de novo at dormancy and germination sites? Previously, some basic studies were performed
by developing seed coat bedding assay to demonstrate that ABA is synthesized de novo in
the seed coat in an RGL2-dependent manner and thus represses germination of the embryo.
However, this demands further study to identify the precise threshold that ABA needs
to achieve to halt seed germination. Subsequently, the actual position of GA biosynthesis
must also be identified.

Third, during seed development, the increase in auxin production raises the question:
what is the molecular pathway that is responsible for its production? Fourth, ABA and
auxin function synergistically to positively regulate seed germination, whereas GA acts
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antagonistically against auxin and ABA to enhance the prospects of seed germination.
However, the detailed molecular mechanisms underlying these synergistic and antagonistic
relations are largely undiscovered, including the equilibrium between ABIs, DOG1, DEP1,
and SPT (Figure 1) and downstream targets of these transcription factors, which function
to improve seed germination prospects.

Fifth, environmental cues, such as light and temperature, play a significant role in
maintaining seed dormancy and germination. In this regard, the foremost question is
that of how seeds sense temperature changes. There is a need to identify seed temper-
ature sensors using biological approaches combined with biophysical and biochemical
techniques. Receptor-like kinsases (RLKs) are key components in triggering plant response
according to cold and heat stress, which prompts us to propose that these are involved in
the temperature sensing, though there is a need to investigate hypothesis and shed new
light on temperature-sensing mechanisms in seeds. Moreover, there is a need to analyze
the effects of abrupt fluctuations in temperature on phytohormones, which regulate seed
germination and dormancy.

Sixth, changing climatic conditions have greatly challenged the ability of the seeds to
germinate over diverse geographic landscapes. Therefore, the identification of qtls respon-
sible for providing plasticity against natural variations may provide useful strategies that
ensure that plants can germinate and grow well to adapt to dynamic environments. Another
interesting finding is that the endosperm is capable of sensing light signals and interacts
with the embryo through bidirectional communication, which provides the evidence that
the endosperm is not merely a source of nutrients but that it also controls seed germination
and controls embryonic signals through actively secreting signals. Examining the function
of individual seed cell types, including the endosperm, will provide an excellent model for
understanding the mechanisms of cell-to-cell communication. It will also provide insight
into how cell–cell communication directs or coordinates the systemic responses of the
seed. Continued study into the role of the endosperm will facilitate the application of seed
biology knowledge to the development of robust and sustainable agricultural practices.
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