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ARTICLE INFO ABSTRACT

Keywords: Background: In recent years, Robot-Assisted Surgeries (RAS) have advanced significantly, revolutionizing
OperaFiOH§ management healthcare with better patient outcomes, faster recovery times, and greater surgical accuracy. However, chal-
Optimization lenges such as restricted maneuverability and communication issues persist, along with the need to evaluate
Ezr;zg:z:;;?;ancemem surgeons’ proficiency in RAS. Healthcare 5.0 seeks to enhance RAS by integrating technologies like advanced
SKill assessment imaging, haptic feedback, and artificial intelligence.
Objective: This paper explores the Operational Management of Robotic-Assisted Surgeries (OM-RAS) by analyzing
recent research. It assesses surgical robotics operations, workflow optimization, performance enhancement, and
skill assessment. Additionally, it examines challenges and gaps in the RAS domain, providing a comprehensive
research overview.
Methods: A comprehensive literature search was conducted across databases such as Scopus, Web of Science, and
Google Scholar, covering publications up to the third quarter of 2023. Search terms were selected using scientific
criteria and validated by experts, resulting in a substantial document collection. A rigorous screening process,
aligned with PRISMA 2020 standards, filtered the selection to 50 research papers, forming the foundation for
detailed investigation.
Findings: OM-RAS is a multidimensional field influenced by emerging technologies that optimize workflows,
enhance performance, and improve skill assessment in RAS. Despite superior outcomes, challenges such as
implementation costs and seamless technology integration persist. Additionally, research gaps exist regarding
RAS benefits, creating opportunities for efficiency enhancement in patient care. Further exploration of RAS
procedure scheduling across different surgery types is essential.
Conclusion: Integrating advanced technologies into RAS has improved surgical outcomes, shortened hospital
stays, and enhanced working environments. This study advocates for a holistic multi-criteria decision-making
approach, considering factors like kinematics, imaging, Internet of Things/Tactile Internet (IoT/TI), and AL It
provides valuable insights, guiding future research and shaping OM-RAS studies.

1. Introduction have gained widespread recognition and popularity in recent times due
to their numerous advantages. In this context, robotic surgery or

Rapid advances in medical innovation over the last few decades have Robot-Assisted Surgeries (RAS) display better functional outcomes in
increased the number of options for disease diagnosis and treatment [1]. terms of Length of Stay (LOS) and Operative Time (OT), in addition to
Consequently, innovations such as minimally invasive robotic surgeries faster recovery, improved patient outcomes, and less post-operative pain
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[2].

RAS can surpass traditional surgeries in terms of performance met-
rics such as procedural error, economy of motion, diagnostic error, and
task completion time [3]. It can also outperform both open and lapa-
roscopic surgeries in terms of hand tremor and visual feedback,
respectively. In addition to its ability to collect visual and spatial data to
manage robotic system limitations and improve the surgeons’ experi-
ence [4]. It can be either teleoperated, comanipulated,
supervisory-controlled, or shared-controlled. Most of the research pa-
pers focus on comanipulated or telesurgical operations since they are the
most commonly performed types of robotic surgery [5].

However, RAS comes with certain drawbacks, including limitations
in maneuverability, operational workspace (both inter- and intra-
operative), communication among the surgical team, and assessment
of surgeons’ skills in using the robot’ [6-8]. Also, if the surgery is tele-
operated over a large distance between the surgeons and patients, some
constraints such as time delay and real-time data delivery must be
considered [9]. Surgical robots such as Da Vinci are not fully autono-
mous, so studying RAS pertains to the study of human-machine inter-
action. Moreover, although robotic surgeries provide more dexterity
compared to traditional surgeries, they still require new technologies
and innovations to further increase dexterity related to the ability to
perform surgical procedures with precision.

Therefore, examining the Operational Management (OM) of robotic
surgeries involves the latest technology/innovation associated with
Healthcare 5.0, including advanced imaging, haptic sensing (force
feedback), improved robotic articulation, sensors, and more. This ex-
amination also encompasses skill assessment as well as healthcare op-
erations and workflow, such as resource allocation and cost of
implementation. All the aforementioned collectively impact the per-
formance of OM.

Prior reviews have explored various aspects of surgical robotics.
Fruggiero et al [7] evaluated factors influencing Da Vinci robotic lapa-
roscopic surgery, ranking them through an analytic hierarchy process
and categorizing their risks. Dlaka et al [10] reviewed RAS applications
in stereotactic and spinal neurosurgery for preplanning, navigation, and
localization. Chioson, Espiritu, Munsayac, Jimenez, et al [11] high-
lighted the latest developments in surgical robots in the Philippines,
discussing different systems, the current state of RAS, and recent tech-
nological advancements.

As for haptic feedback, in a comprehensive review done by M et al.
[12], the authors discussed haptic gloves, which are one of the latest
RAS-related technologies used to mimic the sense of touch and enhance
human-machine interaction, in addition to the latest technologies
related to haptic gloves. The study highlighted the methodology used in
previous haptic studies and some correction measures. An overview of
Artificial Intelligence (AI) in RAS has been discussed by Eminaga & Liao
[4]1, where subjects such as RAS pre-preparation, navigation, and auto-
mated maneuverability of repetitive tasks have been highlighted.
Notably, the latest generation of robotic systems from Intuitive, the Da
Vinci 5, features advanced Force Feedback technology. This innovation
enables surgeons to perceive push and pull forces, detect tissue tension,
and experience a realistic sense of pressure during critical tasks such as
dissection, retraction, and suturing, enhancing precision and control in
surgical procedures.

In this context, this literature review paper is taking a unique path by
examining operational management aspects of RAS (OM-RAS) through
simulation and optimization. Simulations/optimization-related studies
can be seen in different aspects such as resource allocation and sched-
uling, haptic/force sensing simulation, tele-operations of RAS, imaging,
and skills assessment. Factors affecting operational management, such
as time-related factors, accuracy, reliability, and other performance
metrics, will be examined.

This study stands out for its innovative approach, examining both the
direct and indirect factors that impact the OM-RAS. In Section 3.1:
Surgical Robotics Operations and Workflow Optimization, it precisely

Surgery in Practice and Science 22 (2025) 100294

examines the direct factors affecting OM-RAS, while Sections 3.2 and
3.3: Surgical Robotics Performance Enhancement and Skill Assessment,
discuss indirect influences. Previous reviews often emphasized ad-
vancements in RAS technology, such as sensor integration for optimal
positioning or algorithmic enhancements for manipulator control,
alongside Convolutional Neural Networks (CNNs) for image classifica-
tion improvement. However, from an operational management stand-
point, these technological aspects are regarded as indirect contributors
to functional outcomes of RAS, a critical aspect that this literature re-
view aims to address.

2. Methodology

The methodology of this literature review paper adopted a compre-
hensive search strategy for the retrieval of pertinent articles from elec-
tronic databases. These databases included Scopus, Web of Science, and
Google Scholar. The search was not limited to a specific time period,
allowing for a comprehensive exploration across different timeframes.
The selection of search terms was guided by a scientific approach, as
elucidated by Chabowski et al. [13] and Zupic & Cater [14]. Moreover,
the analysis incorporated insights from a thorough examination of
pertinent literature review papers outlined in Table 1, with a particular
emphasis on the research conducted by Moglia et al. [15]. To ensure the
rigor of this search strategy, a panel of experts within the research field
was engaged. Their involvement encompassed the validation of the
compiled search query, the establishment of filtering criteria, the iden-
tification of supplementary search terms, and the incorporation of
relevant terminology.

After iterative refinement, the search query is documented in Table 2
and the criteria for inclusion and exclusion are outlined in Table 3 were
ultimately employed. The methodology adhered to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
2020 statement and checklist [19]The reference ’Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020’ is
cited in the text but is not listed in the references list. Please either delete
the in-text citation or provide full reference details following journal
style., as well as the guidelines for assessing the methodological quality
of systematic reviews, A Measurement Tool to Assess Systematic Re-
views (AMSTAR 2) [20].

Following the elimination of duplicate articles, a total of 178,038
papers were identified, as illustrated in Fig. 1. In order to focus exclu-
sively on studies directly aligned with the research objectives, the search
was restricted to articles that incorporated the query keywords within
their titles, abstracts, and keywords, resulting in a refined dataset of
26,279 documents.

Table 1
Previous review papers.

Reference Focus Timespan Size

Fruggiero et al. 1987-2015 40
[7]

Dlaka et al.
[10]

Fuertes-Guird
etal. [16]

Variables affecting RAS

Stereotactic and spinal neurosurgery 1988-2021 38

Opportunity cost of implementing 1992-2013 36
DaVinci-RAS
Met al. [12] Haptic glove
Moglia et al. A systematic review on artificial

[15] intelligence in robot-assisted surgery
Lam et al. [8] Machine learning for technical skill
assessment in surgery: a systematic
review
Current Trends and Future Possibilities of
Integrating Al into Public Health (RAS

2004-2020 23
1994-2021 78

1988-2021 105

Giansanti [17] 2021-2022 28

addressed)
Moawad et al. How AI/AR affects the future of RAS and 2006-2020 17
[18] the latest technologies applied to different

medical specialties

Current review Operations Management of RAS 2006-2023 50
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Table 2
Search query.
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((artificial AND intelligence) OR (deep AND learning) OR (machine AND learning) OR (convolution AND neural AND network) OR (skills AND assessment) OR (plan*) OR (schedul*)
OR (simulat*) OR (optimiz*) OR (optimis*) OR (operate*) OR (manage*) OR (model*) OR (program*) OR (appointment))
AND ((robotic AND surg*) OR (surgical AND robot*) OR (robot-assisted AND surg*) OR (da AND vinci AND surg*))

Table 3
Filtering criteria.

1. Query keywords must exist in the publication title, abstract, or keywords.2. Only retain publications that satisfy the following conditions:

o Type: Journal article or conference paper
o Language: English
o Time: up to the third quarter of 2023

e

o Subject areas: “Decision Science”, “Business, Management and Accounting”, and “Economics, Econometrics and Finance”

[ Identification of studies via databases and registers ]

g Records removed before
] Records identified from: sereening: L
= —> Records marked as ineligible
B Databases (n =26279) .
5 by automation tools
= (n=26097)

Records screened »| Records excluded

(n=199) (n=93)

Reports sought for retrieval
g (n=106)
=
3
5
12

ReEorts assessed for eligibility Report.s excluded for the

(n=1006) following reasons:

1) Literature reviews
2) Not related to Robotic-
Assisted Surgery (RAS)

g
= Studies included in review
E (n=50)
Ll

Fig. 1. Flow Chart of the Study Selection Process Based on PRISMA.

Further refinement was achieved by applying filters after reviewing
articles from various research fields, such as medicine, engineering,
computer science, and others. From this, specific subject areas were
delineated as shown in Table 3. This step notably reduced the dataset to
199 documents. Furthermore, the search filters were used to exclusively
extract conference papers and articles, excluding books, press articles,
and the like, resulting in a final dataset of 190 documents. From this
dataset, we identified 9 previous review papers, which we have analyzed
and summarized in Table 1.

These 190 studies underwent meticulous scrutiny in Excel to facili-
tate manual screening. The screening process involved assessments
based on titles and abstracts, complemented by comprehensive reviews
of full texts when necessary. Disagreements between reviewers during
the screening process were addressed through discussion, and if
consensus could not be reached, a third reviewer was consulted to make
the final decision. Notably, studies unrelated to the research domain,
such as those related to agriculture, communication, and drilling sys-
tems, were excluded during this phase, resulting in the formation of an



A. Riad et al.

initial set of included studies. Subsequently, papers related to RAS were
included if they demonstrated the potential to impact the operational
management of RAS. Eligible studies addressed aspects such as work-
flow optimization, enhancement of robotic system performance, or
improvement of surgeon-robot interaction, all of which are believed to
contribute to better surgical processes and improved medical outcomes.
To ensure maximum coverage, both backward and forward snowballing
approaches were employed as suggested by Wohlin [21], leading to the
identification of a few additional publications that were not initially
included.

Subsequently, the final dataset included 50 studies. This was fol-
lowed by the thorough processes of data extraction and content analysis.
The included studies have been categorized into three types: observa-
tional studies, real-world validated studies, and mixed-design studies
(which combine both observational and real-world validation compo-
nents). The supplementary materials of this paper include Table S1,
which classifies each study according to these categories. The culmi-
nation of these analytical steps facilitated the creation of the classifi-
cation schemes presented in Figs. 2 and 3.

3. Results and discussions

The healthcare landscape is evolving rapidly, with terms like Hos-
pitals of the Future (HoF) and Healthcare 5.0 gaining prominence. These
terms underscore the growing significance of integrating the latest
technological trends into our healthcare systems, as they are believed to
have a profound impact on various healthcare facets, including clinical,
financial, organizational, and technological outcomes [22-24].

As a result, the integration of RAS into our healthcare systems has
emerged as a prominent trend. It is increasingly recognized that RAS can
lead to improvements in peri-operative outcomes, such as reduced pa-
tient waiting times, shorter LOS, optimized OT utilization, and mini-
mized surgical complications (e.g., reduced Blood Loss (BL), Urinary
Incontinence (UI), Urinary Complications (UC), erectile dysfunction,
etc.)—as evidenced by studies [25-27]

However, the extent of these improvements and the specific tools and
technologies employed remain key considerations. The true impact of
RAS on healthcare outcomes will become clearer as we thoroughly
explore the OM aspects of RAS and examine the factors influencing its
performance. Consequently, this literature review paper aims to spot-
light recent research that explores techniques, tools, and technologies

o Al integration
o TIand IoT

i

RAS’ Operational
Management

000O0O0O0

Skill assessment

Surgical robot operation and workflow optimization
o Comparative analysis of (RAS) with open & laparoscopic surgery

o Clinical Utility and resource allocation

Surgical robot performance enhancement

Orientation and position of surgical robot

Path optimization of surgical manipulators
Mechanism optimization and kinematic analysis
Precision improvement in robotic instrument manipulation
Imaging

Haptic sensing and force feedback
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that have the potential to influence RAS and its peri-operative outcomes,
ultimately enhancing the precision of surgical procedures.

In our examination of this section, we have summarized the OM of
RAS (OM-RAS), as depicted in Fig. 2. Our findings reveal that the ma-
jority of studies within this field predominantly emphasize the latest
technologies and associated simulations. Subsequently, research atten-
tion shifts towards RAS workflow optimization and performance
enhancement. Skill assessment and studies related to cost-benefit anal-
ysis appear to be relatively less prevalent. This distribution highlights
the evolving focus of OM-RAS research, showing a clear shift toward
technological innovation and process improvement. As mentioned in the
preceding section, 50 studies have been incorporated into this paper.
Among these studies, 14 studies are dedicated to the optimization of
surgical robotics operations and workflow (Table 5), 14 focus on the
surgical robotics performance enhancement (Table 6), an additional 10
probes deeply into imaging (Table 7), while 8 address haptic sensing and
force feedback (Table 8). Moreover, 4 studies center around skill
assessment (Table 9). A quick summary for each subsection can be seen
in Table 4.

3.1. Surgical robotics operations and workflow optimization

This section comprises a total of 14 studies. The first part addresses
six comparative analyses of RAS with traditional procedures [28-33].
Two studies that address strategic considerations concerning the
implementation of RAS and Al integration [34,22]. Subsequently, the
third part explores four studies digging into tactical aspects, focusing on
the integration of Tactile Internet (TI) and Internet of Things (IoT)
within the domain of Robot-Assisted Tele-Surgeries (RATS) workflow
optimization [23,24,35,36]. Finally, the fourth section examines two
studies centered on operational decisions, specifically exploring clinical
utility and resource allocation [37,26].

3.1.1. Comparative analysis of robot-assisted surgeries (RAS) with open
and laparoscopic surgeries

Lipsitz et al. [32], using data from the Nationwide Inpatient Sample
(NIS), found increased discharge hazard rates for RAS compared to open
and laparoscopic approaches across nephrectomy, prostatectomy, and
partial nephrectomy. Similarly, Faria et al. [30] evaluated the long-term
cost-effectiveness of open, laparoscopic, and robot-assisted radical
prostatectomy over 20 years using Quality-Adjusted Life-Year (QALYs),

i

Fig. 2. Research Aspects and Emphasis in Operational Management of Robotic-Assisted Surgery (OM-RAS).
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Literature Review Classification Scheme

Comparative analysis of (RAS) with open and laparoscopic surgeries
Al integration

TI + IoT

clinical utility and resource allocation

orientation and position

Path optimization of surgical manipulators

Kinematic analysis

Precision improvement in robotic instrument manipulation

Imaging

Haptic sensing and force feedback

skill assessment

— 6
I 2
I—— 4

I 2

I 2
I 2
I 7

I 3

m Surgical robot operation and m Surgical robot Skill assessment
workflow optimization performance enhancement

Fig. 3. Classification Scheme of Robot-Assisted Surgery (RAS) Operations Management (OM) Literature.

Table 4
Results and discussion subsection summary.

Subsection Summary
3.1 Surgical Robotics Operations It explores the improvement of various
and Workflow Optimization operational and medical performance metrics,

including resource utilization, LOS, and OT.
This subsection emphasizes the significance of
integrating RAS into healthcare and clinical
operations, such as the allocation of beds and
operating rooms.

3.2 Surgical Robotics Performance  Focuses on studies dedicated to enhancing the

Enhancement performance of surgical robotics. It includes
detailed sub-sections for imaging and force/
haptic feedback, as these areas have seen more
research compared to other aspects of
performance improvement. It also underscores
the critical importance of optimizing RAS tools
both intra-operatively (within the patient’s
body) and inter-operatively (within the
operating workspace). Additionally, it reviews
the significance of optimizing end-effector
track and RAS mechanism/kinematics.

3.3 Skill Assessment Focuses on simulation and optimization models
related to skill assessment and haptic feedback,
capitalizing on emerging technologies and
Machine Learning (ML) techniques to enhance
accuracy and optimize performance metrics. It
is mainly about how to assess surgeon dexterity
through AT algorithms.

Incremental Cost-Effectiveness Ratio (ICER), and Incremental
Cost-Utility Ratio (ICUR). Their analysis, which included health out-
comes such as biochemical recurrence, metastasis, and post-operative
complications, indicated RAS had a 32.9 % and 38.9 % chance of
dominance over open and laparoscopic surgeries, respectively. Howev-
er, the study’s reliance on diverse sources for intra- and peri-operative
data may limit its applicability to the Brazilian context, increasing un-
certainty [30].

Al-Thani et al. [28] found robotic adrenalectomy to be safe and
effective for small benign tumors (<6 cm), though surgical choice
depended on factors such as tumor characteristics, patient health, sur-
geon expertise, and institutional resources. Open surgery remained
preferred for larger or malignant tumors. The study noted potential bias
due to evolving hospital practices and called for further research on
costs, risks, and quality of life. In pancreatic surgery, Duran et al. [29]
reported that robotic distal pancreatectomy led to significantly less

blood loss and shorter hospital stays compared to open surgery, with
outcomes comparable to laparoscopic procedures and a lower morbidity
rate. Similarly, H.-I. Kim et al. [31] evaluated 434 gastrectomies and
found comparable complication and recovery rates between robotic and
laparoscopic groups. However, robotic surgeries were longer and more
expensive, without perioperative advantages. In liver surgery, Yu et al.
[33] found no significant differences between robotic and laparoscopic
resections regarding operative time, blood loss, complications, or hos-
pital stay.

Nevertheless, despite its advancements, robotic surgery has its lim-
itations, including high costs and the absence of tactile feedback; such a
topic is addressed in 3.2.6. Also, comparative studies between robotic
and laparoscopic liver surgeries have shown comparable outcomes.
However, more in-depth research encompassing diverse cases and
longer follow-ups is necessary for a thorough and precise comparison.
Additionally, while the observational studies offer important pre-
liminary insights, they highlight the need for further real-world vali-
dation and long-term evaluation to strengthen the evidence base.

3.1.2. Artificial intelligence (AI) integration

Combining artificial intelligence with virtual and augmented reality
(AR) will enable easy access to virtual healthcare services and enhance
the effectiveness and safety of robotic surgeries, which is believed to be
the future trend [17].

In robotic surgery, AR improves real-time surgical performance by
modifying actual environments rather than creating simulations. Inte-
grated with telemanipulation systems, AR enhances surgeons’ visual
perspectives by overlaying key anatomical landmarks during proced-
ures, thus improving safety and peri-operative outcomes [18]. It also
helps compensate for the lack of tactile feedback by visually enriching
the operative field. Additionally, AR supports clinical decision-making
by displaying contextual data, such as tissue characteristics and adja-
cent structures [38,39].

Numerous survey studies exemplify the proof-of-concept for inte-
grating AR into various specific RAS procedures. Several investigations
showcase the feasibility of incorporating AR into a range of surgical
interventions, such as partial nephrectomy [40], cholecystectomy [41],
TECAB [42], and radical prostatectomy [39]. Interestingly, no compli-
cations were detected in the previous studies.

AR has its limitations. Improper registration of AR may result in
displaying the tumor at an incorrect location, a phenomenon known as
"misregistration". If surgeons base their surgical decisions solely on the
AR display, they could unintentionally harm healthy tissue while leav-
ing the tumor unaffected. Falk et al. [42], recorded an overlay accuracy
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ranging from 9.3 mm to 19.2 mm during a TECAB cardiac procedure due
to heart deformation. As a result, the integration of emerging Al tech-
nologies with AR holds the promise of accurately identifying various
body tissues. This can be achieved through Al algorithms leveraging
deep learning-based CNNs or segmentation algorithms. Additionally,
tracking algorithms can be employed to dynamically track tissues within
the patient’s body in real-time, enhancing the precision and effective-
ness of surgical interventions and medical procedures.

Agarwal et al. [34] conducted a qualitative study at Apollo Hospital
in India, emphasizing the strategic value of Al and RAS, particularly
when performed by skilled surgeons using minimally invasive tech-
niques. Through a partnership with PMI/Microsoft in 2018, the hospital
leveraged large datasets to accurately predict cardiovascular risks,
highlighting AI's potential in broader applications, including reducing
infection risks through RAS. The study concluded that RAS improves
productivity, reduces post-operative complications, and supports faster
recovery, making it a cost-effective option. Similarly, Ali Mohamad et al.
[22], based on nine interviews at a Dubai hospital, found that inte-
grating Al into robotic surgery positively influences clinical, financial,
organizational, and technological outcomes.

Implementing Al encounters some challenges, notably in data
collection and bias mitigation. Unbiased, precise, and region-specific
data are imperative for ensuring accurate outcomes. Furthermore, pa-
tients’ apprehensions regarding data confidentiality pose hurdles in
compiling data effectively. While integrating AI with RAS introduces
decision-making paradigms, achieving complete automation remains a
subject of ongoing research, hampered by issues such as misclassifica-
tion and computational constraints [43].

3.1.3. Tactile internet (TI) and internet of things (IoT)

TI and IoT-related studies have become an indispensable aspect of
robotic surgeries. As previously highlighted, datasets concerning robotic
surgeries encounter significant challenges, including data acquisition
and storage complexities, communication difficulties with low-latency
requirements, and the scarcity of annotated data [44]. Furthermore,
there are limitations in converting structured data into digitized for-
mats. Therefore, it is paramount to consider these studies at the tactical
level of OM-RAS.

Gupta et al. [24] introduced the Blockchain-driven Intelligent
scheme for Tele-surgery System (BITS) framework, leveraging 6 G net-
works and Al to mitigate cyberattacks in RATS. BITS addressed limita-
tions in earlier systems like blockchain-based secure and flawless
interoperable tele-surgery (HaBiTs), which relied on 5 G and private
blockchain but faced issues with latency and reliability [45]. BITS
achieved superior performance—99.99 % reliability and sub-100
microsecond latency—enhancing data throughput and reducing stor-
age costs. These advancements improved the responsiveness of
intra-operative imaging and haptic feedback tools (e.g., Omega series),
enabling more precise real-time surgical control.

To further improve network longevity and security, P. Lokhande & D.
Patil [36] proposed a Machine-to-Machine (M2M) communication sys-
tem using a LEACH (protocol that does not consider cyber-attacks). By
simulating cyberattacks through the LEACH-A protocol, they evaluated
metrics like energy consumption, PDS, delay, and overhead, demon-
strating a 20-25 % increase in service life. Such enhancements support
the seamless integration of advanced technologies into telesurgical
workflows, ensuring secure, efficient, and real-time data exchange
critical to surgical precision.

Hentati et al. [35] explored resource allocation in tele-surgery over 5
G networks by implementing a Joint Placement and Scheduling Algo-
rithm (JPSA) for Virtual Network Functions (VNFs) within a Network
Function Virtualization (NFV) environment. Using a greedy algorithm
and Integer Linear Programming (ILP), the study prioritized reliability
and latency. Without existing benchmarks, two reference algorithms,
RM-FDFS and SFG-JPSA, were developed. JPSA outperformed both in
admission rate and cost, especially under strict reliability constraints.
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Notably, splitting application traffic into multiple VNF forwarding
graphs (VNF-FGs) with varying QoS demands proved more efficient than
using a single VNF-FG.

This insight aligns with Aripin et al. [23], who introduced the
"Hospital of the Future" (HoF) concept by implementing three differ-
entiated 5 G network slices tailored to specific communication needs
detected via AR. Comparing static and dynamic slicing strategies using
micro-BS/femtocell setups, they evaluated performance based on client
connection metrics and bandwidth utilization. Although costlier, dy-
namic slicing with femtocell yielded better outcomes, supporting
advanced TS, AR-assisted robotic monitoring, and remote care, key to
realizing the HoF vision.

3.1.4. Clinical utility and resource allocation

In a clinical utility context, Mukherjee & Sinha [26] examined RAS
scheduling to minimize costs by analyzing three operational policies:
triaging patients by criticality, optimizing surgeon pool size, and
considering surgeon experience. Using Generalized Linear Models
(GLM), Mixed Integer Linear Programming (MILP), and Discrete-Event
Simulation (DES), the study found that applying these poli-
cies—particularly for complex cases like uterine sizes >150
g—improved outcomes and reduced costs in Robot-Assisted Hysterec-
tomy (RAH). However, the authors noted these policies may vary across
procedures, such as Radical Prostatectomy (RP), where additional fac-
tors like urinary incontinence, blood loss, erectile dysfunction, and
urethral complications must be considered. More about results and as-
sumptions can be seen in Table 5.

Although not focused solely on RAS, Keyhanian et al. [37] proposed
a multi-objective binary model for surgical instrument allocation in
operating room trays. The model combined cell formation (grouping
instruments by use) and bin packing (tray optimization), addressing
constraints like avoiding redundancy and managing instruments as
limited resources. The authors suggested their approach is adaptable for
RAS, offering valuable methodology for efficient surgical logistics.

3.2. Surgical robotics performance enhancement

This subsection explores various facets of optimizing the capabilities
and efficiency of surgical robotic systems. Each part in this subsection
addresses a distinct aspect of performance enhancement.

Our exploration started with an investigation into how surgical ro-
bots are controlled in terms of orientation and position (3.2.1). Subse-
quently, we focused on the optimization of surgical tools and the
manipulator’s path (3.2.2). The in-depth investigation of the optimiza-
tion mechanism and kinematic analysis (3.2.3), including the exami-
nation of VR-based simulation studies (3.2.3.1). Precision improvement
in the manipulation of robotic instruments takes center stage in our
analysis (3.2.4), followed by a thorough exploration of imaging
enhancement (3.2.5) and the integration of haptic sensing with force
feedback (3.2.6). Collectively, these subsections provide a comprehen-
sive overview of ongoing efforts to enhance the performance and ca-
pabilities of surgical robotic systems, ultimately contributing to
advancements in surgical outcomes and patient care.

3.2.1. Orientation and position of surgical robot

Deilamsalehy & Havens [46] investigated robot pose estimation in
RAS using 2D sensors within a 3D simulation to track 6 DOF. Accuracy
was assessed through process and measurement noise covariances and
mean errors, employing both Extended and Adaptive Kalman Filters.
However, their assumption of constant noise covariance limited the
model’s adaptability, suggesting future work should explore variable
covariance models.

In contrast, Kabanov et al. [47] focused on optimal positioning of a 3
DOF instrument manipulator inside the patient’s body using a linear
algebraic method. Accuracy was measured by deviation from the pivot
point, providing a distinct approach to evaluating spatial precision in
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Study Level Focus Objective Methodology Main Outcome
Lipsitz et al. Strategic RAS Operational comparison Comparative analysis using WLS and Indicated shorter LOS of RAS
[32] Integrationin  (LOS): RAS vs. open vs. log-log link
surgical lap
practice
Al-Thani et al. strategic RAS Operational comparison Comparative analysis using Indicated shorter LOS of RAS. And open surgery was
[28] Integrationin  (LOS, and post-operative  retrospective observational study preferred for larger tumors
surgical complications): RAS vs.
practice open vs. lap
Duran etal. [29]  strategic RAS Operational comparison Comparative analysis using Indicated shorter LOS, less morbidity level, and
Integrationin  (LOS, BL, and retrospective observational study acceptable BL units of RAS.
surgical morbidity): RAS vs. open
practice vs. lap
Kim et al. [31] strategic RAS Operational comparison Comparative analysis using Indicated equal recovery time, LOS, BL units, mortality
Integrationin  (LOS, BL, and prospective, multicenter comparative level for both RAS and laparoscopic surgeries. However,
surgical morbidity): RAS vs. lap study more OT detected for RAS
practice
Yu et al. [33] strategic RAS Operational comparison Comparative analysis using Clavien- Indicated equal OT, LOS, BL units, and complications
Integration in (LOS, BL, and OT): RAS Dindo classification for both RAS and laparoscopic surgeries. However,
surgical vs. lap more medical cost incurred by RAS
practice
Agarwal et al. Strategic Al Examination of the Benchmark of selected Indian Indicated lower treatment cost of RAS with Al
[34] Integrationin  importance of Al, RAS, hospitals
RAS and surgeon experience
Faria et al. [30] Strategic RAS Clinical and economic Comparative analysis using Markov Indicated cost-effectiveness of RAS
Integrationin  comparison (QALYs, state transition model
surgical ICER, and ICUR): RAS
practice vs. open vs. lap
Ali Mohamad Strategic Al Examination of the Dubai case study with semi-structured  Indicated positive clinical utility outcomes of RAS with
et al. [22] Integration in importance of Al in RAS interviews, archival, and online data Al
RAS analysis
Guptaetal. [24]  Tactical RATS Communication Blockchain-based tele-surgery Improved network performance with low latency and
enhancement in RATS framework high throughput
P. Lokhande & Tactical RATS Communication M2M communication system through Improved network performance with reduced energy
D. Patil [36] enhancement in RATS the internet consumption
Hentati et al. Tactical RATS RATS network resource ILP, and greedy algorithm Improved cost-effectiveness
[35] allocation
Aripin et Tactical RATS RATS network resource Simulation Improved cost-effectiveness
(al.2023) allocation
Keyhanian et al. Operational ~ Management Optimization of surgical Multi-objectives binary IP model Improved cost-effectiveness through tray minimization
[37] of RAS instruments allocation
resources
Mukherjee & Operational Management Optimization of GLMs, MIP, and DES models Improved clinical outcomes through surgeries
Sinha [26] of RAS RAS scheduling assignment

resources

AL Artificial Intelligence; BL: Blood Loss; BS: Base Station; CH: Cluster Head; DES: Discrete Event Simulation; DoS: Denial of Service (A type of cyber-attack, e.g., Man-
in-the-Middle attacks); GLMs: Generalized Linear Models; ICERs: Incremental Cost-Effectiveness Ratios; ILP: Integer Linear Program; LEACH-A: Proposed protocol with
cyber-attack; LOS: Length of Stay; M2M: Machine-To-Machine Communication; MIP: Mixed Integer Programming; OT: Operative Time; PDR: Packet Delivery Ratio;
QALYs: Quality-Adjusted Life-Years; RA: Robot-Assisted; RAS: Robot Assisted Surgery; RATS: Robot-Assisted Tele-Surgery; TI: Tactile Internet; TS: Tele-Surgery; WLS:
Weighted Least Squares.

RAS.

3.2.2. Path optimization of surgical tools/manipulators

Path optimization in intra-operative workspace (within the patient
body) is another application of interest studied using simulation. J. Chen
et al. [48] used AI/ML techniques such as: Reinforcement Learning (RL)
and Learning from Demonstration (LfD) to generate an optimized
end-effector path by transferring data to Da Vinci system automatically.
RL and LfD are used to define paths for two tasks, then Gaussian Process
Regression (GPR) is used to detect the final path, and metrics like
completion time, path lengths, and average speed are used to examine
the proposed model. The path of a 6DOF end-effector in an
intra-operative workspace has been optimized by Shen [49] during a
knee surgery. The multi-body dynamics approach is employed to
examine the transmission properties of the surgical manipulator. The
proposed end-effector manipulator displayed better path accuracy and
increased efficiency of knee surgery.

3.2.3. Mechanism optimization and kinematic analysis
Mechanism optimization and kinematic analysis, a field with the

most studies in this section, reflects the importance of providing the
most proper design for surgical robot arms, which indeed affects the
surgeons’ performance (better ergonomics) and better surgical out-
comes. Du et al. [55], Laribi et al. [56], and Yongfeng et al. [54] did not
rely on VR for kinematic analysis. All of them aim to optimize the me-
chanical structure of each proposed robot/manipulator, and this is to
optimize both intra-/inter-operative workspace, which makes it suitable
for the patient’s/surgeon’s working environment.

Yongfeng et al. [54] proposed 5R mechanism with 6DOF for a lumbar
spinal surgery. Genetic algorithm is used to find the optimal dynamic
feature. Similarly, Du et al. [55] proposed radio frequency ablation
medical robot with 3DOF arm to optimize the workspace for liver tumor
surgery. The author hypothesized that the proposed design can help
achieve better treatment. What makes this study special is the reliability
to provide surgeons with real-time precise positioning, by ultrasonic
imaging to guide the robot.

Laribi et al. [56] crafted a groundbreaking teleoperated system,
comprising both a slave and master unit. They effectively used Nexus
software to accurately capture motion data. The study defined the ro-
bot’s usable workspace within a cone, marked by a half-apex angle («)
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Study Level* Aim of Study Application Method/Algorithm DOF of The Time/Accuracy/Related
Proposed Design Observations
Deilamsalehy &  Inter-operative Optimizing the A real-world Holistic approach using AKF 6DOF - AKF algorithm has better
Havens [46] workspace orientation and experiment algorithm estimation accuracy and less
positioning of a simulation mean error compared to the
surgical robot standard EKF algorithm
Kabanov et al. Intra/Inter- Optimizing the Transurethral Denavit-Hartenberg approach 3DOF Only the degree of deviation from
[47] operating orientation and operation and Cauchy-Bunyakovsky- the pivot point has been displayed
workspace positioning of a Schwarz inequality using graphs

J. Chen et al.
[48]

Shen [49]

Vairavasamy
et al. [50]

Trejo & Hu [51]

Karadimos
et al. [52]

Yang et al. [53]

Yongfeng et al.
[54]

Du et al. [55]

Laribi et al.

[56]

Lu et al. [57]

Sannikov [58]

A. Takacs et al.
[59]

Intra-operative
workspace

Intra-operative
workspace

Inter-operative
workspace

Intra-operative
workspace

Intra-operative
workspace

Inter-operating
workspace

Intra/Inter-
operative
workspace
optimization
Inter-operative
workspace
optimization

Intra/Inter-
operative
workspace
evaluation
Intra-operative
workspace

Intra-operative
workspace

Inter-operative
workspace

surgical robot
Optimizing path
generation to
automate surgical
tasks

Optimizing the
path of the end-
effector

Mechanism
optimization and
Kinematic analysis
Mechanism
optimization and
Kinematic analysis

Mechanism
optimization and
Kinematic analysis

Mechanism
optimization and
Kinematic analysis
Mechanism
optimization and
Kinematic analysis

Mechanism
optimization and
Kinematic analysis

Mechanism
optimization and
Kinematic analysis

Enhancing the
efficiency and
quality of knot
tying through RAS
Integrating a laser
scalpel into
surgical robots

Building a
nonlinear soft-
tissue model to
mimic a liver-type
tissue

Peg transfer (for
straight paths) and
pattern cutting (for
curved paths) tasks
Knee surgery

Tele-surgery

Brain tissue
dissection-
neurosurgery

3 trajectories
examined:
elbow-up, insertion,
and line segment
pivot trajectory
Endoscopic sinus
surgery

Lumbar spinal

surgery

Liver tumor

Anastomosis
technique

KT via the
experimental tissue
pad

Laser scalpel

Tele-surgery

RL and LfD

Credit Assigned Cerebellar
Model control and non-
dominated genetic algorithm
sorting

VR-simulation

VR-simulation

VR-simulation and Holistic
modeling approach using
RRTConnect algorithm

VR-simulation and genetic
algorithm to optimize the rod
length of the proposed design
Genetic algorithm used to
optimize the dynamic feature of
the proposed robotic design

Quantitative: ultrasonic
imaging guided medical robot
(radio frequency ablation)

Inverse and forward kinematics
model

Simulating trajectory profile
through MATLAB

2 algorithms used: 1st algorithm
to detect the depth map (PID
controller used), 2nd algorithm
to detect the controlling
distance coordinates

Heuristic modeling approach
and 3 Wiechert model
implementations: two non-
linear approaches and one
linear approach

6-joint robotic
manipulator

5 DOF
Manipulator

neuroArm, with
6DOF

Manipulator has
7DOF

3DOF

The Proposed Bi-
planar parallel
mechanism has
6DOF

The robot arm
has 3DOF

3DOF
manipulator

The final path trajectory has been
detected using GPR by extracting
final features from RL and LfD,
thus increasing accuracy
Proposed design improves the
precision of cutting and drilling in
knee surgery, optimizes the path
of the end-effector, and improves
the quality and efficiency of knee
surgery

Real-time model synchronized
and achieved

Virtual reality mapping (open
surgery) demonstrated superior
accuracy and speed. Hypothesis
results varied, and the analytic
model provided real-time force
feedback within 2.5 s

High precision achieved: pivoting
accuracy 2.11 um, repeatability
1.61 um; insertion accuracy 0.29
um, repeatability 0.29 um.

Omega.7 device provides better
manipulation dexterity and
accuracy

macro-micro mechanism provides
better accuracy in pedicle screw
placement

Minimum and maximum values of
the 3DOF parameter are located
to optimize the surgical
workspace

A cone with a half apex angle (&)
and an axis of revolution zT
defines the usable workspace

The model displayed less KT time

Integration of 3D camera, depth
map tech, real-time PID feedback,
and laser adjustments ensures
accurate, minimally invasive
procedures

The nonlinear Wiechert model
ensures realistic force response, a
gradual rise in force, and an
accurate representation of
stiffness changes

RAS: Robot Assisted Surgery; AKF: Adaptive Kalman Filter; EKF: Extended Kalman Filter; DOF: Degree of Freedom; ML: Machine Learning; RL: Reinforcement
Learning; LfD: Learning from Demonstration; GPR: Gaussian Process Regression; SD: Standard Deviation; KT: Knot-Tying; PID: Proportional Integral Derivative; WL:

Work Load; DR: Damage Reduction.

" Intra-operative workspace is within a patient’s body, while Inter-operative is within an operating room workspace.

and an axis of revolution (zT). Notably, the research examined
end-effector positioning, optimizing this critical aspect of the robot’s
functionality. Although this study also explored end-effector path opti-
mization, Laribi et al. [56] mainly focused on developing an advanced

kinematic design for their surgical robot.

However, a common thread that tied this study with others in the

field was the absence of results concerning accuracy. In essence, what
these studies lack is rigorous statistical analyses applied to evaluate the
precision and reliability of each designed mechanism. Incorporating
such analyses would not only reinforce the validity of their findings but
also elevate the overall quality and impact of the research.
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3.2.3.1. VR-based simulation studies. Four studies integrated VR into

surgical simulations. Vairavasamy et al. [50] developed a VR-based

prototype using a 5DOF manipulator for real-time simulation, though
surgical validation remains necessary due to missing reliability data.
Addressing the Remote Center of Motion (RCM) constraint, Karadimos
et al. [52] ensured sub-1 mm Remote Center of Motion (RCM) error to

minimize patient force during incisions, analyzing accuracy and

Table 7
Studies on imaging.
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repeatability via the RRTConnect algorithm across 10 trajectory trials.
Trejo & Hu [51] explored VR’s role in skill transfer from open sur-
gery to the neuroArm, a 6DOF robotic end-effector. Using both
NASA-TLX and objective metrics, tracing accuracy, motion quality
(MQ), and damage reduction, they found limited support for their hy-
pothesis, though MQ showed promise.
Yang et al. [53] proposed a sinus surgery robot with a 3DOF double

Study Phase Sample/Input dataset Application Method/Algorithms Time and Accuracy Results
Shvets et al. Intra- 8 x 75-frame sequences and Segmentation of robotic U-net, TernausNet, and LinkNet TernausNet-16 excelled in binary
[68] operative two full 300-frame sequences tools algorithms segmentation (83.6 % IoU, 90.1 % Dice)
and instrument segmentation (65.5 %
IoU, 75.9 % Dice). TernausNet-11 led
multi-class segmentation (34.6 % IoU,
45.9 % Dice), while LinkNet-34 was the
fastest, thanks to its superior encoder
Feng et al. [62] Pre- - 56 passive sphere places in Segmentation of robotic KiU-Net, kite-net, and U-net KiU-Net achieved 95.2 % dice accuracy,
operative CT device to obtain CT images  tools (passive marker algorithms with significantly fewer parameters than
- CT images with voxel size sphere) U-net, leading to faster training and
512 x 512 x 1900 lower memory usage
- Model trained for 150
epochs
Sivarasa & Pre- - 500 x 500 image and 20 x Segmentation of robotic 7-layers-CNN ReLu installation helped increase
Jerew [69] operative 20 border filters tools (forceps parts) accuracy by 2 % and decrease
- 16 epochs used to execute processing time by 2s
the system
Nahushev [66] Intra- Video sequence with Segmentation and To fulfill the application objective Proposed algorithm model enhanced
operative 30-60fps frequencies Localization of tissue proposed algorithm is adjusted to: RAS in terms of: Results repeatability
abnormalities (e.g. - Consider that only robotic tools are  and work duration
rupture of tissues and dynamic.
blood loss) - Detect any motion except robotic
tools motion.
- Exclude any zones occupied by
surgical instruments
Glashev [63] Pre- Previously marked pelvic Segmentation and Modified-CNN More training data is needed to increase
operative organs images Localization of tissue the accuracy of segmentation
abnormalities (e.g.,
Sactosalpinx)
Alqaoud et al. Pre/intra- - Data obtained from 10 Segmentation and nnU-Net algorithm with multimodal The architecture reduces personnel
[60] operative patients localization of breast input need, achieving high accuracy (DSC:
- Two MR modalities tissues (fat, FGT, and 0.95+0.00 for breast, fat; 0.83+0.04 for
- Image size: 512 x 512 tumor masses) FGT; 0.41+0.58 for tumors)
- First nnU-Net network
segmentation used as input
for the second network
Padhan et al. Intra- 540 (rtMRI) collected every Path optimization and predefined kinematics and guidance Hypothetical clinical task performed
[67] operative 50ms dynamic guidance of curve, and maneuvering command using DGVF showed: Better safety (it
robotic manipulators parameter kept the manipulator within the safety
region, 5 mm) and higher accuracy. It
also decreased task time by almost 14.8s
Mach et al. [65] Intra- 62 OCT-images of needle-tip Path optimization of 3DU-Net algorithm for the Micron error limit is 25 um; mean errors
operative annotated volume 50 from robotic manipulator SNI segmentation of needle-tip and in retinal layers, target board, and pig
different OCT machines and Levenberg—Marquardt (ML) eye evaluations are 23.8 pm, 25.4 um,
23 from the local OCT algorithm and 24.3 pm, respectively, with standard
machine deviations of 5.9 ym and 6.7um
Dong et al. [61] Pre- Dataset collected using Path optimization of - Smooth Motion Path Planning Insertion accuracy has an error of less
operative commercial device robotic manipulator and algorithm: This strategy is useful in than 1.5mms
polaris vega® increasing scene resolving the problem of the singular
adaptivity during RAS point
Huynhnguyen &  Pre- - From JIGSAWS dataset (39 Implementing a suturing 3-layer 3D CNN to detect the - LOSO for: Gesture transition: around
Buy [64] operative videos of suturing task task transition between surgeon and 70 % accuracy.

conducted by 8 surgeons;
each conducted the task 5
times)

- frame size 240 x 320 pixels
with 10Hz

- 10 gestures have been
classified

LSTM algorithm to classify each
gesture

- SGD for: Gesture classification: around
76.3 % accuracy

CNN: Convolutional Neural Network; CT: Computed Tomography; Dice Similarity Coefficient (DSC): A kind of metric used for analysis; DGVF: Dynamic Guidance
Virtual Fixtures; IoU: Intersection over Union; JIGSAWS: JHU-ISI Gesture and Skill Assessment Working Set; LOSO: Leave-One-Supertrial-Out (analysis technique);
LSTM: Long-Short-Term Memory (analysis technique); MR: Magnetic Resonance; OCT: Optical Coherence Tomography; RAS: Robot Assisted Surgery; ReLu: Rectified
Linear Unit; RMSE: Root Mean Square Error; rtMRI: Real-time Magnetic Resonance Imaging; SGD: Stochastic Gradient Descent; SNI: Subretinal Needle Injections; FGT:
Fibro Glandular Tissue (A type of breast tissues).
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parallelogram mechanism. Using Omega7 for haptic interaction, they
optimized rod lengths to enhance virtual performance, advancing
VR-based control in robotic procedures.

3.2.4. Precision improvement in robotic instrument manipulation

Several studies, including those conducted by Lu et al. [57], Sanni-
kov [58], and A. Takacs et al. [59] have explored various aspects of
robotic instrument manipulation. While these studies lack a unified
classification, they collectively contribute to improving the precision of
robotic surgical procedures. This paper emphasizes their significance,
highlighting their positive impact on achieving enhanced perioperative
outcomes in surgery.

Recent advancements in RAS have seen innovative approaches to
enhance efficiency and precision. Lu et al. [57] introduced a
MATLAB-based method for knot-tying tasks, significantly improving
suturing performance and reducing task time. Sannikov [58] integrated
a laser scalpel into a surgical robot, enabling real-time corrections based
on video feedback, ensuring minimal invasiveness. A. Takacs et al. [59]
explored mechanical models for optimal force feedback, emphasizing
their crucial role in enhancing precision and safety in RAS.

3.2.5. Imaging

In Table 7, we classify imaging-related studies based on optimization
and simulation for inter- and intra-operative applications, identifying 10
studies [60-69] that significantly enhances the performance of RAS.
Notably, most of these simulation studies leverage AI techniques,
particularly Deep Learning (DL) models, for guidance, classification, or
task automation.

For instance, Shvets et al. [68] employed DL algorithms such as

Table 8
Studies on haptic sensing and force feedback.
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U-net, LinkNet, and ResNet to segment robotic manipulators, improving
the surgeon’s ability to differentiate between tissue and end-effectors.
Feng et al. [62] utilized Kiu-Net to automate 3D segmentation of pas-
sive marker spheres. From Shvets et al. [68], U-net might display less
Intersection over Union (IoU) or Dice accuracy, however Feng et al. [62]
showed its importance in acquiring high-level features, while Kiu-Net
was used to capture the finest details.

Sivarasa & Jerew [69] improved tool detection and feature extrac-
tion in laparoscopic surgery using a DL-based approach, enhancing ac-
curacy. The proposed solution utilized a 2D convolutional operation
similar to the state-of-the-art method by Mikada et al. [80]. Further-
more, a ReLU (Rectified Linear Unit) layer was incorporated, enhancing
the system’s performance. This modification resulted in a dropout rate
of only 20 %, surpassing the state-of-the-art approach by 2 % in terms of
accuracy.

In another context, some technology features such as Dynamic
Guidance Virtual Fixtures (DGVF) assist surgeons in obtaining intra-
operative real-time Magnetic Resonance Images (rtMRI). Such Virtual
Features (VFs) used to be conducted based on a pre-operative procedure
registering to imitate a real-time UltraSound (US) scene, which might
not be suitable for unpredictable movement of tissues. Consequently,
Padhan et al. [67] developed on-the-fly DGVF to guide bendable ma-
nipulators using Magnetic Resonance Imaging (MRI). Dong et al. [61]
optimized puncture paths to enhance scene adaptivity without
increasing robot autonomy.

Mach et al. [65] used DL 3DUnet models with Swept-Source Optical
Coherence Tomography (SS-OCT) during Subretinal injection surgery,
achieving promising results in position identification. The novelty
implemented with SS-OCT displayed many advantages over the

Study Application/Experiments Methodology

Manipulator Observations (E.G., Time, Accuracy Results)

Chioson, Espiritu,
Munsayac, Dajay,
Jimenez, et al. [70]

Jiang et al. [71]

Chua et al. [72]

Xie et al. [73]

Chioson, Espiritu,
Munsayac, Dajay,
Santos, et al. [70]

Safavi & Zadeh [3]

F. Chen et al. [74]

Sadeghnejad et al.
[75]

Current and PID experimentation has
been done to test the performance of
the proposed haptic controller

Experiments were done on the Spinal
Surgery System Robotic (RSSSI) to
verify the stability of the proposed
model

Sinusoidal pulses are used to test the
proposed Force feedback model

Testing the force feedback response
delay of a master-slave robotic system

To create a bilateral Direct Force
Reflection teleoperation system for a
laparoscopic grasper

4 subjects of peg transfer were used to
validate the model

Assessing the function of a
cardiovascular interventional master-
slave robot during a carotid artery
model experiment

Novint Falcon—a parallel impedance-
type robot used as a setup for
endoscopic sinus surgery

Encoder filtering
method

PSO parameter
optimization and Root-
Locus method

Physical Model
Simulation

Sensor noise filtering
(Kalman Filtering
algorithm)

Mechanism sensing and
Sensor noise filtering

HMM and LfD

Sensor noise filtering
(variable limiting
filtering)

Impedance modeling
and MPC, and Quasi-
min-max algorithm

3D printed Single-DOF
haptic controller handle

Integral gain aimed to fix steady-state error but
caused system instability and slower response;
filters and reduced derivative gain further slowed
the PI controller

Novel design optimized control, removing sensors,
enhancing human-robot interaction. SMD-System
surpassed the proportional controller, ensuring
smoother end-effector output and better change rate
- Higher force caused instability, stronger overshoots,
and increased peak overshoots; shorter time
intervals between waves led to noticeable
overshoots, and time delay increased with shorter
intervals

Omega.7 boasts minimal delays: algorithm and
communication <1 ms, grasper closure 10 ms,
mechanical 30-40 ms. It excels in high-frequency
force signals with <100 ms feedback delay and low
error rates

Pl-controller had low accuracy, possibly due to
sensor oscillations or filter issues; temperature
fluctuations affected sensor readings; accuracy
percentages were 81.42 % (1 N), 75.71 % (2 N), and
91.43 % (3 N)

Medium MPC excelled in TCT, EoM, and MSM.
Vector quantization reduced data size, preserving
accuracy. Zero-speed task segmentation improved
TCT identification accurately and efficiently
Research focused on z-axis forces for complex
aneurysm lesions. Robot-guided wire accurately,
showcasing potential for surgery automation,
reducing intervention and radiation

A new cost function enhanced model robustness,
while the MPC method effectively eliminated
disturbances from control signal switches and
reduced time delays

Experiment conducted on
RSSS-1I (6DOF serial-link
robot)

Franka Emika manipulator,
7DOF

1DOF pistol-type haptic
device with a maximum
force of IN

Model-based approach
based on a 5DOF
Laparoscopic device

Master-slave cardiovascular

interventional robot

Parallel impedance-Novint
Falcon robot with 3DOF

EoM: Economy of Motion; F/T: Force-Torque; HMM: Hidden Markov Model; MPC: Model Predictive Control; MSM: Motion Smoothness; P-controller: Proportional
controller; PID: Proportional-Integral-Derivative; PI-controller: Proportional Integral controller; PSO: Particle Swarm Optimization; SMD: Spring-Mass-Dashpot Sys-
tem; TCT: Task Completion Time.
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Table 9
Studies on skill assessment.
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Study Phase Sample/Input Dataset Task Application Method/Algorithms Platform Time and Accuracy Results
El-Saig et al. Pre- N/A KT Assessment Software developed using DaVinci The tool can analyze movement
[76] operative through Peewee Python ORM platform paths, identify surgical actions, and
JIGSAWS library process data from JIGSAWS
metadata
K. Takacs & Pre- The measured metrics for eachof =~ Two FRS Assessment ANFIS) DaVinci Performance of 6 tasks was observed
Haidegger operative the seven FRS-Dome tasks were dome through FRS platform using FRS dome 22 metric, and
[77] used as inputs in the fuzzy tasks: ST,  dome optimizing results with better
systems. (Focus on Psychomotor ~ RT accuracy was achieved by
skills-3rd module) developing Neuro-fuzzy Inference
Systems for each task
K. Takacs Pre- 37 conducted measurements for KT and Assessment Sensorized FRS Dome. DaVinci Tower movement metric for both
et al. [78] operative only two tasks RT and KT (focus ~ RT through FRS Mounted force-gauge and platform tasks KT and RT: improved. And
on Psychomotor skills-3rd dome C++ to connect the main tower contact time for RT: improved
module) program with all
connected sensors
Lajko et al. Intra- JIGSAWS used to obtain ST, NP, Assessment CNN, LSTM, CNN and DaVinci The study utilized LOSO cross-
[79] operative kinematic and 2D-visual input and KT through LSTM (combined), platform validation to prevent overfitting.
data JIGSAWS ResNET, and convAuto CNN achieved 80.72 % (ST), 79.66

algorithms % (NP), and 80.41 % (KT) accuracy.
CNN+LSTM reached 81.58 % (ST),
83.19 % (NP), and 82.82 % (KT),
while ResNet scored 81.89 % (ST),

84.23 % (NP), and 83.54 % (KT)

ANFIS: Adaptive Neuro-Fuzzy Inference System.; KT: Knot-Tying; RT: Ring Transfer; ST: Suturing; SVM: Support Vector Machine.

conventional Time-Domain OCT (TD-OCT).

Huynhnguyen & Buy [64] utilized CNN and
Long-Short-Term-Memory (LSTM) models to automate suturing tasks,
showing potential for pre-operative automation. Similarly, Glashev [63]
employed CNN to autonomously identify diseases associated with pelvic
organs. The study introduced image labeling for pathological areas,
emphasizing that as the number of labeled images increases, the
recognition efficiency also improves.

The nnU-Net algorithms, previously established as state-of-the-art in
biomedical tissue segmentation architecture [81], were employed by
Alqaoud et al. [60] to propose a groundbreaking approach. They
introduced two consecutive nnU-Net networks designed to automati-
cally segment distinct breast tissues, including the breast region, fat,
Fibro-Glandular Tissue (FGT), and tumors. Remarkably, their Al model’s
effectiveness aligns with findings in resource allocation studies (e.g.,
[34]), indicating that AI implementation can significantly reduce the
need for personnel per task due to its autonomous capabilities.

Integrating imaging technology into RAS is crucial, going beyond
tool segmentation. In a study by Nahushev [66], a new approach was
proposed, instead of the common practice where surgeons manage all
tools manually, Nahushev suggests involving an assisting surgeon to
maintain a secondary optical channel. This innovative method aims to
decrease OT by parallelizing tasks. The core concept revolves around
real-time detection of tissue abnormalities during the surgery, using
imaging to identify any motion unrelated to tools or physiological
fluctuations. This approach represents a significant advancement in
RAS, enhancing precision and efficiency.

Integrating imaging technology into RAS plays a vital role in
improving various aspects, such as tool segmentation, scene adaptivity,
and task automation, ultimately reducing surgical risks and
complications.

3.2.6. Haptic sensing and force feedback

Promising advancements such as enhanced ergonomics, reduced
surgeon fatigue, improved tremor control, and immersive 3D visuali-
zation have become apparent through RAS. However, a notable draw-
back persists: the absence of haptic sensation and force feedback during
RAS. This critical gap is highlighted as one of the factors affecting OM-
RAS, emphasizing its significance in the scope of RAS.

In response to this challenge Chioson, Espiritu, Munsayac, Dajay,
Jimenez, et al. [70] ingeniously developed a 1-DOF tactile controller
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providing 1-N force feedback for palpation. Their study revealed that
employing numerous filters slowed down the PI controller responses.
Conversely, Jiang et al. [71] proposed an innovative Mass-Spring
Dashpot (SMD) model, replicating cat muscle and capable of sensing
any force acting on the robot. Parameters for this model were optimized
using the Particle Swarm Optimization (PSO) algorithm, showcasing
superior performance over the P-controller when integrated into the
RSSS-II (6DOF serial-link robot).

Chua et al. [72] used MATLAB to simulate a mass-spring force
feedback model in a master-slave robotic system, applying sinusoidal
pulses between 2 N and 5 N. Their study emphasized the lack of real-life
datasets, particularly for systems like DaVinci, limiting simulation ac-
curacy. Similarly addressing force feedback challenges, Xie et al. [73]
employed Omega.7 to capture 3D hand motions and forces up to 8 N.
Using Kalman Filtering, they reduced feedback delay to under 100 ms
while maintaining relative error below 3 % and absolute error under 0.1
N by accounting for mechanical, communication, and algorithmic
delays.

In related work, Chioson, Espiritu, Munsayac, Dajay, Santos, et al.
[82] integrated force sensors into a laparoscopic grasper for a tele-
operation system with bilateral control, testing haptic feedback at 1 N, 2
N, and 3 N. Despite strain gauge thermal limitations, the 3 N force
yielded the highest accuracy, with filtering affecting PI-controller pre-
cision but ambient temperature having no significant effect.

Further advancing force feedback models, F. Chen et al. [74]
developed a carotid artery model with three aneurysms, incorporating a
6DOF F/T sensor and real-time 3D imaging. The study found maximum
resistance along the z-axis, with minimal resistance in the x and y
directions.

Building on recent advances, Safavi & Zadeh [3] introduced a
model-based force rendering approach (MPC—HG) using a 5DOF lapa-
roscopic device with force sensors and a Bakis-type Left-to-Right Hidden
Markov Model (HMM) trained via Learning from Demonstration (LfD).
This method effectively captured the non-deterministic nature of sur-
gical motions. Among four evaluated control modes, their Model Pre-
dictive Control (MPC), modeled through a Multi-Layer Perceptron
(MLP) network, achieved superior results in Task Completion Time
(TCT) and Economy of Motion (EoM), marking a breakthrough in
handling system complexities and uncertainties, as evidenced by the
work of Golnary & Moradi [83] and Vrooijink et al. [84].

Extending this line of work, Sadeghnejad et al [75] developed a
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1DOF mass-stiffness-damping model with a five-parameter impedance
framework to simulate the human arm in a VR-based Endoscopic Sinus
Surgery trainer. Using a quasi-min-max output feedback MPC for
improved robustness, they addressed uncertainty and worst-case dy-
namics. A phenomenological tissue fracture model and the 3DOF Novint
Falcon manipulator enhanced realism and control. Following noise
reduction and delay compensation, the simulator delivered strong per-
formance, reinforcing its value for surgical training.

Traditionally, surgeons utilize palpation to assess tissue character-
istics, locate nerves and arteries [85], and identify irregularities like
lumps [86,87]. In addition, they depend on their sense of touch to
control the amount of pressure applied. Applying excessive force can
result in tissue damage, internal bleeding, and broken sutures.
Conversely, insufficient force can lead to loosely tied knots and inade-
quate sutures [88,89]. However, advancements mentioned previously in
this section underscore the relentless pursuit of refining haptic sensing
and force feedback technologies that impact parameters such as suturing
time, which affect the overall OT of the surgery.

3.3. Skill assessment

Surgeons with over twenty robotic procedures demonstrated supe-
rior perioperative outcomes and fewer complications compared to in-
training surgeons in their initial twenty robotic surgeries [90]. Unfor-
tunately, there are no standardized programs for RAS training [91],
which reflects the importance of addressing skill assessment in a sepa-
rate section.

Skill assessment in the context of RAS has been studied more
frequently through the perspectives of Al in robotic surgeries [15], ML of
technical skill assessment [8], or real-time skill assessment of robotic
surgeries [92]. However, no study has examined how AIl, ML, or
real-time techniques are going to affect OM of RAS, which explains the
scarcity of studies in this section. Using the search query described in the
methodology section, only four studies were found [76,79,78,77].

Growing evidence suggests that the technical abilities of surgeons
impact the outcomes of patients after surgery, as supported by numerous
studies [93-95]. Implementing techniques to assess these skills and offer
feedback during surgeons’ learning processes can enhance training ef-
ficiency [96,93]. Therefore, assessment through JAW or dome is
introduced.

JIGSAWS (JHU-ISI Gesture and Skill Assessment Working Set) is an
open-source annotated dataset of eight surgeons from three degrees of
expertise doing 103 basic robotic tasks related to RAS, which are: su-
turing, knot-tying, and needle-passing. Such a database is very beneficial
in skill assessment; on the other hand, processing data from JIGSAWS
might be complicated due to the huge data stored (e.g., kinematic data,
video data), which requires proposed approaches of how to analyze such
data or use it to assess/classify novice surgeons.

Reaching to a point to analyze such a huge dataset and then classify
surgeons will provide severe benefits such as: decreasing the senior
surgeons required to assess trainees, and this has a direct impact on OM-
RAS in terms of decreasing cost and the number of personnel required to
supervise training sessions, in addition it will provide objective assess-
ment rather than subjective. Along with the JIGSAWS data set, the
Fundamentals of Robotic Surgery (FSR) dome is also presented in this
section, which is believed to exhibit promising results in improving
classification procedures of surgeons.

El-Saig et al. [76] developed a graphical tool using Peewee Python to
automate skill assessment by analyzing JIGSAWS data, specifically
evaluating velocity during knot-tying tasks across varying expertise
levels. The tool, comprising two modules: enter-staej.py and main.py,
that classifies surgeons and recognizes surgemes.

Lajko et al. [79] expanded this approach by applying five machine
learning models to assess surgeon performance without intermediate
classes, minimizing misclassification [97]. Their method uniquely
incorporated both 2D visual and kinematic data from JIGSAWS.
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K. Takacs & Haidegger [77] validated the FRS-dome, a sensorized
psychomotor training tool, using two novice-friendly tasks: suturing and
ring transfer, then applied an Adaptive Neuro-Fuzzy Inference System
(ANFIS) to refine classification boundaries over time using ongoing skill
data. In related work, K. Takacs et al. [78] introduced a surgical phan-
tom based on the modified FRS-dome, evaluating technical skill through
tower movement and contact time in 37 ring transfer and knot-tying
trials.

The DaVinci system remains dominant in OM-RAS, largely due to its
rich datasets and integration with tools like JIGSAWS and FRS-dome,
enabling robust skill assessment. As highlighted by Mukherjee & Sinha
[26], optimizing the surgeon pool is a critical policy in surgery sched-
uling. Automated assessment tools can reduce personnel demands,
improving operational efficiency and directly benefiting OM-RAS
outcomes.

4. Current challenges and future research paths

The previous section reviewed efforts to improve OM-RAS. While
researchers have built on earlier work to close some research gaps,
Table 10 and earlier discussions show that some issues are still unre-
solved, there are repeated efforts, and some suggested areas haven’t
been explored yet. Fig. 4 summarizes the main research gaps and
ongoing challenges, along with key requirements for addressing them.
This framework is inspired by Hadid, Elomri, Mekkawy, et al. [98], who
used a similar method to identify gaps in managing outpatient chemo-
therapy. Based on this review and the proposed solution framework, this
section highlights some challenges and directions for future research.

4.1. Current challenges

4.1.1. Lack of annotated data

Improving robotic surgeries still faces major challenges, especially
when it comes to integrating Al, which needs large amounts of metadata.
Collecting, storing, processing, and retrieving this data, like from the
JIGSAWS database, is slow and difficult, mainly because there’s not
enough annotated data. Some studies have suggested using 6 G networks
to improve data infrastructure [24], but this approach still needs more
research.

4.1.2. RAS malfunctions

Malfunctions in robotic surgery can result from software glitches,
mechanical failures, or faulty instruments. While Da Vinci system fail-
ures are rare, they can still be affected by the surgeon’s experience and
how well they respond [99]. To reduce the risk, it’s important to inspect
the robotic system carefully before each procedure [100]. More research
is also needed to better understand instrument failures. One common
cause appears to be wear on the insulating membrane, which can
happen due to friction or collisions inside the body or during insertion
through trocars [99].

Ethical and legal questions also remain unresolved, particularly
around who is responsible when something goes wrong: the manufac-
turer or the surgeon. Ferrarese et al. [99] described the malfunction
reporting process, where hospitals inform the manufacturer, who then
notifies the U.S. FDA. However, there is still not enough data on the legal
aspects of these cases, highlighting the need for further study into lia-
bility issues.

4.1.3. Tendency to adopt new technologies

This review highlights several emerging technologies, including
autonomous surgical tasks, Al integration in healthcare, and the
growing use of RAS. While many studies show increasing interest in
these innovations [34,22,70], their widespread adoption remains un-
even. Developing countries face notable challenges in implementing
these technologies, and even in Europe, adoption of RAS technologies
lags behind the U.S [101]. This makes it essential to examine the barriers
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Table 10

Limitations and Future Research Paths.

Study

Limitations

Future Suggestions

Vairavasamy et al. -
[50]

Keyhanian et al.
[37]

Mukherjee & Sinha -
[26]

Faria et al. [30]

Feng et al. [62] -

Nahushev [66]

Padhan et al. [67]

Mach et al. [65] -

Dong et al. [61]

[63,64,78,77]

Chioson, Espiritu,
Munsayac, Dajay, -
Jimenez, et al.
[70]

Jiang et al. [71]

Chua et al. [72] -

The reliability of the
proposed model needs to
be tested on a real surgical
application

Not mentioned

Analysis did not consider
surgeons’ turnover and
dynamics of the surgical
team

Lacks generalizability

The use of diverse
resources, which affects
uncertainty

Uniform source of datasets
Incomplete CT images of
the complete human body

Algorithm performance
confirmed using only the
test sample

Real-time operation was
simulated using previously
collected MR images
Response time and
actuation delays are not
considered in simulations

The trade-off between
working distance and
lateral resolution causes
some difficulties in detect-
ing the needle tip and dis-
plays some noise

Limited workspace
adaptivity

Mismatch between
Parameters and Reflecting
Balls

Limited accuracy
Lack of precision
Motor-derived limitation

Zero drift issues
Neglecting conversion rate
analysis

Lacks variable gain values
Real-life input signals are
needed to mimic a robotic
system

Deploying image
processing with OpenCV
software

Al-based end-effector
Human Recognition and
Collision Prevention
algorithms

The same approach holds
significant promise in the
context of robotic
surgeries

Developing dynamic
scheduling algorithms
Predictive analytics
models

Considering more
constraints to conceive
more robotic surgeries,
such as radical
prostatectomy

The use of standardized
protocols and skilled
personnel

Obtaining CT images
from different CT
apparatuses

Improve data
augmentation techniques
Conducting real-time
testing is necessary to
ensure the algorithm’s
functionality and effec-
tiveness in real-world,
dynamic conditions
Establishing a real-time
connection with an MR
scanner to conduct live
tests

Considering algorithms to
compensate for response
time and actuation delays
Deployment of advanced
OCT technology that
provides better lateral
resolution

Deployment of more
sophisticated image
algorithms that reduce
noise

Enhancing scene
adaptivity by deploying
sensors

Deployment of an
advanced optical tracking
system

Larger dataset needed
Requires better control
algorithms

Implement adaptive
control algorithms
Including visual inputs
Need a Hybrid System
with Variable Gain
Real-world data
integration

to broader implementation from different perspectives.

Another key barrier is the lack of agreement on whether RAS is truly
superior to traditional open or laparoscopic surgeries. A bibliometric
analysis could help by reviewing the existing literature, identifying key
challenges, and highlighting global progress in robotic procedures. This
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kind of analysis also enables benchmarking and cross-country compar-
isons, offering a clearer picture of how the field is evolving [102].

4.2. Future research paths

4.2.1. RAS automaticity

The field of automated tasks in RAS is still in its infancy and requires
further research to establish a solid foundation. More extensive studies
are needed to determine the accuracy level that can match human
proficiency. The DaVinci system, widely used in robotic surgery, is not
entirely autonomous. As a result, researchers have made efforts to
automate various aspects of surgical tasks, including repetitive tasks,
complex procedures like suturing [64], skill assessment [77], 3D-guid-
ance, and 3D-segmentation [62]. Despite its potential, this area of
study is not yet firmly established. Additionally, research has shown that
robotic system failures can result from inadequate communication
[103]. We also highlight that a restricted intra-operative workspace can
lead to complications. Overcoming these obstacles and improving task
automation in RAS is essential for increasing the efficiency and effec-
tiveness of robotic surgical operations.

4.2.2. Comprehensive scheduling models

The operational pathway is critical to consider in RAS because RAS
procedures are often scheduled for specific surgeries believed to offer
superior outcomes compared to traditional methods. However, the setup
for RAS requires a significant footprint and entails a prolonged setup
time, which can impact the scheduling process significantly. Therefore,
optimizing the operational pathway is essential to ensure efficient uti-
lization of resources and minimize delays in scheduling, ultimately
enhancing the delivery of robotic surgical care.

This review highlights a gap in how RAS procedures are scheduled.
So far, only one study has explored RAS scheduling in depth, showing
how it can improve clinical outcomes. Scheduling RAS is complex,
which makes it hard to apply a single approach across all surgeries. For
example, Mukherjee & Sinha [26] focused on scheduling for hysterec-
tomy and considered specific factors like uterine size. Other procedures,
like partial nephrectomy or radical prostatectomy, involve different
conditions and require customized scheduling strategies. This shows the
need for further research in this area.

Therefore, it is essential to account for factors such as the allocation
of operating rooms, the availability of beds, and the optimized number
of nurses required for each surgery. Furthermore, integrating clustering
into the scheduling process can indeed improve the efficiency of various
operations, including surgeries [104].

4.2.3. Simulation models

Along with optimization, simulation models can provide insights
into scheduling policies, appointment planning, scheduling, and
resource-to-patient assignments, which enhance overall performance.
For example, using the Simulation-based Multi-objective Optimization
(SMO) approach, which can deal with complexities related to RAS
scheduling, capacity planning, and resource allocation [105].

4.2.4. Follow-up period

A postoperative follow-up period can be implemented to assess
outcomes and offer necessary care in the event of complications
following RAS. Home care not only reduces the frequency of hospital
visits but also ensures that essential care is promptly delivered [106].

4.2.5. Tele-surgeries

Although several pioneering studies on using cutting-edge technol-
ogies, including 6 G and blockchain, to enhance the tele-surgeries per-
formance, the current research landscape requires more targeted efforts.
Specifically, there is an urgent need for additional technical studies,
particularly those focusing on data security and the seamless trans-
formation of data. This emphasis on technical details is vital to
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Challenges and solutions in RAS operation management

Challenges

Insufficient testing in actual surgical applications.
Oversight of surgeon turnover and dynamics within the surgical team.
Limited generalizability of findings to broader contexts.

+ Challengesin adapting surgical practices to diverse workplace environments.

* Lack of a standardized dataset source.
* Incomplete full-body CT/MRI images.
* No consideration for response time and actuation delays in simulations.

« Gap in simulating real-time operations using pre-collected CT/MRI images.

Finding equilibrium between working distance and lateral
resolution.

Limited accuracy and precision.

Motor drive functionality.

Algorithm performance confirmed only using test samples.

+ The prevailing inclination to embrace RAS.

Deploying image processing with OpenCV.
Al-based end-effector.
Human recognition & collision prevention algorithms.

Standardize dataset sources for consistency.

Improve data collection to ensure complete CT/MRI images.
Integrate realistic time iderationsinto simulati

Enhance simulations with real-time operation elements for accuracy.

lateralr

Employing cutting-edge OCT technology to
Deployment of more advanced image algorithms to reduce noise.
Acquiring a larger dataset to gain comprehensive insight.

Impl superior control algorithms.

Engagement of a real-time testing to guarantee the algorithm's efficacy
and functionality under dynamic real-world conditions.
Intensifying statistical and comparative 1 is 'y, especially

in evaluating the distinctions between open, laparoscopic, and RAS.

Fig. 4. Framework of Gaps and Solution Approaches.

advancing the field of tele-surgeries effectively. The challenge of tele-
communication in telesurgery is significant, as surgical latency inher-
ently increases with greater distances and variability within
transmission networks. As the distance grows, transmission efficiency
decreases, resulting in longer audio and video latency. This increased
latency can hinder the surgeon’s ability to synchronize their movements
with the actions of the remote robotic system and the patient, potentially
disrupting coordination. Robotic telesurgery is increasingly recognized
as a transformative approach to surgical care, leveraging advanced
telecommunications technologies to enable remote operations. The
systematic review by Reddy et al. [107] emphasizes the progression of
telesurgery and current capabilities facilitated by high-speed 5 G and
fiber-optic networks. Despite technical success, significant barriers
persist, including latency challenges, cybersecurity threats, and the
absence of universally accepted ethical and regulatory guidelines. These
non-technical considerations remain critical obstacles to the broader
adoption of telesurgery.

Ethical challenges in telesurgery involve patient autonomy, confi-
dentiality, and informed consent, as remote surgeries amplify traditional
ethical dilemmas. Technical aspects like data compression and latency
variability due to differing telecommunication networks complicate
real-time operations. Moreover, concerns around cybersecurity, such as
network breaches and unauthorized data access, highlight the impor-
tance of robust encryption and multifactor authentication systems.
Financial constraints and a lack of consistent reimbursement frame-
works further impede telesurgery’s scalability, particularly in under-
served regions [108].

The future of telesurgery depends on progress in 6 G networks, Al-
powered predictions, and augmented reality tools that provide real-
time feedback. Dohler et al. [109] highlight the potential of 6 G net-
works to further minimize latency while integrating Al for enhanced
surgical precision and predictive diagnostics. Unified legal frameworks
and interdisciplinary collaboration are critical to addressing regulatory
and operational gaps. With strategic investments in infrastructure and
ethical oversight, telesurgery could redefine global healthcare by
bridging disparities and enhancing access to specialized surgical
expertise.

5. Conclusion

This comprehensive review investigates the evolving landscape of
RAS, shedding light on its multifaceted aspects and the transformative
impact of cutting-edge technologies. Rapid advancements in medical
innovation have propelled RAS to the forefront of surgical procedures,
offering enhanced functional outcomes, reduced operation time, shorter
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hospital stays, and improved patient recovery. The integration of RAS
into healthcare systems, as part of the Healthcare 5.0 paradigm, has
guided in promising improvements in peri-operative outcomes, ranging
from reduced waiting times to optimized resource utilization.

However, this transformative journey is not without challenges. The
study emphasizes the critical need for a holistic approach, integrating
technologies like Al, kinematics, imaging, and the IoT to optimize RAS
implementation. It highlights the gaps in current research, urging
further exploration into areas such as RAS singularity, scheduling
complexities across diverse procedures, and risks associated with nerve-
sparing techniques. The literature review underscores the imperative for
a multi-criteria decision-making approach, acknowledging that the
clinical utility of RAS extends beyond Al-related innovations. It advo-
cates for a meticulous analysis of kinematic intricacies, imaging ad-
vancements, and real-time data processing, culminating in a paradigm
shift in the research landscape.

Furthermore, the study highlights the pivotal role of OM in steering
the success of RAS implementation. OM-RAS is a multidimensional
challenge, encompassing complicated aspects such as workflow opti-
mization, performance enhancement, skill assessment, and cost-benefit
analyses. While current research predominantly emphasizes techno-
logical advancements and simulations, the review spotlights the need for
a balanced focus on healthcare logistics, skill evaluation, and cost-
effectiveness to realize the full potential of RAS in clinical practice.

The scarcity of studies explicitly focusing on OM-RAS is evident, and
the field remains in the early stages of development, leaving several
research gaps unexplored. An examination of the limitations within the
reviewed publications has identified three key challenges and five future
research avenues, each with various potential sub-directions.

As illustrated, RAS is progressively becoming a crucial element in
numerous global healthcare systems, emphasizing the necessary to
investigate the operational management aspects of RAS. In essence, this
literature review not only consolidates the current state of RAS research
but also paves the way for future endeavors. It challenges researchers to
explore uncharted territories, bridging gaps in knowledge, and
exploring deeply into the nuances of RAS implementation. As healthcare
systems continue to evolve towards Hospitals of the Future and
Healthcare 5.0, this study serves as a guiding beacon, illuminating the
path towards optimized, efficient, and patient-centered Robotic-Assisted
Surgeries.
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