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A B S T R A C T

Background: In recent years, Robot-Assisted Surgeries (RAS) have advanced significantly, revolutionizing 
healthcare with better patient outcomes, faster recovery times, and greater surgical accuracy. However, chal
lenges such as restricted maneuverability and communication issues persist, along with the need to evaluate 
surgeons’ proficiency in RAS. Healthcare 5.0 seeks to enhance RAS by integrating technologies like advanced 
imaging, haptic feedback, and artificial intelligence.
Objective: This paper explores the Operational Management of Robotic-Assisted Surgeries (OM-RAS) by analyzing 
recent research. It assesses surgical robotics operations, workflow optimization, performance enhancement, and 
skill assessment. Additionally, it examines challenges and gaps in the RAS domain, providing a comprehensive 
research overview.
Methods: A comprehensive literature search was conducted across databases such as Scopus, Web of Science, and 
Google Scholar, covering publications up to the third quarter of 2023. Search terms were selected using scientific 
criteria and validated by experts, resulting in a substantial document collection. A rigorous screening process, 
aligned with PRISMA 2020 standards, filtered the selection to 50 research papers, forming the foundation for 
detailed investigation.
Findings: OM-RAS is a multidimensional field influenced by emerging technologies that optimize workflows, 
enhance performance, and improve skill assessment in RAS. Despite superior outcomes, challenges such as 
implementation costs and seamless technology integration persist. Additionally, research gaps exist regarding 
RAS benefits, creating opportunities for efficiency enhancement in patient care. Further exploration of RAS 
procedure scheduling across different surgery types is essential.
Conclusion: Integrating advanced technologies into RAS has improved surgical outcomes, shortened hospital 
stays, and enhanced working environments. This study advocates for a holistic multi-criteria decision-making 
approach, considering factors like kinematics, imaging, Internet of Things/Tactile Internet (IoT/TI), and AI. It 
provides valuable insights, guiding future research and shaping OM-RAS studies.

1. Introduction

Rapid advances in medical innovation over the last few decades have 
increased the number of options for disease diagnosis and treatment [1]. 
Consequently, innovations such as minimally invasive robotic surgeries 

have gained widespread recognition and popularity in recent times due 
to their numerous advantages. In this context, robotic surgery or 
Robot-Assisted Surgeries (RAS) display better functional outcomes in 
terms of Length of Stay (LOS) and Operative Time (OT), in addition to 
faster recovery, improved patient outcomes, and less post-operative pain 
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[2].
RAS can surpass traditional surgeries in terms of performance met

rics such as procedural error, economy of motion, diagnostic error, and 
task completion time [3]. It can also outperform both open and lapa
roscopic surgeries in terms of hand tremor and visual feedback, 
respectively. In addition to its ability to collect visual and spatial data to 
manage robotic system limitations and improve the surgeons’ experi
ence [4]. It can be either teleoperated, comanipulated, 
supervisory-controlled, or shared-controlled. Most of the research pa
pers focus on comanipulated or telesurgical operations since they are the 
most commonly performed types of robotic surgery [5].

However, RAS comes with certain drawbacks, including limitations 
in maneuverability, operational workspace (both inter- and intra- 
operative), communication among the surgical team, and assessment 
of surgeons’ skills in using the robot’ [6–8]. Also, if the surgery is tele
operated over a large distance between the surgeons and patients, some 
constraints such as time delay and real-time data delivery must be 
considered [9]. Surgical robots such as Da Vinci are not fully autono
mous, so studying RAS pertains to the study of human-machine inter
action. Moreover, although robotic surgeries provide more dexterity 
compared to traditional surgeries, they still require new technologies 
and innovations to further increase dexterity related to the ability to 
perform surgical procedures with precision.

Therefore, examining the Operational Management (OM) of robotic 
surgeries involves the latest technology/innovation associated with 
Healthcare 5.0, including advanced imaging, haptic sensing (force 
feedback), improved robotic articulation, sensors, and more. This ex
amination also encompasses skill assessment as well as healthcare op
erations and workflow, such as resource allocation and cost of 
implementation. All the aforementioned collectively impact the per
formance of OM.

Prior reviews have explored various aspects of surgical robotics. 
Fruggiero et al [7] evaluated factors influencing Da Vinci robotic lapa
roscopic surgery, ranking them through an analytic hierarchy process 
and categorizing their risks. Dlaka et al [10] reviewed RAS applications 
in stereotactic and spinal neurosurgery for preplanning, navigation, and 
localization. Chioson, Espiritu, Munsayac, Jimenez, et al [11] high
lighted the latest developments in surgical robots in the Philippines, 
discussing different systems, the current state of RAS, and recent tech
nological advancements.

As for haptic feedback, in a comprehensive review done by M et al. 
[12], the authors discussed haptic gloves, which are one of the latest 
RAS-related technologies used to mimic the sense of touch and enhance 
human-machine interaction, in addition to the latest technologies 
related to haptic gloves. The study highlighted the methodology used in 
previous haptic studies and some correction measures. An overview of 
Artificial Intelligence (AI) in RAS has been discussed by Eminaga & Liao 
[4], where subjects such as RAS pre-preparation, navigation, and auto
mated maneuverability of repetitive tasks have been highlighted. 
Notably, the latest generation of robotic systems from Intuitive, the Da 
Vinci 5, features advanced Force Feedback technology. This innovation 
enables surgeons to perceive push and pull forces, detect tissue tension, 
and experience a realistic sense of pressure during critical tasks such as 
dissection, retraction, and suturing, enhancing precision and control in 
surgical procedures.

In this context, this literature review paper is taking a unique path by 
examining operational management aspects of RAS (OM-RAS) through 
simulation and optimization. Simulations/optimization-related studies 
can be seen in different aspects such as resource allocation and sched
uling, haptic/force sensing simulation, tele-operations of RAS, imaging, 
and skills assessment. Factors affecting operational management, such 
as time-related factors, accuracy, reliability, and other performance 
metrics, will be examined.

This study stands out for its innovative approach, examining both the 
direct and indirect factors that impact the OM-RAS. In Section 3.1: 
Surgical Robotics Operations and Workflow Optimization, it precisely 

examines the direct factors affecting OM-RAS, while Sections 3.2 and 
3.3: Surgical Robotics Performance Enhancement and Skill Assessment, 
discuss indirect influences. Previous reviews often emphasized ad
vancements in RAS technology, such as sensor integration for optimal 
positioning or algorithmic enhancements for manipulator control, 
alongside Convolutional Neural Networks (CNNs) for image classifica
tion improvement. However, from an operational management stand
point, these technological aspects are regarded as indirect contributors 
to functional outcomes of RAS, a critical aspect that this literature re
view aims to address.

2. Methodology

The methodology of this literature review paper adopted a compre
hensive search strategy for the retrieval of pertinent articles from elec
tronic databases. These databases included Scopus, Web of Science, and 
Google Scholar. The search was not limited to a specific time period, 
allowing for a comprehensive exploration across different timeframes. 
The selection of search terms was guided by a scientific approach, as 
elucidated by Chabowski et al. [13] and Zupic & Čater [14]. Moreover, 
the analysis incorporated insights from a thorough examination of 
pertinent literature review papers outlined in Table 1, with a particular 
emphasis on the research conducted by Moglia et al. [15]. To ensure the 
rigor of this search strategy, a panel of experts within the research field 
was engaged. Their involvement encompassed the validation of the 
compiled search query, the establishment of filtering criteria, the iden
tification of supplementary search terms, and the incorporation of 
relevant terminology.

After iterative refinement, the search query is documented in Table 2
and the criteria for inclusion and exclusion are outlined in Table 3 were 
ultimately employed. The methodology adhered to the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 
2020 statement and checklist [19]The reference ’Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020′ is 
cited in the text but is not listed in the references list. Please either delete 
the in-text citation or provide full reference details following journal 
style., as well as the guidelines for assessing the methodological quality 
of systematic reviews, A Measurement Tool to Assess Systematic Re
views (AMSTAR 2) [20].

Following the elimination of duplicate articles, a total of 178,038 
papers were identified, as illustrated in Fig. 1. In order to focus exclu
sively on studies directly aligned with the research objectives, the search 
was restricted to articles that incorporated the query keywords within 
their titles, abstracts, and keywords, resulting in a refined dataset of 
26,279 documents.

Table 1 
Previous review papers.

Reference Focus Timespan Size

Fruggiero et al. 
[7]

Variables affecting RAS 1987–2015 40

Dlaka et al. 
[10]

Stereotactic and spinal neurosurgery 1988–2021 38

Fuertes-Guiró 
et al. [16]

Opportunity cost of implementing 
DaVinci-RAS

1992–2013 36

M et al. [12] Haptic glove 2004–2020 23
Moglia et al. 

[15]
A systematic review on artificial 
intelligence in robot-assisted surgery

1994–2021 78

Lam et al. [8] Machine learning for technical skill 
assessment in surgery: a systematic 
review

1988–2021 105

Giansanti [17] Current Trends and Future Possibilities of 
Integrating AI into Public Health (RAS 
addressed)

2021–2022 28

Moawad et al. 
[18]

How AI/AR affects the future of RAS and 
the latest technologies applied to different 
medical specialties

2006–2020 17

Current review Operations Management of RAS 2006–2023 50
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Further refinement was achieved by applying filters after reviewing 
articles from various research fields, such as medicine, engineering, 
computer science, and others. From this, specific subject areas were 
delineated as shown in Table 3. This step notably reduced the dataset to 
199 documents. Furthermore, the search filters were used to exclusively 
extract conference papers and articles, excluding books, press articles, 
and the like, resulting in a final dataset of 190 documents. From this 
dataset, we identified 9 previous review papers, which we have analyzed 
and summarized in Table 1.

These 190 studies underwent meticulous scrutiny in Excel to facili
tate manual screening. The screening process involved assessments 
based on titles and abstracts, complemented by comprehensive reviews 
of full texts when necessary. Disagreements between reviewers during 
the screening process were addressed through discussion, and if 
consensus could not be reached, a third reviewer was consulted to make 
the final decision. Notably, studies unrelated to the research domain, 
such as those related to agriculture, communication, and drilling sys
tems, were excluded during this phase, resulting in the formation of an 

Table 2 
Search query.

((artificial AND intelligence) OR (deep AND learning) OR (machine AND learning) OR (convolution AND neural AND network) OR (skills AND assessment) OR (plan*) OR (schedul*) 
OR (simulat*) OR (optimiz*) OR (optimis*) OR (operate*) OR (manage*) OR (model*) OR (program*) OR (appointment)) 
AND ((robotic AND surg*) OR (surgical AND robot*) OR (robot-assisted AND surg*) OR (da AND vinci AND surg*))

Table 3 
Filtering criteria.

1. Query keywords must exist in the publication title, abstract, or keywords.2. Only retain publications that satisfy the following conditions: 
○ Type: Journal article or conference paper
○ Language: English
○ Time: up to the third quarter of 2023
○ Subject areas: “Decision Science”, “Business, Management and Accounting”, and “Economics, Econometrics and Finance”

Records identified from:

Databases (n = 26279)

Records removed before 

screening:

Records marked as ineligible 

by automation tools

(n = 26097)

Records screened

(n = 199)

Records excluded

(n = 93)

Reports sought for retrieval

(n = 106)

Reports assessed for eligibility

(n = 106)
Reports excluded for the 

following reasons:

1) Literature reviews 

2) Not related to Robotic-

Assisted Surgery (RAS)

Studies included in review

(n = 50)

Identification of studies via databases and registers
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Fig. 1. Flow Chart of the Study Selection Process Based on PRISMA.
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initial set of included studies. Subsequently, papers related to RAS were 
included if they demonstrated the potential to impact the operational 
management of RAS. Eligible studies addressed aspects such as work
flow optimization, enhancement of robotic system performance, or 
improvement of surgeon–robot interaction, all of which are believed to 
contribute to better surgical processes and improved medical outcomes. 
To ensure maximum coverage, both backward and forward snowballing 
approaches were employed as suggested by Wohlin [21], leading to the 
identification of a few additional publications that were not initially 
included.

Subsequently, the final dataset included 50 studies. This was fol
lowed by the thorough processes of data extraction and content analysis. 
The included studies have been categorized into three types: observa
tional studies, real-world validated studies, and mixed-design studies 
(which combine both observational and real-world validation compo
nents). The supplementary materials of this paper include Table S1, 
which classifies each study according to these categories. The culmi
nation of these analytical steps facilitated the creation of the classifi
cation schemes presented in Figs. 2 and 3.

3. Results and discussions

The healthcare landscape is evolving rapidly, with terms like Hos
pitals of the Future (HoF) and Healthcare 5.0 gaining prominence. These 
terms underscore the growing significance of integrating the latest 
technological trends into our healthcare systems, as they are believed to 
have a profound impact on various healthcare facets, including clinical, 
financial, organizational, and technological outcomes [22–24].

As a result, the integration of RAS into our healthcare systems has 
emerged as a prominent trend. It is increasingly recognized that RAS can 
lead to improvements in peri‑operative outcomes, such as reduced pa
tient waiting times, shorter LOS, optimized OT utilization, and mini
mized surgical complications (e.g., reduced Blood Loss (BL), Urinary 
Incontinence (UI), Urinary Complications (UC), erectile dysfunction, 
etc.)—as evidenced by studies [25–27]

However, the extent of these improvements and the specific tools and 
technologies employed remain key considerations. The true impact of 
RAS on healthcare outcomes will become clearer as we thoroughly 
explore the OM aspects of RAS and examine the factors influencing its 
performance. Consequently, this literature review paper aims to spot
light recent research that explores techniques, tools, and technologies 

that have the potential to influence RAS and its peri‑operative outcomes, 
ultimately enhancing the precision of surgical procedures.

In our examination of this section, we have summarized the OM of 
RAS (OM-RAS), as depicted in Fig. 2. Our findings reveal that the ma
jority of studies within this field predominantly emphasize the latest 
technologies and associated simulations. Subsequently, research atten
tion shifts towards RAS workflow optimization and performance 
enhancement. Skill assessment and studies related to cost-benefit anal
ysis appear to be relatively less prevalent. This distribution highlights 
the evolving focus of OM-RAS research, showing a clear shift toward 
technological innovation and process improvement. As mentioned in the 
preceding section, 50 studies have been incorporated into this paper. 
Among these studies, 14 studies are dedicated to the optimization of 
surgical robotics operations and workflow (Table 5), 14 focus on the 
surgical robotics performance enhancement (Table 6), an additional 10 
probes deeply into imaging (Table 7), while 8 address haptic sensing and 
force feedback (Table 8). Moreover, 4 studies center around skill 
assessment (Table 9). A quick summary for each subsection can be seen 
in Table 4.

3.1. Surgical robotics operations and workflow optimization

This section comprises a total of 14 studies. The first part addresses 
six comparative analyses of RAS with traditional procedures [28–33]. 
Two studies that address strategic considerations concerning the 
implementation of RAS and AI integration [34,22]. Subsequently, the 
third part explores four studies digging into tactical aspects, focusing on 
the integration of Tactile Internet (TI) and Internet of Things (IoT) 
within the domain of Robot-Assisted Tele-Surgeries (RATS) workflow 
optimization [23,24,35,36]. Finally, the fourth section examines two 
studies centered on operational decisions, specifically exploring clinical 
utility and resource allocation [37,26].

3.1.1. Comparative analysis of robot-assisted surgeries (RAS) with open 
and laparoscopic surgeries

Lipsitz et al. [32], using data from the Nationwide Inpatient Sample 
(NIS), found increased discharge hazard rates for RAS compared to open 
and laparoscopic approaches across nephrectomy, prostatectomy, and 
partial nephrectomy. Similarly, Faria et al. [30] evaluated the long-term 
cost-effectiveness of open, laparoscopic, and robot-assisted radical 
prostatectomy over 20 years using Quality-Adjusted Life-Year (QALYs), 

Fig. 2. Research Aspects and Emphasis in Operational Management of Robotic-Assisted Surgery (OM-RAS).
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Incremental Cost-Effectiveness Ratio (ICER), and Incremental 
Cost-Utility Ratio (ICUR). Their analysis, which included health out
comes such as biochemical recurrence, metastasis, and post-operative 
complications, indicated RAS had a 32.9 % and 38.9 % chance of 
dominance over open and laparoscopic surgeries, respectively. Howev
er, the study’s reliance on diverse sources for intra- and peri‑operative 
data may limit its applicability to the Brazilian context, increasing un
certainty [30].

Al-Thani et al. [28] found robotic adrenalectomy to be safe and 
effective for small benign tumors (<6 cm), though surgical choice 
depended on factors such as tumor characteristics, patient health, sur
geon expertise, and institutional resources. Open surgery remained 
preferred for larger or malignant tumors. The study noted potential bias 
due to evolving hospital practices and called for further research on 
costs, risks, and quality of life. In pancreatic surgery, Duran et al. [29] 
reported that robotic distal pancreatectomy led to significantly less 

blood loss and shorter hospital stays compared to open surgery, with 
outcomes comparable to laparoscopic procedures and a lower morbidity 
rate. Similarly, H.-I. Kim et al. [31] evaluated 434 gastrectomies and 
found comparable complication and recovery rates between robotic and 
laparoscopic groups. However, robotic surgeries were longer and more 
expensive, without perioperative advantages. In liver surgery, Yu et al. 
[33] found no significant differences between robotic and laparoscopic 
resections regarding operative time, blood loss, complications, or hos
pital stay.

Nevertheless, despite its advancements, robotic surgery has its lim
itations, including high costs and the absence of tactile feedback; such a 
topic is addressed in 3.2.6. Also, comparative studies between robotic 
and laparoscopic liver surgeries have shown comparable outcomes. 
However, more in-depth research encompassing diverse cases and 
longer follow-ups is necessary for a thorough and precise comparison. 
Additionally, while the observational studies offer important pre
liminary insights, they highlight the need for further real-world vali
dation and long-term evaluation to strengthen the evidence base.

3.1.2. Artificial intelligence (AI) integration
Combining artificial intelligence with virtual and augmented reality 

(AR) will enable easy access to virtual healthcare services and enhance 
the effectiveness and safety of robotic surgeries, which is believed to be 
the future trend [17].

In robotic surgery, AR improves real-time surgical performance by 
modifying actual environments rather than creating simulations. Inte
grated with telemanipulation systems, AR enhances surgeons’ visual 
perspectives by overlaying key anatomical landmarks during proced
ures, thus improving safety and peri‑operative outcomes [18]. It also 
helps compensate for the lack of tactile feedback by visually enriching 
the operative field. Additionally, AR supports clinical decision-making 
by displaying contextual data, such as tissue characteristics and adja
cent structures [38,39].

Numerous survey studies exemplify the proof-of-concept for inte
grating AR into various specific RAS procedures. Several investigations 
showcase the feasibility of incorporating AR into a range of surgical 
interventions, such as partial nephrectomy [40], cholecystectomy [41], 
TECAB [42], and radical prostatectomy [39]. Interestingly, no compli
cations were detected in the previous studies.

AR has its limitations. Improper registration of AR may result in 
displaying the tumor at an incorrect location, a phenomenon known as 
"misregistration". If surgeons base their surgical decisions solely on the 
AR display, they could unintentionally harm healthy tissue while leav
ing the tumor unaffected. Falk et al. [42], recorded an overlay accuracy 

Fig. 3. Classification Scheme of Robot-Assisted Surgery (RAS) Operations Management (OM) Literature.

Table 4 
Results and discussion subsection summary.

Subsection Summary

3.1 Surgical Robotics Operations 
and Workflow Optimization

It explores the improvement of various 
operational and medical performance metrics, 
including resource utilization, LOS, and OT. 
This subsection emphasizes the significance of 
integrating RAS into healthcare and clinical 
operations, such as the allocation of beds and 
operating rooms.

3.2 Surgical Robotics Performance 
Enhancement

Focuses on studies dedicated to enhancing the 
performance of surgical robotics. It includes 
detailed sub-sections for imaging and force/ 
haptic feedback, as these areas have seen more 
research compared to other aspects of 
performance improvement. It also underscores 
the critical importance of optimizing RAS tools 
both intra-operatively (within the patient’s 
body) and inter-operatively (within the 
operating workspace). Additionally, it reviews 
the significance of optimizing end-effector 
track and RAS mechanism/kinematics.

3.3 Skill Assessment Focuses on simulation and optimization models 
related to skill assessment and haptic feedback, 
capitalizing on emerging technologies and 
Machine Learning (ML) techniques to enhance 
accuracy and optimize performance metrics. It 
is mainly about how to assess surgeon dexterity 
through AI algorithms.
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ranging from 9.3 mm to 19.2 mm during a TECAB cardiac procedure due 
to heart deformation. As a result, the integration of emerging AI tech
nologies with AR holds the promise of accurately identifying various 
body tissues. This can be achieved through AI algorithms leveraging 
deep learning-based CNNs or segmentation algorithms. Additionally, 
tracking algorithms can be employed to dynamically track tissues within 
the patient’s body in real-time, enhancing the precision and effective
ness of surgical interventions and medical procedures.

Agarwal et al. [34] conducted a qualitative study at Apollo Hospital 
in India, emphasizing the strategic value of AI and RAS, particularly 
when performed by skilled surgeons using minimally invasive tech
niques. Through a partnership with PMI/Microsoft in 2018, the hospital 
leveraged large datasets to accurately predict cardiovascular risks, 
highlighting AI’s potential in broader applications, including reducing 
infection risks through RAS. The study concluded that RAS improves 
productivity, reduces post-operative complications, and supports faster 
recovery, making it a cost-effective option. Similarly, Ali Mohamad et al. 
[22], based on nine interviews at a Dubai hospital, found that inte
grating AI into robotic surgery positively influences clinical, financial, 
organizational, and technological outcomes.

Implementing AI encounters some challenges, notably in data 
collection and bias mitigation. Unbiased, precise, and region-specific 
data are imperative for ensuring accurate outcomes. Furthermore, pa
tients’ apprehensions regarding data confidentiality pose hurdles in 
compiling data effectively. While integrating AI with RAS introduces 
decision-making paradigms, achieving complete automation remains a 
subject of ongoing research, hampered by issues such as misclassifica
tion and computational constraints [43].

3.1.3. Tactile internet (TI) and internet of things (IoT)
TI and IoT-related studies have become an indispensable aspect of 

robotic surgeries. As previously highlighted, datasets concerning robotic 
surgeries encounter significant challenges, including data acquisition 
and storage complexities, communication difficulties with low-latency 
requirements, and the scarcity of annotated data [44]. Furthermore, 
there are limitations in converting structured data into digitized for
mats. Therefore, it is paramount to consider these studies at the tactical 
level of OM-RAS.

Gupta et al. [24] introduced the Blockchain-driven Intelligent 
scheme for Tele-surgery System (BITS) framework, leveraging 6 G net
works and AI to mitigate cyberattacks in RATS. BITS addressed limita
tions in earlier systems like blockchain-based secure and flawless 
interoperable tele-surgery (HaBiTs), which relied on 5 G and private 
blockchain but faced issues with latency and reliability [45]. BITS 
achieved superior performance—99.99 % reliability and sub-100 
microsecond latency—enhancing data throughput and reducing stor
age costs. These advancements improved the responsiveness of 
intra-operative imaging and haptic feedback tools (e.g., Omega series), 
enabling more precise real-time surgical control.

To further improve network longevity and security, P. Lokhande & D. 
Patil [36] proposed a Machine-to-Machine (M2M) communication sys
tem using a LEACH (protocol that does not consider cyber-attacks). By 
simulating cyberattacks through the LEACH-A protocol, they evaluated 
metrics like energy consumption, PDS, delay, and overhead, demon
strating a 20–25 % increase in service life. Such enhancements support 
the seamless integration of advanced technologies into telesurgical 
workflows, ensuring secure, efficient, and real-time data exchange 
critical to surgical precision.

Hentati et al. [35] explored resource allocation in tele-surgery over 5 
G networks by implementing a Joint Placement and Scheduling Algo
rithm (JPSA) for Virtual Network Functions (VNFs) within a Network 
Function Virtualization (NFV) environment. Using a greedy algorithm 
and Integer Linear Programming (ILP), the study prioritized reliability 
and latency. Without existing benchmarks, two reference algorithms, 
RM-FDFS and SFG-JPSA, were developed. JPSA outperformed both in 
admission rate and cost, especially under strict reliability constraints. 

Notably, splitting application traffic into multiple VNF forwarding 
graphs (VNF-FGs) with varying QoS demands proved more efficient than 
using a single VNF-FG.

This insight aligns with Aripin et al. [23], who introduced the 
"Hospital of the Future" (HoF) concept by implementing three differ
entiated 5 G network slices tailored to specific communication needs 
detected via AR. Comparing static and dynamic slicing strategies using 
micro-BS/femtocell setups, they evaluated performance based on client 
connection metrics and bandwidth utilization. Although costlier, dy
namic slicing with femtocell yielded better outcomes, supporting 
advanced TS, AR-assisted robotic monitoring, and remote care, key to 
realizing the HoF vision.

3.1.4. Clinical utility and resource allocation
In a clinical utility context, Mukherjee & Sinha [26] examined RAS 

scheduling to minimize costs by analyzing three operational policies: 
triaging patients by criticality, optimizing surgeon pool size, and 
considering surgeon experience. Using Generalized Linear Models 
(GLM), Mixed Integer Linear Programming (MILP), and Discrete-Event 
Simulation (DES), the study found that applying these poli
cies—particularly for complex cases like uterine sizes >150 
g—improved outcomes and reduced costs in Robot-Assisted Hysterec
tomy (RAH). However, the authors noted these policies may vary across 
procedures, such as Radical Prostatectomy (RP), where additional fac
tors like urinary incontinence, blood loss, erectile dysfunction, and 
urethral complications must be considered. More about results and as
sumptions can be seen in Table 5.

Although not focused solely on RAS, Keyhanian et al. [37] proposed 
a multi-objective binary model for surgical instrument allocation in 
operating room trays. The model combined cell formation (grouping 
instruments by use) and bin packing (tray optimization), addressing 
constraints like avoiding redundancy and managing instruments as 
limited resources. The authors suggested their approach is adaptable for 
RAS, offering valuable methodology for efficient surgical logistics.

3.2. Surgical robotics performance enhancement

This subsection explores various facets of optimizing the capabilities 
and efficiency of surgical robotic systems. Each part in this subsection 
addresses a distinct aspect of performance enhancement.

Our exploration started with an investigation into how surgical ro
bots are controlled in terms of orientation and position (3.2.1). Subse
quently, we focused on the optimization of surgical tools and the 
manipulator’s path (3.2.2). The in-depth investigation of the optimiza
tion mechanism and kinematic analysis (3.2.3), including the exami
nation of VR-based simulation studies (3.2.3.1). Precision improvement 
in the manipulation of robotic instruments takes center stage in our 
analysis (3.2.4), followed by a thorough exploration of imaging 
enhancement (3.2.5) and the integration of haptic sensing with force 
feedback (3.2.6). Collectively, these subsections provide a comprehen
sive overview of ongoing efforts to enhance the performance and ca
pabilities of surgical robotic systems, ultimately contributing to 
advancements in surgical outcomes and patient care.

3.2.1. Orientation and position of surgical robot
Deilamsalehy & Havens [46] investigated robot pose estimation in 

RAS using 2D sensors within a 3D simulation to track 6 DOF. Accuracy 
was assessed through process and measurement noise covariances and 
mean errors, employing both Extended and Adaptive Kalman Filters. 
However, their assumption of constant noise covariance limited the 
model’s adaptability, suggesting future work should explore variable 
covariance models.

In contrast, Kabanov et al. [47] focused on optimal positioning of a 3 
DOF instrument manipulator inside the patient’s body using a linear 
algebraic method. Accuracy was measured by deviation from the pivot 
point, providing a distinct approach to evaluating spatial precision in 
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RAS.

3.2.2. Path optimization of surgical tools/manipulators
Path optimization in intra-operative workspace (within the patient 

body) is another application of interest studied using simulation. J. Chen 
et al. [48] used AI/ML techniques such as: Reinforcement Learning (RL) 
and Learning from Demonstration (LfD) to generate an optimized 
end-effector path by transferring data to Da Vinci system automatically. 
RL and LfD are used to define paths for two tasks, then Gaussian Process 
Regression (GPR) is used to detect the final path, and metrics like 
completion time, path lengths, and average speed are used to examine 
the proposed model. The path of a 6DOF end-effector in an 
intra-operative workspace has been optimized by Shen [49] during a 
knee surgery. The multi-body dynamics approach is employed to 
examine the transmission properties of the surgical manipulator. The 
proposed end-effector manipulator displayed better path accuracy and 
increased efficiency of knee surgery.

3.2.3. Mechanism optimization and kinematic analysis
Mechanism optimization and kinematic analysis, a field with the 

most studies in this section, reflects the importance of providing the 
most proper design for surgical robot arms, which indeed affects the 
surgeons’ performance (better ergonomics) and better surgical out
comes. Du et al. [55], Laribi et al. [56], and Yongfeng et al. [54] did not 
rely on VR for kinematic analysis. All of them aim to optimize the me
chanical structure of each proposed robot/manipulator, and this is to 
optimize both intra-/inter-operative workspace, which makes it suitable 
for the patient’s/surgeon’s working environment.

Yongfeng et al. [54] proposed 5R mechanism with 6DOF for a lumbar 
spinal surgery. Genetic algorithm is used to find the optimal dynamic 
feature. Similarly, Du et al. [55] proposed radio frequency ablation 
medical robot with 3DOF arm to optimize the workspace for liver tumor 
surgery. The author hypothesized that the proposed design can help 
achieve better treatment. What makes this study special is the reliability 
to provide surgeons with real-time precise positioning, by ultrasonic 
imaging to guide the robot.

Laribi et al. [56] crafted a groundbreaking teleoperated system, 
comprising both a slave and master unit. They effectively used Nexus 
software to accurately capture motion data. The study defined the ro
bot’s usable workspace within a cone, marked by a half-apex angle (α) 

Table 5 
Surgical robotics operations and workflow optimization.

Study Level Focus Objective Methodology Main Outcome

Lipsitz et al. 
[32]

Strategic RAS 
Integration in 
surgical 
practice

Operational comparison 
(LOS): RAS vs. open vs. 
lap

Comparative analysis using WLS and 
log-log link

Indicated shorter LOS of RAS

Al-Thani et al. 
[28]

strategic RAS 
Integration in 
surgical 
practice

Operational comparison 
(LOS, and post-operative 
complications): RAS vs. 
open vs. lap

Comparative analysis using 
retrospective observational study

Indicated shorter LOS of RAS. And open surgery was 
preferred for larger tumors

Duran et al. [29] strategic RAS 
Integration in 
surgical 
practice

Operational comparison 
(LOS, BL, and 
morbidity): RAS vs. open 
vs. lap

Comparative analysis using 
retrospective observational study

Indicated shorter LOS, less morbidity level, and 
acceptable BL units of RAS.

Kim et al. [31] strategic RAS 
Integration in 
surgical 
practice

Operational comparison 
(LOS, BL, and 
morbidity): RAS vs. lap

Comparative analysis using 
prospective, multicenter comparative 
study

Indicated equal recovery time, LOS, BL units, mortality 
level for both RAS and laparoscopic surgeries. However, 
more OT detected for RAS

Yu et al. [33] strategic RAS 
Integration in 
surgical 
practice

Operational comparison 
(LOS, BL, and OT): RAS 
vs. lap

Comparative analysis using Clavien- 
Dindo classification

Indicated equal OT, LOS, BL units, and complications 
for both RAS and laparoscopic surgeries. However, 
more medical cost incurred by RAS

Agarwal et al. 
[34]

Strategic AI 
Integration in 
RAS

Examination of the 
importance of AI, RAS, 
and surgeon experience

Benchmark of selected Indian 
hospitals

Indicated lower treatment cost of RAS with AI

Faria et al. [30] Strategic RAS 
Integration in 
surgical 
practice

Clinical and economic 
comparison (QALYs, 
ICER, and ICUR): RAS 
vs. open vs. lap

Comparative analysis using Markov 
state transition model

Indicated cost-effectiveness of RAS

Ali Mohamad 
et al. [22]

Strategic AI 
Integration in 
RAS

Examination of the 
importance of AI in RAS

Dubai case study with semi-structured 
interviews, archival, and online data 
analysis

Indicated positive clinical utility outcomes of RAS with 
AI

Gupta et al. [24] Tactical RATS Communication 
enhancement in RATS

Blockchain-based tele-surgery 
framework

Improved network performance with low latency and 
high throughput

P. Lokhande & 
D. Patil [36]

Tactical RATS Communication 
enhancement in RATS

M2M communication system through 
the internet

Improved network performance with reduced energy 
consumption

Hentati et al. 
[35]

Tactical RATS RATS network resource 
allocation

ILP, and greedy algorithm Improved cost-effectiveness

Aripin et 
(al.2023)

Tactical RATS RATS network resource 
allocation

Simulation Improved cost-effectiveness

Keyhanian et al. 
[37]

Operational Management 
of RAS 
resources

Optimization of surgical 
instruments allocation

Multi-objectives binary IP model Improved cost-effectiveness through tray minimization

Mukherjee & 
Sinha [26]

Operational Management 
of RAS 
resources

Optimization of 
RAS scheduling

GLMs, MIP, and DES models Improved clinical outcomes through surgeries 
assignment

AI: Artificial Intelligence; BL: Blood Loss; BS: Base Station; CH: Cluster Head; DES: Discrete Event Simulation; DoS: Denial of Service (A type of cyber-attack, e.g., Man- 
in-the-Middle attacks); GLMs: Generalized Linear Models; ICERs: Incremental Cost-Effectiveness Ratios; ILP: Integer Linear Program; LEACH-A: Proposed protocol with 
cyber-attack; LOS: Length of Stay; M2M: Machine-To-Machine Communication; MIP: Mixed Integer Programming; OT: Operative Time; PDR: Packet Delivery Ratio; 
QALYs: Quality-Adjusted Life-Years; RA: Robot-Assisted; RAS: Robot Assisted Surgery; RATS: Robot-Assisted Tele-Surgery; TI: Tactile Internet; TS: Tele-Surgery; WLS: 
Weighted Least Squares.
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and an axis of revolution (zT). Notably, the research examined 
end-effector positioning, optimizing this critical aspect of the robot’s 
functionality. Although this study also explored end-effector path opti
mization, Laribi et al. [56] mainly focused on developing an advanced 
kinematic design for their surgical robot.

However, a common thread that tied this study with others in the 

field was the absence of results concerning accuracy. In essence, what 
these studies lack is rigorous statistical analyses applied to evaluate the 
precision and reliability of each designed mechanism. Incorporating 
such analyses would not only reinforce the validity of their findings but 
also elevate the overall quality and impact of the research.

Table 6 
Surgical robotics performance enhancement.

Study Level* Aim of Study Application Method/Algorithm DOF of The 
Proposed Design

Time/Accuracy/Related 
Observations

Deilamsalehy & 
Havens [46]

Inter-operative 
workspace

Optimizing the 
orientation and 
positioning of a 
surgical robot

A real-world 
experiment 
simulation

Holistic approach using AKF 
algorithm

6DOF - AKF algorithm has better 
estimation accuracy and less 
mean error compared to the 
standard EKF algorithm

Kabanov et al. 
[47]

Intra/Inter- 
operating 
workspace

Optimizing the 
orientation and 
positioning of a 
surgical robot

Transurethral 
operation

Denavit-Hartenberg approach 
and Cauchy-Bunyakovsky- 
Schwarz inequality

3DOF Only the degree of deviation from 
the pivot point has been displayed 
using graphs

J. Chen et al. 
[48]

Intra-operative 
workspace

Optimizing path 
generation to 
automate surgical 
tasks

Peg transfer (for 
straight paths) and 
pattern cutting (for 
curved paths) tasks

RL and LfD - The final path trajectory has been 
detected using GPR by extracting 
final features from RL and LfD, 
thus increasing accuracy

Shen [49] Intra-operative 
workspace

Optimizing the 
path of the end- 
effector

Knee surgery Credit Assigned Cerebellar 
Model control and non- 
dominated genetic algorithm 
sorting

6-joint robotic 
manipulator

Proposed design improves the 
precision of cutting and drilling in 
knee surgery, optimizes the path 
of the end-effector, and improves 
the quality and efficiency of knee 
surgery

Vairavasamy 
et al. [50]

Inter-operative 
workspace

Mechanism 
optimization and 
Kinematic analysis

Tele-surgery VR-simulation 5 DOF 
Manipulator

Real-time model synchronized 
and achieved

Trejo & Hu [51] Intra-operative 
workspace

Mechanism 
optimization and 
Kinematic analysis

Brain tissue 
dissection- 
neurosurgery

VR-simulation neuroArm, with 
6DOF

Virtual reality mapping (open 
surgery) demonstrated superior 
accuracy and speed. Hypothesis 
results varied, and the analytic 
model provided real-time force 
feedback within 2.5 s

Karadimos 
et al. [52]

Intra-operative 
workspace

Mechanism 
optimization and 
Kinematic analysis

3 trajectories 
examined: 
elbow-up, insertion, 
and line segment 
pivot trajectory

VR-simulation and Holistic 
modeling approach using 
RRTConnect algorithm

Manipulator has 
7DOF

High precision achieved: pivoting 
accuracy 2.11 µm, repeatability 
1.61 µm; insertion accuracy 0.29 
µm, repeatability 0.29 µm.

Yang et al. [53] Inter-operating 
workspace

Mechanism 
optimization and 
Kinematic analysis

Endoscopic sinus 
surgery

VR-simulation and genetic 
algorithm to optimize the rod 
length of the proposed design

3DOF Omega.7 device provides better 
manipulation dexterity and 
accuracy

Yongfeng et al. 
[54]

Intra/Inter- 
operative 
workspace 
optimization

Mechanism 
optimization and 
Kinematic analysis

Lumbar spinal 
surgery

Genetic algorithm used to 
optimize the dynamic feature of 
the proposed robotic design

The Proposed Bi- 
planar parallel 
mechanism has 
6DOF

macro-micro mechanism provides 
better accuracy in pedicle screw 
placement

Du et al. [55] Inter-operative 
workspace 
optimization

Mechanism 
optimization and 
Kinematic analysis

Liver tumor Quantitative: ultrasonic 
imaging guided medical robot 
(radio frequency ablation)

The robot arm 
has 3DOF

Minimum and maximum values of 
the 3DOF parameter are located 
to optimize the surgical 
workspace

Laribi et al. 
[56]

Intra/Inter- 
operative 
workspace 
evaluation

Mechanism 
optimization and 
Kinematic analysis

Anastomosis 
technique

Inverse and forward kinematics 
model

– A cone with a half apex angle (α) 
and an axis of revolution zT 
defines the usable workspace

Lu et al. [57] Intra-operative 
workspace

Enhancing the 
efficiency and 
quality of knot 
tying through RAS

KT via the 
experimental tissue 
pad

Simulating trajectory profile 
through MATLAB

3DOF 
manipulator

The model displayed less KT time

Sannikov [58] Intra-operative 
workspace

Integrating a laser 
scalpel into 
surgical robots

Laser scalpel 2 algorithms used: 1st algorithm 
to detect the depth map (PID 
controller used), 2nd algorithm 
to detect the controlling 
distance coordinates

– Integration of 3D camera, depth 
map tech, real-time PID feedback, 
and laser adjustments ensures 
accurate, minimally invasive 
procedures

A. Takacs et al. 
[59]

Inter-operative 
workspace

Building a 
nonlinear soft- 
tissue model to 
mimic a liver-type 
tissue

Tele-surgery Heuristic modeling approach 
and 3 Wiechert model 
implementations: two non- 
linear approaches and one 
linear approach

– The nonlinear Wiechert model 
ensures realistic force response, a 
gradual rise in force, and an 
accurate representation of 
stiffness changes

RAS: Robot Assisted Surgery; AKF: Adaptive Kalman Filter; EKF: Extended Kalman Filter; DOF: Degree of Freedom; ML: Machine Learning; RL: Reinforcement 
Learning; LfD: Learning from Demonstration; GPR: Gaussian Process Regression; SD: Standard Deviation; KT: Knot-Tying; PID: Proportional Integral Derivative; WL: 
Work Load; DR: Damage Reduction.

* Intra-operative workspace is within a patient’s body, while Inter-operative is within an operating room workspace.
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3.2.3.1. VR-based simulation studies. Four studies integrated VR into 
surgical simulations. Vairavasamy et al. [50] developed a VR-based 
prototype using a 5DOF manipulator for real-time simulation, though 
surgical validation remains necessary due to missing reliability data. 
Addressing the Remote Center of Motion (RCM) constraint, Karadimos 
et al. [52] ensured sub-1 mm Remote Center of Motion (RCM) error to 
minimize patient force during incisions, analyzing accuracy and 

repeatability via the RRTConnect algorithm across 10 trajectory trials.
Trejo & Hu [51] explored VR’s role in skill transfer from open sur

gery to the neuroArm, a 6DOF robotic end-effector. Using both 
NASA-TLX and objective metrics, tracing accuracy, motion quality 
(MQ), and damage reduction, they found limited support for their hy
pothesis, though MQ showed promise.

Yang et al. [53] proposed a sinus surgery robot with a 3DOF double 

Table 7 
Studies on imaging.

Study Phase Sample/Input dataset Application Method/Algorithms Time and Accuracy Results

Shvets et al. 
[68]

Intra- 
operative

8 × 75-frame sequences and 
two full 300-frame sequences

Segmentation of robotic 
tools

U-net, TernausNet, and LinkNet 
algorithms

TernausNet-16 excelled in binary 
segmentation (83.6 % IoU, 90.1 % Dice) 
and instrument segmentation (65.5 % 
IoU, 75.9 % Dice). TernausNet-11 led 
multi-class segmentation (34.6 % IoU, 
45.9 % Dice), while LinkNet-34 was the 
fastest, thanks to its superior encoder

Feng et al. [62] Pre- 
operative

- 56 passive sphere places in 
CT device to obtain CT images 
- CT images with voxel size 
512 × 512 × 1900 
- Model trained for 150 
epochs

Segmentation of robotic 
tools (passive marker 
sphere)

KiU-Net, kite-net, and U-net 
algorithms

KiU-Net achieved 95.2 % dice accuracy, 
with significantly fewer parameters than 
U-net, leading to faster training and 
lower memory usage

Sivarasa & 
Jerew [69]

Pre- 
operative

- 500 × 500 image and 20 ×
20 border filters 
- 16 epochs used to execute 
the system

Segmentation of robotic 
tools (forceps parts)

7-layers-CNN ReLu installation helped increase 
accuracy by 2 % and decrease 
processing time by 2s

Nahushev [66] Intra- 
operative

Video sequence with 
30–60fps frequencies

Segmentation and 
Localization of tissue 
abnormalities (e.g. 
rupture of tissues and 
blood loss)

To fulfill the application objective 
proposed algorithm is adjusted to: 
- Consider that only robotic tools are 
dynamic. 
- Detect any motion except robotic 
tools motion. 
- Exclude any zones occupied by 
surgical instruments

Proposed algorithm model enhanced 
RAS in terms of: Results repeatability 
and work duration

Glashev [63] Pre- 
operative

Previously marked pelvic 
organs images

Segmentation and 
Localization of tissue 
abnormalities (e.g., 
Sactosalpinx)

Modified-CNN More training data is needed to increase 
the accuracy of segmentation

Alqaoud et al. 
[60]

Pre/intra- 
operative

- Data obtained from 10 
patients 
- Two MR modalities 
- Image size: 512 × 512 
- First nnU-Net network 
segmentation used as input 
for the second network

Segmentation and 
localization of breast 
tissues (fat, FGT, and 
tumor masses)

nnU-Net algorithm with multimodal 
input

The architecture reduces personnel 
need, achieving high accuracy (DSC: 
0.95±0.00 for breast, fat; 0.83±0.04 for 
FGT; 0.41±0.58 for tumors)

Padhan et al. 
[67]

Intra- 
operative

540 (rtMRI) collected every 
50ms

Path optimization and 
dynamic guidance of 
robotic manipulators

predefined kinematics and guidance 
curve, and maneuvering command 
parameter

Hypothetical clinical task performed 
using DGVF showed: Better safety (it 
kept the manipulator within the safety 
region, 5 mm) and higher accuracy. It 
also decreased task time by almost 14.8s

Mach et al. [65] Intra- 
operative

62 OCT-images of needle-tip 
annotated volume 5o from 
different OCT machines and 
23 from the local OCT 
machine

Path optimization of 
robotic manipulator SNI

3DU-Net algorithm for the 
segmentation of needle-tip and 
Levenberg− Marquardt (ML) 
algorithm

Micron error limit is 25 µm; mean errors 
in retinal layers, target board, and pig 
eye evaluations are 23.8 µm, 25.4 µm, 
and 24.3 µm, respectively, with standard 
deviations of 5.9 µm and 6.7µm

Dong et al. [61] Pre- 
operative

Dataset collected using 
commercial device 
polaris vega@

Path optimization of 
robotic manipulator and 
increasing scene 
adaptivity during RAS

- Smooth Motion Path Planning 
algorithm: This strategy is useful in 
resolving the problem of the singular 
point

Insertion accuracy has an error of less 
than 1.5mms

Huynhnguyen & 
Buy [64]

Pre- 
operative

- From JIGSAWS dataset (39 
videos of suturing task 
conducted by 8 surgeons; 
each conducted the task 5 
times) 
- frame size 240 × 320 pixels 
with 10Hz 
- 10 gestures have been 
classified

Implementing a suturing 
task

3-layer 3D CNN to detect the 
transition between surgeon and 
LSTM algorithm to classify each 
gesture

- LOSO for: Gesture transition: around 
70 % accuracy. 
- SGD for: Gesture classification: around 
76.3 % accuracy

CNN: Convolutional Neural Network; CT: Computed Tomography; Dice Similarity Coefficient (DSC): A kind of metric used for analysis; DGVF: Dynamic Guidance 
Virtual Fixtures; IoU: Intersection over Union; JIGSAWS: JHU-ISI Gesture and Skill Assessment Working Set; LOSO: Leave-One-Supertrial-Out (analysis technique); 
LSTM: Long-Short-Term Memory (analysis technique); MR: Magnetic Resonance; OCT: Optical Coherence Tomography; RAS: Robot Assisted Surgery; ReLu: Rectified 
Linear Unit; RMSE: Root Mean Square Error; rtMRI: Real-time Magnetic Resonance Imaging; SGD: Stochastic Gradient Descent; SNI: Subretinal Needle Injections; FGT: 
Fibro Glandular Tissue (A type of breast tissues).
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parallelogram mechanism. Using Omega7 for haptic interaction, they 
optimized rod lengths to enhance virtual performance, advancing 
VR-based control in robotic procedures.

3.2.4. Precision improvement in robotic instrument manipulation
Several studies, including those conducted by Lu et al. [57], Sanni

kov [58], and A. Takacs et al. [59] have explored various aspects of 
robotic instrument manipulation. While these studies lack a unified 
classification, they collectively contribute to improving the precision of 
robotic surgical procedures. This paper emphasizes their significance, 
highlighting their positive impact on achieving enhanced perioperative 
outcomes in surgery.

Recent advancements in RAS have seen innovative approaches to 
enhance efficiency and precision. Lu et al. [57] introduced a 
MATLAB-based method for knot-tying tasks, significantly improving 
suturing performance and reducing task time. Sannikov [58] integrated 
a laser scalpel into a surgical robot, enabling real-time corrections based 
on video feedback, ensuring minimal invasiveness. A. Takacs et al. [59] 
explored mechanical models for optimal force feedback, emphasizing 
their crucial role in enhancing precision and safety in RAS.

3.2.5. Imaging
In Table 7, we classify imaging-related studies based on optimization 

and simulation for inter- and intra-operative applications, identifying 10 
studies [60–69] that significantly enhances the performance of RAS. 
Notably, most of these simulation studies leverage AI techniques, 
particularly Deep Learning (DL) models, for guidance, classification, or 
task automation.

For instance, Shvets et al. [68] employed DL algorithms such as 

U-net, LinkNet, and ResNet to segment robotic manipulators, improving 
the surgeon’s ability to differentiate between tissue and end-effectors. 
Feng et al. [62] utilized Kiu-Net to automate 3D segmentation of pas
sive marker spheres. From Shvets et al. [68], U-net might display less 
Intersection over Union (IoU) or Dice accuracy, however Feng et al. [62] 
showed its importance in acquiring high-level features, while Kiu-Net 
was used to capture the finest details.

Sivarasa & Jerew [69] improved tool detection and feature extrac
tion in laparoscopic surgery using a DL-based approach, enhancing ac
curacy. The proposed solution utilized a 2D convolutional operation 
similar to the state-of-the-art method by Mikada et al. [80]. Further
more, a ReLU (Rectified Linear Unit) layer was incorporated, enhancing 
the system’s performance. This modification resulted in a dropout rate 
of only 20 %, surpassing the state-of-the-art approach by 2 % in terms of 
accuracy.

In another context, some technology features such as Dynamic 
Guidance Virtual Fixtures (DGVF) assist surgeons in obtaining intra- 
operative real-time Magnetic Resonance Images (rtMRI). Such Virtual 
Features (VFs) used to be conducted based on a pre-operative procedure 
registering to imitate a real-time UltraSound (US) scene, which might 
not be suitable for unpredictable movement of tissues. Consequently, 
Padhan et al. [67] developed on-the-fly DGVF to guide bendable ma
nipulators using Magnetic Resonance Imaging (MRI). Dong et al. [61] 
optimized puncture paths to enhance scene adaptivity without 
increasing robot autonomy.

Mach et al. [65] used DL 3DUnet models with Swept-Source Optical 
Coherence Tomography (SS-OCT) during Subretinal injection surgery, 
achieving promising results in position identification. The novelty 
implemented with SS-OCT displayed many advantages over the 

Table 8 
Studies on haptic sensing and force feedback.

Study Application/Experiments Methodology Manipulator Observations (E.G., Time, Accuracy Results)

Chioson, Espiritu, 
Munsayac, Dajay, 
Jimenez, et al. [70]

Current and PID experimentation has 
been done to test the performance of 
the proposed haptic controller

Encoder filtering 
method

3D printed Single-DOF 
haptic controller handle

Integral gain aimed to fix steady-state error but 
caused system instability and slower response; 
filters and reduced derivative gain further slowed 
the PI controller

Jiang et al. [71] Experiments were done on the Spinal 
Surgery System Robotic (RSSSI) to 
verify the stability of the proposed 
model

PSO parameter 
optimization and Root- 
Locus method

Experiment conducted on 
RSSS-II (6DOF serial-link 
robot)

Novel design optimized control, removing sensors, 
enhancing human-robot interaction. SMD-System 
surpassed the proportional controller, ensuring 
smoother end-effector output and better change rate

Chua et al. [72] Sinusoidal pulses are used to test the 
proposed Force feedback model

Physical Model 
Simulation

– Higher force caused instability, stronger overshoots, 
and increased peak overshoots; shorter time 
intervals between waves led to noticeable 
overshoots, and time delay increased with shorter 
intervals

Xie et al. [73] Testing the force feedback response 
delay of a master-slave robotic system

Sensor noise filtering 
(Kalman Filtering 
algorithm)

Franka Emika manipulator, 
7DOF

Omega.7 boasts minimal delays: algorithm and 
communication <1 ms, grasper closure 10 ms, 
mechanical 30–40 ms. It excels in high-frequency 
force signals with <100 ms feedback delay and low 
error rates

Chioson, Espiritu, 
Munsayac, Dajay, 
Santos, et al. [70]

To create a bilateral Direct Force 
Reflection teleoperation system for a 
laparoscopic grasper

Mechanism sensing and 
Sensor noise filtering

1DOF pistol-type haptic 
device with a maximum 
force of 1N

PI-controller had low accuracy, possibly due to 
sensor oscillations or filter issues; temperature 
fluctuations affected sensor readings; accuracy 
percentages were 81.42 % (1 N), 75.71 % (2 N), and 
91.43 % (3 N)

Safavi & Zadeh [3] 4 subjects of peg transfer were used to 
validate the model

HMM and LfD Model-based approach 
based on a 5DOF 
Laparoscopic device

Medium MPC excelled in TCT, EoM, and MSM. 
Vector quantization reduced data size, preserving 
accuracy. Zero-speed task segmentation improved 
TCT identification accurately and efficiently

F. Chen et al. [74] Assessing the function of a 
cardiovascular interventional master- 
slave robot during a carotid artery 
model experiment

Sensor noise filtering 
(variable limiting 
filtering)

Master-slave cardiovascular 
interventional robot

Research focused on z-axis forces for complex 
aneurysm lesions. Robot-guided wire accurately, 
showcasing potential for surgery automation, 
reducing intervention and radiation

Sadeghnejad et al. 
[75]

Novint Falcon—a parallel impedance- 
type robot used as a setup for 
endoscopic sinus surgery

Impedance modeling 
and MPC, and Quasi- 
min–max algorithm

Parallel impedance–Novint 
Falcon robot with 3DOF

A new cost function enhanced model robustness, 
while the MPC method effectively eliminated 
disturbances from control signal switches and 
reduced time delays

EoM: Economy of Motion; F/T: Force-Torque; HMM: Hidden Markov Model; MPC: Model Predictive Control; MSM: Motion Smoothness; P-controller: Proportional 
controller; PID: Proportional-Integral-Derivative; PI-controller: Proportional Integral controller; PSO: Particle Swarm Optimization; SMD: Spring-Mass-Dashpot Sys
tem; TCT: Task Completion Time.
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conventional Time-Domain OCT (TD-OCT).
Huynhnguyen & Buy [64] utilized CNN and 

Long-Short-Term-Memory (LSTM) models to automate suturing tasks, 
showing potential for pre-operative automation. Similarly, Glashev [63] 
employed CNN to autonomously identify diseases associated with pelvic 
organs. The study introduced image labeling for pathological areas, 
emphasizing that as the number of labeled images increases, the 
recognition efficiency also improves.

The nnU-Net algorithms, previously established as state-of-the-art in 
biomedical tissue segmentation architecture [81], were employed by 
Alqaoud et al. [60] to propose a groundbreaking approach. They 
introduced two consecutive nnU-Net networks designed to automati
cally segment distinct breast tissues, including the breast region, fat, 
Fibro-Glandular Tissue (FGT), and tumors. Remarkably, their AI model’s 
effectiveness aligns with findings in resource allocation studies (e.g., 
[34]), indicating that AI implementation can significantly reduce the 
need for personnel per task due to its autonomous capabilities.

Integrating imaging technology into RAS is crucial, going beyond 
tool segmentation. In a study by Nahushev [66], a new approach was 
proposed, instead of the common practice where surgeons manage all 
tools manually, Nahushev suggests involving an assisting surgeon to 
maintain a secondary optical channel. This innovative method aims to 
decrease OT by parallelizing tasks. The core concept revolves around 
real-time detection of tissue abnormalities during the surgery, using 
imaging to identify any motion unrelated to tools or physiological 
fluctuations. This approach represents a significant advancement in 
RAS, enhancing precision and efficiency.

Integrating imaging technology into RAS plays a vital role in 
improving various aspects, such as tool segmentation, scene adaptivity, 
and task automation, ultimately reducing surgical risks and 
complications.

3.2.6. Haptic sensing and force feedback
Promising advancements such as enhanced ergonomics, reduced 

surgeon fatigue, improved tremor control, and immersive 3D visuali
zation have become apparent through RAS. However, a notable draw
back persists: the absence of haptic sensation and force feedback during 
RAS. This critical gap is highlighted as one of the factors affecting OM- 
RAS, emphasizing its significance in the scope of RAS.

In response to this challenge Chioson, Espiritu, Munsayac, Dajay, 
Jimenez, et al. [70] ingeniously developed a 1-DOF tactile controller 

providing 1-N force feedback for palpation. Their study revealed that 
employing numerous filters slowed down the PI controller responses. 
Conversely, Jiang et al. [71] proposed an innovative Mass-Spring 
Dashpot (SMD) model, replicating cat muscle and capable of sensing 
any force acting on the robot. Parameters for this model were optimized 
using the Particle Swarm Optimization (PSO) algorithm, showcasing 
superior performance over the P-controller when integrated into the 
RSSS-II (6DOF serial-link robot).

Chua et al. [72] used MATLAB to simulate a mass-spring force 
feedback model in a master-slave robotic system, applying sinusoidal 
pulses between 2 N and 5 N. Their study emphasized the lack of real-life 
datasets, particularly for systems like DaVinci, limiting simulation ac
curacy. Similarly addressing force feedback challenges, Xie et al. [73] 
employed Omega.7 to capture 3D hand motions and forces up to 8 N. 
Using Kalman Filtering, they reduced feedback delay to under 100 ms 
while maintaining relative error below 3 % and absolute error under 0.1 
N by accounting for mechanical, communication, and algorithmic 
delays.

In related work, Chioson, Espiritu, Munsayac, Dajay, Santos, et al. 
[82] integrated force sensors into a laparoscopic grasper for a tele
operation system with bilateral control, testing haptic feedback at 1 N, 2 
N, and 3 N. Despite strain gauge thermal limitations, the 3 N force 
yielded the highest accuracy, with filtering affecting PI-controller pre
cision but ambient temperature having no significant effect.

Further advancing force feedback models, F. Chen et al. [74] 
developed a carotid artery model with three aneurysms, incorporating a 
6DOF F/T sensor and real-time 3D imaging. The study found maximum 
resistance along the z-axis, with minimal resistance in the x and y 
directions.

Building on recent advances, Safavi & Zadeh [3] introduced a 
model-based force rendering approach (MPC–HG) using a 5DOF lapa
roscopic device with force sensors and a Bakis-type Left-to-Right Hidden 
Markov Model (HMM) trained via Learning from Demonstration (LfD). 
This method effectively captured the non-deterministic nature of sur
gical motions. Among four evaluated control modes, their Model Pre
dictive Control (MPC), modeled through a Multi-Layer Perceptron 
(MLP) network, achieved superior results in Task Completion Time 
(TCT) and Economy of Motion (EoM), marking a breakthrough in 
handling system complexities and uncertainties, as evidenced by the 
work of Golnary & Moradi [83] and Vrooijink et al. [84].

Extending this line of work, Sadeghnejad et al [75] developed a 

Table 9 
Studies on skill assessment.

Study Phase Sample/Input Dataset Task Application Method/Algorithms Platform Time and Accuracy Results

El-Saig et al. 
[76]

Pre- 
operative

N/A KT Assessment 
through 
JIGSAWS

Software developed using 
Peewee Python ORM 
library

DaVinci 
platform

The tool can analyze movement 
paths, identify surgical actions, and 
process data from JIGSAWS 
metadata

K. Takacs & 
Haidegger 
[77]

Pre- 
operative

The measured metrics for each of 
the seven FRS-Dome tasks were 
used as inputs in the fuzzy 
systems. (Focus on Psychomotor 
skills-3rd module)

Two FRS 
dome 
tasks: ST, 
RT

Assessment 
through FRS 
dome

ANFIS) DaVinci 
platform

Performance of 6 tasks was observed 
using FRS dome 22 metric, and 
optimizing results with better 
accuracy was achieved by 
developing Neuro-fuzzy Inference 
Systems for each task

K. Takacs 
et al. [78]

Pre- 
operative

37 conducted measurements for 
only two tasks RT and KT (focus 
on Psychomotor skills-3rd 
module)

KT and 
RT

Assessment 
through FRS 
dome

Sensorized FRS Dome. 
Mounted force-gauge and 
C++ to connect the main 
program with all 
connected sensors

DaVinci 
platform

Tower movement metric for both 
tasks KT and RT: improved. And 
tower contact time for RT: improved

Lajko et al. 
[79]

Intra- 
operative

JIGSAWS used to obtain 
kinematic and 2D-visual input 
data

ST, NP, 
and KT

Assessment 
through 
JIGSAWS

CNN, LSTM, CNN and 
LSTM (combined), 
ResNET, and convAuto 
algorithms

DaVinci 
platform

The study utilized LOSO cross- 
validation to prevent overfitting. 
CNN achieved 80.72 % (ST), 79.66 
% (NP), and 80.41 % (KT) accuracy. 
CNN+LSTM reached 81.58 % (ST), 
83.19 % (NP), and 82.82 % (KT), 
while ResNet scored 81.89 % (ST), 
84.23 % (NP), and 83.54 % (KT)

ANFIS: Adaptive Neuro-Fuzzy Inference System.; KT: Knot-Tying; RT: Ring Transfer; ST: Suturing; SVM: Support Vector Machine.
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1DOF mass-stiffness-damping model with a five-parameter impedance 
framework to simulate the human arm in a VR-based Endoscopic Sinus 
Surgery trainer. Using a quasi-min–max output feedback MPC for 
improved robustness, they addressed uncertainty and worst-case dy
namics. A phenomenological tissue fracture model and the 3DOF Novint 
Falcon manipulator enhanced realism and control. Following noise 
reduction and delay compensation, the simulator delivered strong per
formance, reinforcing its value for surgical training.

Traditionally, surgeons utilize palpation to assess tissue character
istics, locate nerves and arteries [85], and identify irregularities like 
lumps [86,87]. In addition, they depend on their sense of touch to 
control the amount of pressure applied. Applying excessive force can 
result in tissue damage, internal bleeding, and broken sutures. 
Conversely, insufficient force can lead to loosely tied knots and inade
quate sutures [88,89]. However, advancements mentioned previously in 
this section underscore the relentless pursuit of refining haptic sensing 
and force feedback technologies that impact parameters such as suturing 
time, which affect the overall OT of the surgery.

3.3. Skill assessment

Surgeons with over twenty robotic procedures demonstrated supe
rior perioperative outcomes and fewer complications compared to in- 
training surgeons in their initial twenty robotic surgeries [90]. Unfor
tunately, there are no standardized programs for RAS training [91], 
which reflects the importance of addressing skill assessment in a sepa
rate section.

Skill assessment in the context of RAS has been studied more 
frequently through the perspectives of AI in robotic surgeries [15], ML of 
technical skill assessment [8], or real-time skill assessment of robotic 
surgeries [92]. However, no study has examined how AI, ML, or 
real-time techniques are going to affect OM of RAS, which explains the 
scarcity of studies in this section. Using the search query described in the 
methodology section, only four studies were found [76,79,78,77].

Growing evidence suggests that the technical abilities of surgeons 
impact the outcomes of patients after surgery, as supported by numerous 
studies [93–95]. Implementing techniques to assess these skills and offer 
feedback during surgeons’ learning processes can enhance training ef
ficiency [96,93]. Therefore, assessment through JAW or dome is 
introduced.

JIGSAWS (JHU–ISI Gesture and Skill Assessment Working Set) is an 
open-source annotated dataset of eight surgeons from three degrees of 
expertise doing 103 basic robotic tasks related to RAS, which are: su
turing, knot-tying, and needle-passing. Such a database is very beneficial 
in skill assessment; on the other hand, processing data from JIGSAWS 
might be complicated due to the huge data stored (e.g., kinematic data, 
video data), which requires proposed approaches of how to analyze such 
data or use it to assess/classify novice surgeons.

Reaching to a point to analyze such a huge dataset and then classify 
surgeons will provide severe benefits such as: decreasing the senior 
surgeons required to assess trainees, and this has a direct impact on OM- 
RAS in terms of decreasing cost and the number of personnel required to 
supervise training sessions, in addition it will provide objective assess
ment rather than subjective. Along with the JIGSAWS data set, the 
Fundamentals of Robotic Surgery (FSR) dome is also presented in this 
section, which is believed to exhibit promising results in improving 
classification procedures of surgeons.

El-Saig et al. [76] developed a graphical tool using Peewee Python to 
automate skill assessment by analyzing JIGSAWS data, specifically 
evaluating velocity during knot-tying tasks across varying expertise 
levels. The tool, comprising two modules: enter-staej.py and main.py, 
that classifies surgeons and recognizes surgemes.

Lajko et al. [79] expanded this approach by applying five machine 
learning models to assess surgeon performance without intermediate 
classes, minimizing misclassification [97]. Their method uniquely 
incorporated both 2D visual and kinematic data from JIGSAWS.

K. Takacs & Haidegger [77] validated the FRS-dome, a sensorized 
psychomotor training tool, using two novice-friendly tasks: suturing and 
ring transfer, then applied an Adaptive Neuro-Fuzzy Inference System 
(ANFIS) to refine classification boundaries over time using ongoing skill 
data. In related work, K. Takacs et al. [78] introduced a surgical phan
tom based on the modified FRS-dome, evaluating technical skill through 
tower movement and contact time in 37 ring transfer and knot-tying 
trials.

The DaVinci system remains dominant in OM-RAS, largely due to its 
rich datasets and integration with tools like JIGSAWS and FRS-dome, 
enabling robust skill assessment. As highlighted by Mukherjee & Sinha 
[26], optimizing the surgeon pool is a critical policy in surgery sched
uling. Automated assessment tools can reduce personnel demands, 
improving operational efficiency and directly benefiting OM-RAS 
outcomes.

4. Current challenges and future research paths

The previous section reviewed efforts to improve OM-RAS. While 
researchers have built on earlier work to close some research gaps, 
Table 10 and earlier discussions show that some issues are still unre
solved, there are repeated efforts, and some suggested areas haven’t 
been explored yet. Fig. 4 summarizes the main research gaps and 
ongoing challenges, along with key requirements for addressing them. 
This framework is inspired by Hadid, Elomri, Mekkawy, et al. [98], who 
used a similar method to identify gaps in managing outpatient chemo
therapy. Based on this review and the proposed solution framework, this 
section highlights some challenges and directions for future research.

4.1. Current challenges

4.1.1. Lack of annotated data
Improving robotic surgeries still faces major challenges, especially 

when it comes to integrating AI, which needs large amounts of metadata. 
Collecting, storing, processing, and retrieving this data, like from the 
JIGSAWS database, is slow and difficult, mainly because there’s not 
enough annotated data. Some studies have suggested using 6 G networks 
to improve data infrastructure [24], but this approach still needs more 
research.

4.1.2. RAS malfunctions
Malfunctions in robotic surgery can result from software glitches, 

mechanical failures, or faulty instruments. While Da Vinci system fail
ures are rare, they can still be affected by the surgeon’s experience and 
how well they respond [99]. To reduce the risk, it’s important to inspect 
the robotic system carefully before each procedure [100]. More research 
is also needed to better understand instrument failures. One common 
cause appears to be wear on the insulating membrane, which can 
happen due to friction or collisions inside the body or during insertion 
through trocars [99].

Ethical and legal questions also remain unresolved, particularly 
around who is responsible when something goes wrong: the manufac
turer or the surgeon. Ferrarese et al. [99] described the malfunction 
reporting process, where hospitals inform the manufacturer, who then 
notifies the U.S. FDA. However, there is still not enough data on the legal 
aspects of these cases, highlighting the need for further study into lia
bility issues.

4.1.3. Tendency to adopt new technologies
This review highlights several emerging technologies, including 

autonomous surgical tasks, AI integration in healthcare, and the 
growing use of RAS. While many studies show increasing interest in 
these innovations [34,22,70], their widespread adoption remains un
even. Developing countries face notable challenges in implementing 
these technologies, and even in Europe, adoption of RAS technologies 
lags behind the U.S [101]. This makes it essential to examine the barriers 
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to broader implementation from different perspectives.
Another key barrier is the lack of agreement on whether RAS is truly 

superior to traditional open or laparoscopic surgeries. A bibliometric 
analysis could help by reviewing the existing literature, identifying key 
challenges, and highlighting global progress in robotic procedures. This 

kind of analysis also enables benchmarking and cross-country compar
isons, offering a clearer picture of how the field is evolving [102].

4.2. Future research paths

4.2.1. RAS automaticity
The field of automated tasks in RAS is still in its infancy and requires 

further research to establish a solid foundation. More extensive studies 
are needed to determine the accuracy level that can match human 
proficiency. The DaVinci system, widely used in robotic surgery, is not 
entirely autonomous. As a result, researchers have made efforts to 
automate various aspects of surgical tasks, including repetitive tasks, 
complex procedures like suturing [64], skill assessment [77], 3D-guid
ance, and 3D-segmentation [62]. Despite its potential, this area of 
study is not yet firmly established. Additionally, research has shown that 
robotic system failures can result from inadequate communication 
[103]. We also highlight that a restricted intra-operative workspace can 
lead to complications. Overcoming these obstacles and improving task 
automation in RAS is essential for increasing the efficiency and effec
tiveness of robotic surgical operations.

4.2.2. Comprehensive scheduling models
The operational pathway is critical to consider in RAS because RAS 

procedures are often scheduled for specific surgeries believed to offer 
superior outcomes compared to traditional methods. However, the setup 
for RAS requires a significant footprint and entails a prolonged setup 
time, which can impact the scheduling process significantly. Therefore, 
optimizing the operational pathway is essential to ensure efficient uti
lization of resources and minimize delays in scheduling, ultimately 
enhancing the delivery of robotic surgical care.

This review highlights a gap in how RAS procedures are scheduled. 
So far, only one study has explored RAS scheduling in depth, showing 
how it can improve clinical outcomes. Scheduling RAS is complex, 
which makes it hard to apply a single approach across all surgeries. For 
example, Mukherjee & Sinha [26] focused on scheduling for hysterec
tomy and considered specific factors like uterine size. Other procedures, 
like partial nephrectomy or radical prostatectomy, involve different 
conditions and require customized scheduling strategies. This shows the 
need for further research in this area.

Therefore, it is essential to account for factors such as the allocation 
of operating rooms, the availability of beds, and the optimized number 
of nurses required for each surgery. Furthermore, integrating clustering 
into the scheduling process can indeed improve the efficiency of various 
operations, including surgeries [104].

4.2.3. Simulation models
Along with optimization, simulation models can provide insights 

into scheduling policies, appointment planning, scheduling, and 
resource-to-patient assignments, which enhance overall performance. 
For example, using the Simulation-based Multi-objective Optimization 
(SMO) approach, which can deal with complexities related to RAS 
scheduling, capacity planning, and resource allocation [105].

4.2.4. Follow-up period
A postoperative follow-up period can be implemented to assess 

outcomes and offer necessary care in the event of complications 
following RAS. Home care not only reduces the frequency of hospital 
visits but also ensures that essential care is promptly delivered [106].

4.2.5. Tele-surgeries
Although several pioneering studies on using cutting-edge technol

ogies, including 6 G and blockchain, to enhance the tele-surgeries per
formance, the current research landscape requires more targeted efforts. 
Specifically, there is an urgent need for additional technical studies, 
particularly those focusing on data security and the seamless trans
formation of data. This emphasis on technical details is vital to 

Table 10 
Limitations and Future Research Paths.

Study Limitations Future Suggestions

Vairavasamy et al. 
[50]

- The reliability of the 
proposed model needs to 
be tested on a real surgical 
application

- Deploying image 
processing with OpenCV 
software

- AI-based end-effector
- Human Recognition and 

Collision Prevention 
algorithms

Keyhanian et al. 
[37]

- Not mentioned - The same approach holds 
significant promise in the 
context of robotic 
surgeries

Mukherjee & Sinha 
[26]

- Analysis did not consider 
surgeons’ turnover and 
dynamics of the surgical 
team

- Developing dynamic 
scheduling algorithms

- Predictive analytics 
models

- Lacks generalizability - Considering more 
constraints to conceive 
more robotic surgeries, 
such as radical 
prostatectomy

Faria et al. [30] - The use of diverse 
resources, which affects 
uncertainty

- The use of standardized 
protocols and skilled 
personnel

Feng et al. [62] - Uniform source of datasets
- Incomplete CT images of 

the complete human body

- Obtaining CT images 
from different CT 
apparatuses

- Improve data 
augmentation techniques

Nahushev [66] - Algorithm performance 
confirmed using only the 
test sample

- Conducting real-time 
testing is necessary to 
ensure the algorithm’s 
functionality and effec
tiveness in real-world, 
dynamic conditions

Padhan et al. [67] - Real-time operation was 
simulated using previously 
collected MR images

- Response time and 
actuation delays are not 
considered in simulations

- Establishing a real-time 
connection with an MR 
scanner to conduct live 
tests

- Considering algorithms to 
compensate for response 
time and actuation delays

Mach et al. [65] - The trade-off between 
working distance and 
lateral resolution causes 
some difficulties in detect
ing the needle tip and dis
plays some noise

- Deployment of advanced 
OCT technology that 
provides better lateral 
resolution

- Deployment of more 
sophisticated image 
algorithms that reduce 
noise

Dong et al. [61] - Limited workspace 
adaptivity

- Mismatch between 
Parameters and Reflecting 
Balls

- Enhancing scene 
adaptivity by deploying 
sensors

- Deployment of an 
advanced optical tracking 
system

[63,64,78,77] - Limited accuracy - Larger dataset needed
Chioson, Espiritu, 

Munsayac, Dajay, 
Jimenez, et al. 
[70]

- Lack of precision
- Motor-derived limitation

- Requires better control 
algorithms

Jiang et al. [71] - Zero drift issues
- Neglecting conversion rate 

analysis

- Implement adaptive 
control algorithms

- Including visual inputs
Chua et al. [72] - Lacks variable gain values

- Real-life input signals are 
needed to mimic a robotic 
system

- Need a Hybrid System 
with Variable Gain

- Real-world data 
integration
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advancing the field of tele-surgeries effectively. The challenge of tele
communication in telesurgery is significant, as surgical latency inher
ently increases with greater distances and variability within 
transmission networks. As the distance grows, transmission efficiency 
decreases, resulting in longer audio and video latency. This increased 
latency can hinder the surgeon’s ability to synchronize their movements 
with the actions of the remote robotic system and the patient, potentially 
disrupting coordination. Robotic telesurgery is increasingly recognized 
as a transformative approach to surgical care, leveraging advanced 
telecommunications technologies to enable remote operations. The 
systematic review by Reddy et al. [107] emphasizes the progression of 
telesurgery and current capabilities facilitated by high-speed 5 G and 
fiber-optic networks. Despite technical success, significant barriers 
persist, including latency challenges, cybersecurity threats, and the 
absence of universally accepted ethical and regulatory guidelines. These 
non-technical considerations remain critical obstacles to the broader 
adoption of telesurgery.

Ethical challenges in telesurgery involve patient autonomy, confi
dentiality, and informed consent, as remote surgeries amplify traditional 
ethical dilemmas. Technical aspects like data compression and latency 
variability due to differing telecommunication networks complicate 
real-time operations. Moreover, concerns around cybersecurity, such as 
network breaches and unauthorized data access, highlight the impor
tance of robust encryption and multifactor authentication systems. 
Financial constraints and a lack of consistent reimbursement frame
works further impede telesurgery’s scalability, particularly in under
served regions [108].

The future of telesurgery depends on progress in 6 G networks, AI- 
powered predictions, and augmented reality tools that provide real- 
time feedback. Dohler et al. [109] highlight the potential of 6 G net
works to further minimize latency while integrating AI for enhanced 
surgical precision and predictive diagnostics. Unified legal frameworks 
and interdisciplinary collaboration are critical to addressing regulatory 
and operational gaps. With strategic investments in infrastructure and 
ethical oversight, telesurgery could redefine global healthcare by 
bridging disparities and enhancing access to specialized surgical 
expertise.

5. Conclusion

This comprehensive review investigates the evolving landscape of 
RAS, shedding light on its multifaceted aspects and the transformative 
impact of cutting-edge technologies. Rapid advancements in medical 
innovation have propelled RAS to the forefront of surgical procedures, 
offering enhanced functional outcomes, reduced operation time, shorter 

hospital stays, and improved patient recovery. The integration of RAS 
into healthcare systems, as part of the Healthcare 5.0 paradigm, has 
guided in promising improvements in peri‑operative outcomes, ranging 
from reduced waiting times to optimized resource utilization.

However, this transformative journey is not without challenges. The 
study emphasizes the critical need for a holistic approach, integrating 
technologies like AI, kinematics, imaging, and the IoT to optimize RAS 
implementation. It highlights the gaps in current research, urging 
further exploration into areas such as RAS singularity, scheduling 
complexities across diverse procedures, and risks associated with nerve- 
sparing techniques. The literature review underscores the imperative for 
a multi-criteria decision-making approach, acknowledging that the 
clinical utility of RAS extends beyond AI-related innovations. It advo
cates for a meticulous analysis of kinematic intricacies, imaging ad
vancements, and real-time data processing, culminating in a paradigm 
shift in the research landscape.

Furthermore, the study highlights the pivotal role of OM in steering 
the success of RAS implementation. OM-RAS is a multidimensional 
challenge, encompassing complicated aspects such as workflow opti
mization, performance enhancement, skill assessment, and cost-benefit 
analyses. While current research predominantly emphasizes techno
logical advancements and simulations, the review spotlights the need for 
a balanced focus on healthcare logistics, skill evaluation, and cost- 
effectiveness to realize the full potential of RAS in clinical practice.

The scarcity of studies explicitly focusing on OM-RAS is evident, and 
the field remains in the early stages of development, leaving several 
research gaps unexplored. An examination of the limitations within the 
reviewed publications has identified three key challenges and five future 
research avenues, each with various potential sub-directions.

As illustrated, RAS is progressively becoming a crucial element in 
numerous global healthcare systems, emphasizing the necessary to 
investigate the operational management aspects of RAS. In essence, this 
literature review not only consolidates the current state of RAS research 
but also paves the way for future endeavors. It challenges researchers to 
explore uncharted territories, bridging gaps in knowledge, and 
exploring deeply into the nuances of RAS implementation. As healthcare 
systems continue to evolve towards Hospitals of the Future and 
Healthcare 5.0, this study serves as a guiding beacon, illuminating the 
path towards optimized, efficient, and patient-centered Robotic-Assisted 
Surgeries.
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