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Abstract

Background: Coilia nasus (Japanese grenadier anchovy) undergoes spawning migration from the ocean to fresh water
inland. Previous studies have suggested that anadromous fish use olfactory cues to perform successful migration to spawn.
However, limited genomic information is available for C. nasus. To understand the molecular mechanisms of spawning
migration, it is essential to identify the genes and pathways involved in the migratory behavior of C. nasus.

Results: Using de novo transcriptome sequencing and assembly, we constructed two transcriptomes of the olfactory
epithelium from wild anadromous and non-anadromous C. nasus. Over 178 million high-quality clean reads were generated
using Illumina sequencing technology and assembled into 176,510 unigenes (mean length: 843 bp). About 51% (89,456) of
the unigenes were functionally annotated using protein databases. Gene ontology analysis of the transcriptomes indicated
gene enrichment not only in signal detection and transduction, but also in regulation and enzymatic activity. The potential
genes and pathways involved in the migratory behavior were identified. In addition, simple sequence repeats and single
nucleotide polymorphisms were analyzed to identify potential molecular markers.

Conclusion: We, for the first time, obtained high-quality de novo transcriptomes of C. nasus using a high-throughput
sequencing approach. Our study lays the foundation for further investigation of C. nasus spawning migration and genome
evolution.
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Introduction

The Japanese grenadier anchovy (Coilia nasus) is a small

commercial fish in China, which belongs to the family of

Engraulidae, order of Clupeiformes [1]. It is renowned for its

delicate and tender meat. Moreover, C. nasus is well known for

the long-distance ocean–river spawning migration of its anadro-

mous population.

C. nasus lives in coastal ocean water for most of its lifetime, and

normally reaches sexual maturity at the age of 1–2 years. C. nasus
spawns between February and September [2]. Every year, when

the spawning period arrives, thousands of mature C. nasus
individuals undergo a long-distance migration from coastal ocean

up to exorheic rivers, such as the Yangtze River, and then spawn

in the lower and middle reaches of these rivers and adjacent lakes.

Interestingly, the sedentary population of C. nasus in lakes has

abandoned the long-distance migration for unknown reasons and

become permanent residents there.

The ability to recognize the spawning ground is a key skill for

successful reproduction. Recently, there has been a sharp decline

in the population of anadromous C. nasus because of environ-

mental pollution, overfishing and the destruction of spawning

grounds. Therefore, the understanding of C. nasus spawning

migration is essential for its conservation and stock management.

However, little is known about the molecular basis of C. nasus
spawning migration.

Previous studies on fish migration have mostly focused on

salmonids. It has been hypothesized that salmonids use olfactory

cues to return to natal rivers to spawn. Several studies, wherein the

salmonid olfactory epithelium was altered, have concluded that

salmonids without olfactory ability cannot discriminate natal

streams and that functional olfactory ability is essential for their

migration to spawn [3–7]. Similar conclusion was also drawn for

American eels, and with the functional olfactory ability absent,

anosmic eels lost the ability to migrate out of the estuary during

the fall spawning migration [8]. Olfactory imprinting of dissolved

amino acids in natal stream water has been reported in lacustrine
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sockeye salmon [9], and strong olfactory responses to natal stream

water have also been found in sockeye salmon [10]. In wild

anadromous Atlantic salmon, some of the olfactory receptor genes

involved in the migration for reproduction have been identified

[11]. These studies suggest that olfaction may be essential for the

migration for reproduction in fish.

The olfactory epithelium in the nasal cavity is involved in the

olfaction of fish. The olfactory functions of fish are induced by

odorant elements such as steroids, bile acids and amino acids in

water through the olfactory receptors in the olfactory epithelium.

Subsequently, the information is processed by the central nervous

system of fish to achieve the olfactory functions. To investigate the

relationship between olfaction and the anadromous behavior of C.
nasus, we sequenced the transcripts expressed in the olfactory

epithelium. With this sequence information, we identified the

genes and pathways involved in the migratory behavior of C.
nasus. At present, little genomic information about C. nasus is

available in the National Center for Biotechnology Information

(NCBI) database. Therefore, the high-quality transcriptome data

obtained in this study will be useful for future research on C.
nasus.

Results and Discussion

Transcriptome sequencing and assembly
As described in the Materials and Methods, cDNA libraries for

the olfactory sac of wild anadromous and non-anadromous C.
nasus were constructed and sequenced using the Illumina

platform, which produced 51,261,228 and 126,241,752 clean

reads, respectively (Table 1). For anadromous and non-anadro-

mous C. nasus, 117,717 and 231,219 unigenes, respectively, were

obtained, and 176,510 unigenes with a mean length of 843

nucleotides were assembled from the anadromous and non-

anadromous C. nasus unigenes (Table 1 and Figure S1). The total

length of the 176,510 assembled unigenes was 148,772,175

nucleotides.

The quality of the sequence assembly result and the size

distribution are shown in Figure S1. Of all the unigenes, 8,608 or

over 4.8% are $3,000 nucleotides in length. The coding regions

have been identified for 81,315 sequences (72,601 using BLASTX

and 8,714 using expressed sequence tag scan; Figure S2). While it

is time-consuming to obtain large cDNA collections using the

traditional Sanger sequencing method, the next-generation

sequencing platform has been demonstrated in this study to be

useful for efficiently generating high-quality transcriptome data of

C. nasus.

Annotation of predicted proteins and classification using
COG

The putative functions of 89,456 unigenes (50.68% of all

unigenes) were annotated by sequence similarity analysis with E

value #161025 (72,127 using the NR database, 65,888 using the

NT database, 61,581 using the SwissProt database, 53,575 using

the KEGG database, 25,272 using the COG database, and 41,888

using gene ontology terms). However, because of the lack of

genome and EST sequence data from C. nasus, approximately

49.32% of the unigenes could not be functionally annotated.

The E-value distribution and similarity distribution for the

72,127 unigenes (40.86% of all unigenes) that were annotated

using the NR database are shown in Figure S3. The species

distribution of the best BLASTX hits is also shown in Figure S3.

About 66.2% of the unigenes were functionally annotated with the

known fish genes. However, a small number of sequences were

matched to Paramecium tetraurelia and Tetrahymena thermophila
SB210 genes. These sequences may represent contaminants from

sample collection or parasitic infection of C. nasus.
COG (clusters of orthologous groups of proteins) is a database

where orthologous gene products are classified into different

clusters. A total of 25,272 C. nasus unigenes were assigned to

25 COG categories with E value #161025 (Figure 1). Among

these COG categories, the cluster for ‘‘general function predic-

tion’’ was the largest, containing 10,278 (40.66%) of the unigenes,

followed by ‘‘translation, ribosomal structure, and biogenesis’’

(7,169 or 28.36%), ‘‘replication, recombination, and repair’’

(6,315 or 24.98%), and ‘‘cell cycle control, cell division, chromo-

some partitioning’’ (6,161 or 24.37%). In addition, the ‘‘signal

transduction mechanisms’’ cluster contained 4,092 (16.19%)

unigenes.

Gene ontology assignments
To understand the functional capacity of the C. nasus

transcriptome, 41,888 unigenes (46.8% of all unigenes) were

assigned to three Gene Ontology (GO) categories: biological

processes, cellular components and molecular functions (Fig-

ure 2). In the GO category of biological processes, 13,391

unigenes were involved in response to stimulus and 9,782 in

signaling, both of which were enriched in this category. Of the

unigenes assigned to the GO category of cellular components,

9,021 were involved in the membrane part. In addition, of the

unigenes annotated with potential molecular functions, bind-

ing (27,140) and catalytic activity (16,082) were enriched in

this category. GO terms of channel regulator activity (135

unigenes), electron carrier activity (256), receptor activity

(1,845), and receptor regulator activity (48) were also well

Table 1. Summary of the sequences obtained from the olfactory epithelium of anadromous and non-anadromous Coilia nasus.

Anadromous Non-anadromous

Total clean reads 51,261,228 126,241,752

Total clean nucleotides (nt) 4,613,510,520 12,750,416,952

Contig total number 223,325 409,459

Unigene total number 117,717 231,219

Contig total length (nt) 56,758,068 129,299,285

Unigene total length (nt) 50,868,550 197,568,883

All total number 176,510

Alltotal length (nt) 148,772,175

doi:10.1371/journal.pone.0103832.t001

Transcriptomes of Olfactory Epithelium in Japanese Grenadier Anchovy

PLOS ONE | www.plosone.org 2 August 2014 | Volume 9 | Issue 8 | e103832



represented. The large number of regulatory transcripts found

in our data may indicate transcriptional plasticity in the

olfactory epithelium.

Approximately 41.9% of all the transcripts of C. nasus did not

have GO terms assigned to them. This may be because of the fact

that knowledge regarding the function of C. nasus genes is

Figure 1. Histogram presentation of the results from the classification using the Clusters of Orthologous Groups (COG).
doi:10.1371/journal.pone.0103832.g001

Figure 2. Histogram presentation of Gene Ontology (GO) classification. The results are divided into three GO categories: biological
processes, cellular components, and molecular functions.
doi:10.1371/journal.pone.0103832.g002
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currently limited. It is also possible that these transcripts are from

non-coding RNA genes. Nevertheless, the unannotated transcripts

in the olfactory epithelium should be documented as they may be

involved in the olfaction of C. nasus, either directly or indirectly.

Previous studies on the transcriptome of fish olfactory epithe-

lium have been limited to the goldfish Carassius auratus [12].

Since this goldfish does not have the ability to migrate, comparing

C. auratus and C. nasus transcriptomes may provide useful

information on the molecular mechanisms of migration. We

compared the GO terms of response to stimulus and binding,

which may be involved in olfaction and signal transduction. C.
nasus had a higher proportion of both terms than C. auratus
(6.30% versus 4.40% in response to stimulus; 47.90% versus

45.70% in binding), suggesting that C. nasus may have higher

olfaction ability than C. auratus.

Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis

A total of 53,575 unigenes were annotated with the genes in the

KEGG database. The number of unigenes in different pathways

ranged from 2 to 5,243. The top 25 pathways with the highest

sequence tag numbers are shown in Table 2. The top pathway

(metabolic pathway) contained 5,243 unigenes. These predicted

KEGG pathways may provide a useful resource for research into

the spawning migration of C. nasus and other molecular studies in

C. nasus.

Simple sequence repeats (SSRs) and SNPs as genetic
markers

Molecular markers are a useful tool for species evolution and

population differentiation studies. At present, studies of the C.
nasus population are restricted by the lack of effective molecular

markers. Through de novo assembly of transcriptome data,

78,852 SSRs in 54,059 sequences were detected. These SSRs

include 14,998 monomers, 50,071 dimers, 9,546 trimers, 2,317

quadmers, 1,523 pentamers, and 397 hexamers (Figure S4). In

addition, 224,779 single nucleotide polymorphism (SNP) sites were

identified. 93,501 sites were found in anadromous C. nasus and

131,278 in non-anadromous C. nasus. There were 138,945

transition sites and 85,734 transversion sites (Table S1). The large

number of putative molecular markers identified in our work may

be useful for future studies on the evolution of the C. nasus
genome, such as gene flow, genetic mapping, and genotyping.

A resource for investigation of migration genes
Previous studies on the migration of C. nasus have mainly

focused on the behavioral and morphology aspects [1,2,13–19]. In

this study, we aimed to expand this knowledge and provide new

insight into the molecular mechanism of C. nasus migration. The

transcriptome data obtained in this study provide a good resource

for identifying the putative genes involved in C. nasus migration.

Pathway of olfactory transduction. The hypothesis of

olfactory imprinting and homing for salmon assumes that some

Table 2. List of the top 25 KEGG metabolic pathways identified in the Coilia nasus transcriptomes.

No. Pathway Number (%) of ESTs Pathway ID

1 Metabolic pathways 5,243 (9.79) ko01100

2 Regulation of actin cytoskeleton 2,772 (5.17) ko04810

3 Pathways in cancer 2,671 (4.99) ko05200

4 Amoebiasis 2,288 (4.27) ko05146

5 Focal adhesion 2,274 (4.24) ko04510

6 Spliceosome 2,226 (4.15) ko03040

7 MAPK signaling pathway 1,758 (3.28) ko04010

8 RNA transport 1,651 (3.08) ko03013

9 Endocytosis 1,602 (2.99) ko04144

10 Tight junction 1,596 (2.98) ko04530

11 Huntington’s disease 1,581 (2.95) ko05016

12 HTLV-I infection 1,578 (2.95) ko05166

13 Salmonella infection 1,570 (2.93) ko05132

14 Herpes simplex infection 1,491 (2.78) ko05168

15 Adherens junction 1,458 (2.72) ko04520

16 Influenza A 1,443 (2.69) ko05164

17 Chemokine signaling pathway 1,437 (2.68) ko04062

18 Vibrio cholerae infection 1,436 (2.68) ko05110

19 Epstein-Barr virus infection 1,427 (2.66) ko05169

20 Fc gamma R-mediated phagocytosis 1,378 (2.57) ko04666

21 Vascular smooth muscle contraction 1,352 (2.52) ko04270

22 Dilated cardiomyopathy 1,327 (2.48) ko05414

23 Hypertrophic cardiomyopathy (HCM) 1,261 (2.35) ko05410

24 Calcium signaling pathway 1,251 (2.34) ko04020

25 Transcriptional misregulation in cancer 1,240 (2.31) ko05202

doi:10.1371/journal.pone.0103832.t002
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odorant molecules in the natal stream are imprinted on the

olfactory system of juvenile salmon during their downstream

migration, and adult salmon detect the corresponding molecules to

discriminate the natal stream during their homing migration

[9,10,20].

In our study, the KEGG pathway of olfactory transduction

(ko04740) [21–29] was used to annotate the largest number of

genes (Figure 3). 547 unigenes, or 1.02% of the KEGG-annotated

unigenes, were assigned to the olfactory transduction pathway.

At present, little is known about the pathway of olfactory

transduction in C. nasus; however, relevant information can be

obtained from other vertebrate species [30]. The canonical

pathway of the olfactory transduction is initiated from the

detection of odor molecules by odorant receptors (Rs). Binding

of the odor molecules to the odorant receptors activates the Gaolf-

containing heterotrimeric G protein (Golf), which then activates

adenylyl cyclase (AC) to produce cAMP [31]. Subsequently,

cAMP opens the cyclic nucleotide-gated cation channels (CNG)

[32]. Ca2+ ions influx into the cells and depolarization occurs.

Ca2+-activated chloride channels (CLCA) allow an efflux of Cl2

ions, which leads to further depolarization of the cell [33–38]. The

chemical signals are then converted into electronic signals that are

delivered to the brain, where the signals are perceived as smells.

Elevated intracellular Ca2+ triggers multiple molecular events,

including the down-regulation of the affinity of the CNG channel

to cAMP and inhibition of the activity of AC via CAMKII

(calcium/calmodulin-dependent protein kinase II)-dependent

phosphorylation [24]. Longer exposure to odorants can stimulate

particulate guanylyl cyclase (pGC) in cilia to produce cGMP and

activate cGMP-dependent protein kinase (PKG), leading to a

further increase in the amount and duration of intracellular cAMP

levels, which may function to convert inactive forms of protein

kinase A (PKA) to active forms [39]. PKA can also inhibit the

activation of pGC as a feedback.

Termination of the response may occur at all steps of the

pathway, which include receptor phosphorylation by G protein

receptor kinase (GRK) or protein kinase A (PKA) and ‘capping’ of

the phosphorylated receptor by arrestin [40–42], inhibition of

adenylyl cyclase activity by CaMKII and regulation of G protein

signaling 2 (RGS2) [43,44], removal of Ca2+ through a Na+–Ca2+

exchanger [45], hydrolysis of cAMP by phosphodiesterase (PDE)

activity, and desensitization of the CNG channel by Ca2+-

calmodulin (CAM)-dependent processes [46]. However, the

transcripts of arrestin, GRK and PDE involved in the response

termination, and pGC are not detected in this study. This may be

because C. nasus has a unique pathway with a lower termination

ability. Since several terminators are absent in the olfactory

transduction, sustained detection of odor elements in natal rivers

may be possible for C. nasus. It is also possible that these

transcripts are rare and thus undetected in this study.

Putative pheromone signaling pathway. The pheromone

hypothesis was proposed based on research on Atlantic salmon

Salmon salar and Arctic char Salvelinus alpines [47]. In sea

lamprey, a mixture of sulfated steroids has also been demonstrated

to function as a migratory pheromone [48]. Thus, the putative

pheromone signaling pathway should also be considered in the

study of the migration behavior of C. nasus.
Pheromones are secreted or excreted chemicals that can impact

on the behavior of a receiving individual and trigger a social

response within members of the same species. Vomeronasal type-1

receptors (V1Rs) and vomeronasal type-2 receptors (V2Rs) have

been shown to function as pheromone receptors [49,50]. The

binding of a pheromone to a V1R activates inhibitory adenylate

cyclase G protein (Gi), and phospholipase Cb2 (PLCb2) is

activated to produce inositol-1,4,5-trisphoshate and diacylglycerol

from phosphatidylinositol-4,5-bisphoshate. This activates the

transient receptor potential cation channel C2 (TRPC2). Activa-

tion of TRPC2 allows a Na+/Ca2+ influx, which leads to

depolarization. Recovery and adaptation of response may involve

binding of CaM to TRPC2. The binding of pheromones to V2Rs

activates Go, which is a G protein involved in many signal

transduction channels [30]. In V2R-expressing neurons, TRPC2

has been shown to generate depolarizing currents [30]. In this

study, we identified the family of V1R and V2R, and CaM in the

transcriptomes of C. nasus. However, TRPC2 was not detected

although we identified the other members of transient receptor

potential cation channels, including TRPM4, TRPV4, TRPC5,

and TRPV1. It is possible that the role of TRPC2 in the

pheromone signaling pathway may be superseded by the other

members of the gene family.

Conclusion

By using a high-throughput sequencing approach, we obtained

the high-quality de novo transcriptomes of C. nasus for the first

time. Our data provide valuable information for understanding

the spawning migration of C. nasus, and lay the foundation for

future research on the genome evolution of this species, especially

as the genomic sequence is still unavailable for C. nasus.

Materials and Methods

Ethics statement
The study was approved by the Institutional Animal Care and

Use Committee of Shanghai Ocean University and performed in

strict accordance with the Guidelines on the Care and Use of

Animals for Scientific Purposes set by the Institutional Animal

Care and Use Committee of Shanghai Ocean University.

Fish material
Three males of non-anadromous C. nasus were collected from

Poyang Lake in Jiujiang, Jiangxi Province in China at the end of

March 2012 when anadromous males of C. nasus had not reached

Poyang Lake to spawn. The fish collection was performed with the

help of fisherman Baishan Zhan with the fishing license

(No. 0400051) permitted by the Jiangxi Provincial Department

of Agriculture. One male of anadromous C. nasus was collected

from the Jingjiang section of the Yangtze River in Jingjiang,

Jiangsu Province in China at the beginning of April 2012 when

they were migrating to spawning grounds along the Yangtze

River. The fish collection was performed with the assistance of

fisherman Xiping Zhou with the fishing license (No. SuChuanBu

2011 JMF254) and the special fishing license of C. nasus in the

Yangtze River (No. SuChuanBu 2012 ZX-M032) permitted by

Jiangsu Provincial Oceanic and Fishery Bureau. All fish collections

were carried out in wild water, and the captured live C. nasus was

immediately buried in medical ice bags (220uC) until the loss of

consciousness.

Before sampling, the C. nasus was dissected on ice and

subsequently the anatomical characters of the testis gonadal

development phase of C. nasus were rapidly checked [51]. If the

individual’s testis gonadal development phase was in phase III,

then the olfactory capsules of C. nasus were collected. The

operations were completed within 10 min after the loss of

consciousness. After this procedure, the olfactory capsules from

the non-anadromous C. nasus were placed into 2.0 mL tubes

containing RNAlater (Ambion, US). Then the collected olfactory

samples were stored at 4uC overnight and stored at 220uC for 12
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hours during the delivery to Shanghai Ocean University, where

the samples were transferred to 280uC before processing. The

olfactory capsules from the anadromous C. nasus were immedi-

ately placed into 2.0 mL tubes and frozen in liquid nitrogen after

collection and then delivered to the Shanghai Ocean University

for further processing. All the remains of above sampled fish were

stored in freezer.

RNA extraction
Total RNA was isolated from samples using TRIzol reagent

(Invitrogen, USA) according to the manufacturer’s instructions.

Figure 3. Functional annotation of Coilia nasus genes using the KEGG pathway of olfactory transduction. The genes identified in the C.
nasus transcriptomes are shown in red boxes. R: odorant receptor; Golf: Gaolf-containing heterotrimeric G protein; AC: adenylate cyclase; CNG: cyclic
nucleotide-gated cation channel; CLCA: calcium-activated chloride channel; GCAP: guanylyl cyclase-activating protein; Phd: phosducin; PKG: cGMP-
dependent protein kinase; PKA: protein kinase A; pGC: particulate guanylyl cyclase; CAM: calmodulin; CAMKII: calcium/calmodulin-dependent protein
kinase (CaM kinase) II; PDE: phosphodiesterase; Arrestin: arrestin; GRK: G protein receptor kinase.
doi:10.1371/journal.pone.0103832.g003
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The quality of purified RNA was verified on a 2100-Bioanalyzer

(Agilent, USA). To prevent DNA contamination, the RNA

samples were treated with DNase I. The high-quality RNA

samples were then used for further experiments.

cDNA preparation and library construction
Poly(A)-containing mRNA samples were captured from total

RNA with Oligo (dT)-Bead complex. The fragment mixture of the

RNA fragmentation kit was added to mRNA to obtain RNA

pieces with different lengths. Then single- and double-stranded

cDNAs were synthesized from mRNA samples through reverse

transcription using high-quality total RNA as the starting material.

The following cDNA purification was then performed. Purified

cDNA fragments were suspended into End Repair Mix for end

reparation and adenylate 39 ends. Short fragments produced from

the above procedures were ligated with sequencing adaptors, and

then fragments with adaptors were purified and enriched with

cDNA fragments through PCR. Subsequently, the purified PCR

products were used to create a cDNA library. The size distribution

and accurate quantification of the library were checked on a 2100-

Bioanalyzer (Agilent, USA) and an ABI StepOnePlus Real-Time

PCR System.

cDNA library sequencing
cDNA libraries were constructed for sequencing with Illumina

Hiseq 2000. Raw sequence data were processed through the

trimming of adaptor sequences, ambiguous nucleotides, and

empty reads to obtain the clean data. With software Trinity and

TIGR Gene Indices (TGI) Clustering tools v2.1 [52,53], the short

clean reads obtained from the two types of C. nasus were

assembled and clustered. Sequences with the fewest nucleotides

that could not be extended on either end were then obtained.

These sequences were called unigenes.

Unigene functional annotation and classification
The unigenes were functionally annotated by searching

databases, including NR (ftp://ftp.ncbi.nih.gov/blast/db/), NT

(ftp://ftp.ncbi.nih.gov/blast/db/), SwissProt (ftp://ftp.uniprot.

org/pub/databases/uniprot/previous_releases/), COG (http://

www.ncbi.nlm.nih.gov/COG/), gene ontology (http://www.

geneontology.org/) and KEEG (http://www.genome.jp/), using

BLAST with E-value #161025. The ESTSscan software v3.0.2

(http://www.ch.embnet.org/software/ESTScan2.html) was used

to predict the coding region if a unigene had not been annotated

using one of the previously mentioned databases.

Functional annotation using Gene Ontology terms (molecular

functions, cellular components, and biological processes) was

performed using BLAST2GO software v2.5.0 based on the NR

annotation information [54]. After the gene ontology annotation,

WEGO was used to obtain Gene Ontology function classification

statistics of all the unigenes for understanding the species’ gene

function distribution [55].

The Kyoto Encyclopedia of Genes and Genomes (KEGG)

database provides a systematic analysis of metabolic pathways and

functions of gene products. In this study, the C. nasus unigenes

were assigned to canonical pathways described in KEGG using

BLASTX.

SSRs and SNPs analysis
Simple sequence repeats (SSRs) in the C. nasus unigenes were

detected using the microsatellite identification tool (MISA) (http://

pgrc.ipk-gatersleben.de/misa/). Detection criteria of SSRs includ-

ed perfect repeat motifs of one to six base pairs and a minimum

repeat number of 12 for mono-, six for di-, five for tri-, five for

tetra-, four for penta-, and four for hexa-nucleotide microsatellites.

SOAPsnp (http://soap.genomics.org.cn/soapsnp.html) was used

to detect single nucleotide polymorphisms (SNPs) in the C. nasus
unigenes.

Data deposition
The raw Illumina sequencing data from the olfactory epithelium

of C. nasus were deposited in the NCBI Sequence Read Archive

(SRA) Sequence Database (accession number SRP035517).

Supporting Information

Figure S1 The length distribution of all unigenes.

(TIF)

Figure S2 The distribution of coding sequence region of
all unigenes obtained by BLASTX and EST scan.

(TIF)

Figure S3 The NR database classification.

(TIF)

Figure S4 Simple sequence repeat statistics.

(TIF)

Table S1 Single nucleotide polymorphism statistics.

(XLSX)
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