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Abstract: Information and communication technologies (ICT) are major features of smart cities.
Smart sensing devices will benefit from 5 G and the Internet of Things, which will enable them to
communicate in a safe and timely manner. However, the need for sustainable power sources and self-
powered active sensing devices will continue to be a major issue in this sector. Since their discovery,
piezoelectric energy harvesters have demonstrated a significant ability to power wireless sensor
nodes, and their application in a wide range of systems, including intelligent transportation, smart
healthcare, human-machine interfaces, and security systems, has been systematically investigated.
Piezoelectric energy-harvesting systems are promising candidates not only for sustainably powering
wireless sensor nodes but also for the development of intelligent and active self-powered sensors with
a wide range of applications. In this paper, the various applications of piezoelectric energy harvesters
in powering Internet of Things sensors and devices in smart cities are discussed and reviewed.

Keywords: piezoelectric; energy harvesting; smart cities; Internet of Things

1. Introduction

Smart cities play an important role as innovation drivers for businesses in a variety
of industries, including health, the environment, and information and communication
technology (ICT). The future smart city leverages smart innovation ecosystems to improve
the overall quality of life of citizens [1]. Smart cities aspire to turn rural and urban re-
gions into democratic innovation hubs [2,3], with innovation ecosystems boosting the
collective intelligence and co-creation capacities of user-citizen communities to develop
creative living and working spaces. As shown in Figure 1, smart cities are pioneering open,
user-driven innovation in order to demonstrate the benefits of future internet-enabling
services. Smart cities could be established and developed using advanced ICT infrastruc-
ture and Internet of Things (IoT) devices. The IoT has been identified as a determining
pillar of ICT, characterised as a huge network architecture built on the capacity to share
information and connect it with physical items, such as electric automobiles or drones [4]
and virtual “things” [5]. The IoT is comprised of digital technologies, semantic languages,
and virtual identities [6]. The IoT enhances the reliability and effectiveness in operation
and administration of smart ecosystems [7]. For example, the installation of smart sensors
in San Francisco Park allowed customers to get instant information while waiting for a
parking spot, reducing wait times [8]. Smart sensors collect data that can be transferred
to devices through a wireless link and proprietary software. A smart grid capable of
handling fluctuating power supplies will be necessary for the future sustainable cities. One
of the major aims is to use local renewable energy sources as much as is feasible [9–11].
Solar panels and batteries can be deployed on a larger scale in cities as part of such a
system. They will be able to communicate with the grid and provide and store electricity in
accordance with changes in demand. In addition, small-scale energy-harvesting systems,
such as vibration-based harvesters, have attracted the attention of many researchers over
the last decades [12–14].
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Given the complexity of energy systems of urban centres, one of the most pressing 
processing concerns is energy management [12–14]. Smart cities aim to enhance the qual-
ity of life of citizens by utilising technology for the management of the available resources [15]. 
This primary role in smart cities is played by sophisticated and progressive systems that 
automate and improve processes within the cities. These systems can use intelligent de-
vices that can monitor and control the infrastructure of cities autonomously. The past dec-
ade has seen the implementation of numerous applications, as well as the resolution of 
challenges linked with these applications [16]. Renewable-energy harvesters are among 
the applications that have been deployed in such cities, having less negative impact on 
the surrounding environment. Researchers have developed a variety of methods for har-
vesting energy from diverse sources, including wind, solar, heat, motion, and vibration. 
Scholars have conducted many studies on the transition of kinetic energy from surround-
ing energy sources, such as humans [17], wind or airflow [18], and water current or waves 
[19]. 

This review provides an overview of the protentional applications of vibration-based 
energy harvesters that have the capability of generating electricity for remote sensors and 
devices in smart cities. 

2. Piezoelectric Energy Harvesting: Concepts and Methodologies 
Researchers have used three harvesting mechanisms to generate electricity from vi-

bration sources consisting of electromagnetic, electrostatic, and piezoelectric energy har-
vesting. Piezoelectric energy harvesters are promising candidates to generate power from 
surrounding vibration sources. They have the advantage of converting mechanical strain 
to electrical energy without consuming any additional power and have an enormous 
power density, ease of application, and the possibility of fabrication at different scales. 
Piezoelectric energy-harvesting systems can produce maximum power output if their res-
onant frequencies match the excitation vibration frequencies. This electrical power can be 
consumed by microelectronic devices or can be accumulated in batteries. The vibration to 
electrical energy conversion method was first introduced by Williams and Yates back in 
1996 [20] but has received significant attention in recent years. They proposed a lumped 
parameter second-order system that shows the relationship between an input vibration, 
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Given the complexity of energy systems of urban centres, one of the most pressing
processing concerns is energy management [12–14]. Smart cities aim to enhance the quality
of life of citizens by utilising technology for the management of the available resources [15].
This primary role in smart cities is played by sophisticated and progressive systems that
automate and improve processes within the cities. These systems can use intelligent
devices that can monitor and control the infrastructure of cities autonomously. The past
decade has seen the implementation of numerous applications, as well as the resolution of
challenges linked with these applications [16]. Renewable-energy harvesters are among
the applications that have been deployed in such cities, having less negative impact on the
surrounding environment. Researchers have developed a variety of methods for harvesting
energy from diverse sources, including wind, solar, heat, motion, and vibration. Scholars
have conducted many studies on the transition of kinetic energy from surrounding energy
sources, such as humans [17], wind or airflow [18], and water current or waves [19].

This review provides an overview of the protentional applications of vibration-based
energy harvesters that have the capability of generating electricity for remote sensors and
devices in smart cities.

2. Piezoelectric Energy Harvesting: Concepts and Methodologies

Researchers have used three harvesting mechanisms to generate electricity from
vibration sources consisting of electromagnetic, electrostatic, and piezoelectric energy
harvesting. Piezoelectric energy harvesters are promising candidates to generate power
from surrounding vibration sources. They have the advantage of converting mechanical
strain to electrical energy without consuming any additional power and have an enormous
power density, ease of application, and the possibility of fabrication at different scales.
Piezoelectric energy-harvesting systems can produce maximum power output if their
resonant frequencies match the excitation vibration frequencies. This electrical power can
be consumed by microelectronic devices or can be accumulated in batteries. The vibration
to electrical energy conversion method was first introduced by Williams and Yates back in
1996 [20] but has received significant attention in recent years. They proposed a lumped
parameter second-order system that shows the relationship between an input vibration,
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y(t), and the output relative displacement, z(t). The dynamic equation of the proposed
system can be shown as:

m
..
z + d

.
z + kz = −m

..
y (1)

where
..
y(t) is the input acceleration, z(t) is the displacement of the tip mass, k is the spring

constant, d is the damping ratio, and m is the mass of the cantilever beam. G(s) or transfer
function then can be given as:

G(s) =
−m

ms2 + ds + k
(2)

The natural frequency of the system, ωn, can then be obtained:

ωn =

√
k
m

(3)

It is evident that the spring and the mass are two effective parameters controlling the
resonant frequencies. For the cantilever beam, which is shown in Figure 2, the resonant
frequency of the system is given by Equation (4), where Y is Young’s modulus of the beam
material; l, h, and w are the length, thickness, and width of the cantilever beam, respectively;
m is the tip mass; and mc is the mass of the beam.

fr =
1

2π

√
ywh3

4l3(m + 0.24mc)
(4)
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formation of an electric field. Ferroelectrics are a kind of substance that have the ability to 
conduct electricity. Energy harvesters based on piezoelectric technology have been de-
ployed to collect energy from a variety of vibrations. There are two installation schemes 
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ment on the host structure undergoing surface deformation and (b) attaching cantilever 
beams with piezoelectric element bonded on a host structure where large base excitation 

Figure 2. The dynamic model of a vibration-based energy harvester.

The resonant frequency tuning methods are categorised into two modes: active or
passive. If the tuning mechanism operates periodically and consumes energy only during
the tunning operation, it can be called the “passive” method. In contrast, “active” tuning is
described as a tuning mechanism that is constantly applied to the system, regardless of the
current operating frequency of the system.

The piezoelectric effect is a material feature that converts mechanical energy in the
form of pressure or vibration into electrical energy [21]. Stress can cause ions to reposition,
generating electrical displacements, which can result in spontaneous polarisation and the
formation of an electric field. Ferroelectrics are a kind of substance that have the ability
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to conduct electricity. Energy harvesters based on piezoelectric technology have been
deployed to collect energy from a variety of vibrations. There are two installation schemes
to harvest energy from piezoelectric materials: (a) directly installing the piezoelectric
element on the host structure undergoing surface deformation and (b) attaching cantilever
beams with piezoelectric element bonded on a host structure where large base excitation is
expected. Both schemes are schematically shown in Figure 3. For the first scheme, the host
structure’s dynamic is not changed during the process of power harvesting. Thus, there is
limited room for improvement in the energy-harvesting system. For the second scheme,
the cantilever beam is attached to the base structure, and enhancement of efficiency is
possible by tuning the dynamic of the harvester. The second design is often preferred if the
system has the capability of hosting the transducer because a certain model of piezoelectric
energy-harvesting systems can be developed.
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In reality, some researchers have made an effort to attach piezoelectric materials by
attaching them directly to human skin or wearable clothes (installation scheme, Figure 3a),
while many others have tried to make an energy-harvesting device that can generate
vibration based on various human body motions (installation scheme, Figure 3b).

Yang et al. [22] evaluated piezoelectric applications, with a particular emphasis on ap-
proaches that provide high-power outputs while maintaining a broad operating bandwidth.
With the help of theoretical calculations and experimental tests, Yang et al. [23] were able
to demonstrate the performance of piezoelectric energy-harvesting systems from linear
and non-linear vibration sources. They showed that the output power was proportional
to the excitation and response phase differences. Wei and Jing [24] evaluated the model
of piezoelectric vibration-based energy harvesters, in which ceramics or polymers were
used as base materials; they discussed the implications of this work. Zhang et al. [25]
concentrated on the non-linear resonance frequencies and widening the bandwidth of
piezoelectric energy harvesters, as well as analysing the non-linear effect in the vibration
systems. Moreover, Yildirim et al. [26] presented a technique for enhancing the conversion
of ambient energy, as well as tuning the resonance frequency of the system. Matching
frequency is necessary to enhance the performance of energy-harvesting systems. With the
help of electrical characteristics measured under various bending conditions, Cao et al. [27]
demonstrated the use of the transverse piezoelectric effect to create a water-resistant and
self-powered sensor. The results show that the electrical characteristics have a linear depen-
dence on voltage and an inverse-square-root dependence on power. Izadgoshasb et al. [28]
introduced a new geometry for the cantilever beam that can widen the frequency band-
width. As shown in Figure 4, they used a branched beam in their design, which resulted in
obtaining two close resonant frequencies.
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To depict the energy-conversion process, Cao et al. [29] undertook experiments to
determine the basic principle of dipole movements in polymer-based piezoelectric materials.
The internal impedance of instruments, as well as the sampling rate of the devices, had a
substantial impact on the energy-transmission process. Various studies have been carried
out over the last decade to boost output power and improve the performance of harvesting
equipment. In order to create piezoelectric energy harvesters, three major strategies
have been employed. The first was selecting a suitable operating mode, the second was
modifying materials, and the last was altering the structure of the harvester itself. There are
two different operating modes for piezoelectric harvesters, which are known as mode 33
and mode 31. Researchers [30] investigated the differences between two operating modes
of a cantilever-based piezoelectric. They discovered that the mode 31 devices had a larger
output power and open-circuit mean voltage than the mode-33 devices but had a lower
resonance frequency and maximum open-circuit voltage when compared to the mode
33 device [30]. Additionally, Kim et al. [31] investigated the influence of both modes on
the performance of an energy harvesting system and developed the Norton equivalent
representation for each mode. These researchers came to the conclusion that mode 33 has
the potential to provide only a moderate improvement over mode 31.

The presence of water vapour and oxygen in the surrounding air might have an impact
on piezoelectric materials and their performance. To overcome these issues, a variety of
materials have been tested to structure piezoelectric harvesters, including conventional ce-
ramic materials, polymers, and aluminium nitride, among others. Other researchers [32,33]
employed lead-free piezoelectric sheets to create MEMS harvesters for their experiments.
The structure of the piezoelectric harvester is critical in terms of increasing the harvester’s
output power and efficiency. Various architectures have been designed and explored in
order to improve the performance of harvesters.

The cantilever harvester is the most common form of piezoelectric harvester seen in
the field. An array of cantilevers has been created in order to provide flexibility and high
efficiency in energy harvesting. The thickness of the supporting layer and the alignment
of different layers in arrayed harvesters have a significant impact on the voltage, current,
and output power, and these factors must be taken into consideration when designing
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a harvester. Arrayed harvesters were shown to react at lower frequencies than single-
cantilever harvesters [34,35]. Ring form [36,37], cylinder shape [38,39], and sandwich
structure [39], which was made of two piezoelectric sheets with a metal shim sandwiched
between them, are all examples of structures that have been created specifically for the
purpose of enhancing piezoelectric energy-harvesting systems.

Researchers also performed a study on the generation of electricity from rain drops [40].
The harvester was constructed from lead zirconate titanate films in two layers and a sand-
wiched shim layer. Droplets that landed on the cantilever’s top would cause the cantilever
to vibrate as a result of the kinetic energy transferred from them. The electromechanical
connections were used to compute the amount of output energy created as a result of this
influence. The performance of the energy harvester was altered by tuning the resonant
frequency since the amount of harvested power rises as the resonant frequency decreases.
Lower resonance frequencies result in more output power. Using experimental data, it
was discovered that the power yield was 37 times more than that obtained in prior studies.
Later in the same year, a more advanced version of this harvester for similar applications
was introduced. They increased the number of layers to five, all of which were constructed
of the same material, lead zirconate titanate. They claimed that the new version of energy
harvester was able to generate an output power of 400 mJ. Researchers have found that
the use of many layers of PZT cantilevers can increases the output-power yield. The
strength and position of the drops also have an impact on the harvester’s output yield.
There were three different rain intensities (moderate, low, and intense modes) investigated
in previous studies [41]. Similarly, a study was conducted to investigate the amount of
strain in a cantilever beam as a result of a radio frequency (RF) propagation signal being
broadcast. A cantilever was actuated when the applied RF propagation field meets the
resonance frequency of the structure. Lead-zirconate-titanate was a base material of the
cantilever and measured 7 mm in length and 1 mm in width and had a thickness of 0.24.
This electrode had gold-plated electrodes, with a total thickness of 80 nm [42]. A large
number of researchers have shown an interest in improving energy harvesters. This served
as the impetus for the development of a novel approach that supports searchers in optimis-
ing energy harvesters in a simple and efficient manner. It is suggested that the electrical
output power of a standard cantilever can be estimated using an approach that is based
on the analogy of electromechanical input impedance. The models are derived based on
power-system theories, electromagnetic theories, as well as direct mechanical-to-electrical
comparison. These models calculate output power based on the harvester’s material type,
as well as its dimensions. After experimentally establishing the concept, it was determined
that the model can provide critical extra information for improving harvester operation
and design when compared to traditional methods [43]. The harvester design necessitates
a power conversion circuit, known as a DC/DC converter [44].

The innovative concept is to employ a bias-free device capable of producing enough
power for battery-free sensor operation for distant applications. The harvester can be
made up of a self-biased oscillator (a piezoelectric vibrational oscillator), which controls
the frequency and voltage of the switches in the DC/DC converters, allowing the output
DC voltage to be controlled and power to be saved without the use of an external biassing
source. A piezoelectric energy harvester’s structure consists of a piezoelectric sheet or a
beam connected to a vibrating mechanical frame. This piezoelectric layer bends as a result
of the vibration, and the bending generates electricity. It is common to use a proof mass
at the free end of the cantilever beam to increase the beam’s bending, which can result
increased output power. This proof mass can be changed to tune the structure’s resonance
frequency, making it closer to that of the vibration source, optimising output power as much
as feasible. Current research is actively pursuing piezoelectric harvester modelling to fulfill
the needs of design and development of these harvesters [45–47]. It is also desirable to
have a complete model that efficiently ties the amount of harvested power to the structure
of piezoelectric energy-harvesting systems and the base material. The energy-harvesting
component of the piezoelectric harvester circuit is divided into two sections. The generated



Sensors 2021, 21, 8332 7 of 14

voltage from the piezoelectric patch is routed to an AC/DC full-wave bridge rectifier that
converts the AC voltage into DC [48]. In the next step, the converted DC voltage would be
enhanced using a DC/DC booster that then can be transferred into the storage component
and finally to low-power applications that do not need batteries. The voltage outputs of
the piezoelectric cantilever are transformed to direct-current voltages by means of two
independent full-bridge rectifiers. In this paper, the feasibility of electric power generation
using piezoelectric materials on a larger scale is investigated. It is necessary to take into
account the link between piezoelectric materials, the energy conversion process, working
in a natural frequency range, and mechanical characteristics to produce the highest output
power. Creating power through vibration necessitates the matching of the frequency of the
vibration source with the natural frequency of the piezoelectric energy harvester. However,
the harvesters reviewed in this paper are mostly non-resonant energy-harvesting systems.
The geometry of piezoelectric energy harvesters and their resonance frequencies can affect
the power output of the systems. Table 1 compares the power output and voltage of several
piezoelectric energy-harvesting systems.

Table 1. Various Piezoelectric energy-harvesting systems and their power output, extracted from [49].

Description of Piezoelectric
Energy-Harvesting System Design Geometry/Dimension Resonant

Frequency Power Output/Voltage Ref.

PZT and AIN device
Piezoelectric patch was placed on the
top of the beam and was sandwiched

between two electrodes

300, 700 and
1000 Hz 1–100 µW [50]

PZT cantilever beam Dimension: 13.5 mm × 9 mm × 192 µm 13.9, 21.9 and
48.5 kHZ

2.4 V with 5.2 MΩ load,
1.01 µW [51]

PZT cantilever beam with
interdigital electrodes

Dimension: 3000 µm × 1500 µm ×
22 µm 570 and 575 Hz 1.127 Vp-p, 0.123 µW [49]

PZT-based energy harvester The device is packed with the help of
two wafers 1.8 kHz 40 µW [52]

Thick film PZT cantilever
beam to operate in d31 mode Dimension: 13.5 mm × 9 mm × 192 µm 229 Hz 270 nW at 9.81 m/s2;

130 V
[53]

Two-layer PMNZT
microgenerator Dimension: 10 mm × 10 mm 120 Hz 2.0 Vp-p 0.5 mW [54]

Piezoelectric
cantilever/Laser machined

10 cantilevers with dimensions of
5.74 mm × 4 mm, 5 had tip masses

attached
870 Hz

1.13 µW at 870 Hz
through 288.5 kΩ,
power density of

301.3 µW/cm3

[55]

3. Smart City Piezoelectric Applications

There are several sources of vibration and motion in smart cities that could be used for
the purpose of energy harvesting. The kinetic energy from human movements, wind and air
pressure, vehicles, ocean waves and water pressure, buildings and structures, and bridges
and roads can be directly converted to electrical energy with the help of piezoelectric
energy-harvesting systems. In this section, various studies of the above-mentioned sources
will be reviewed and discussed.

Human movements can be considered as one of the protentional sources of energy
in smart cities. Ali et al. [56] studied the use of piezoelectric energy-harvesting devices
in biomedical applications. The mechanical energy that is produced by human beings,
such as by muscular relaxation, bodily movement, blood circulation, lung expansion, and
cardiac motion, could be converted into electricity using their designs. These researchers
claimed in some cases, it is possible to harvest a maximum voltage of 10 V and a power
density of 0.27 µW/cm2. Piezoelectric harvesters have the potential to be employed in
wearables, such as shoes, clothing, and watches [57]. A number of harvesters have been
built to produce electrical power from arm motions since 1990; a good example of this
is the Maestro brand of Swiss timepieces, which has been in existence since 1890. The
kinetic energy from movement mechanisms can be converted to electrical energy and
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can be stored by the wristwatch’s embedded micro-generators. Walking is one of the
most common actions performed by humans due to generating a large displacement.
Piezoelectric materials have been developed to harness the energy created by walking by
placing them into shoes to harvest energy from human weight or by attaching the energy
harvester to the leg/foot so it can be excited by a walking/swing motion. Generated
energy might be used in the future to charge mobile phones and health devices. The
double-pendulum system in one example is adopted to improve the performance of energy
harvesting from human walking motions [58]. Kymissis and colleagues [59] conducted a
test on an energy harvester that was embedded in a shoe and contained three harvesters.
In other case, a wearable device is used to harvest energy from a backpack by substituting
the bag’s strap with a PVDF strap [60]. The electrodes on the surface of the strap were
constructed using an electrostatic self-assembly method, which ensured that the strap could
withstand heavy loads. The results showed that this device was capable of harvesting
around 45.6 mW. A staircase was created in another instance to gather energy from human
movements [61]. The excitation signals were dependent on the walking environment, as
well as the individual’s features [62]. Jettanasen et al. [1] developed a piezoelectric energy
harvester to scavenge energy from bicycles while riding them in smart cities. Figure 5
shows the structure of their work. Li and Strezof [63] investigated the possibility of
scavenging human walking energy in Macquarie University library. They focused on the
areas of the building with the greatest levels of motion. They discovered that the greatest
locations for power generation were the cafeteria, the loopy meeting rooms, and the main
entrance. Pavegen tiles were utilised to capture energy from movement along the walkway.
The number of tiles was determined by their sizes and deployment technique. The ideal
deployment strategy was chosen based on the breadth and length of the routes, since the
tiles were arranged in both lengthwise and width wise modes [63].
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Additionally, it is possible to use the kinetic energy from fluids to generate electricity
in smart cities. Piezoelectric energy harvesters are able to be placed in water to harness the
energy generated by the longitudinal motion of sea waves. Researchers studied an energy
harvester that was made up of a cantilever beam with attached piezoelectric patches [64].
They used a proof mass to decrease the natural frequency of the proposed energy har-
vester. The output power was determined to be proportional to the beam thickness and
its dimensions, the used mass at the free end of cantilever, wave height, water depth, as
well as the ratio of water depth to wave height [64]. In another case, a windmill prototype
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with 10 piezoelectric harvesters was placed in a circular pattern and was tested in winds
ranging from 1 to 12 mph. When the wind speed hit 10 mph, the harvester’s output power
was around 7.5 mW [65]. Zhao et al. [66] introduced the galloping V-shaped piezoelectric
wind-energy harvester, which was able to produce maximum of 1 mW at a flow velocity
of 10 m/s, which is close to the wind speed in urban areas. Their design is shown in
Figure 6. A pressured water current was employed as an energy source, which was then
converted to electrical energy by using a shear-mode harvester [67]. Spornraf et al. [68]
demonstrated piezoelectric bend transducers triggered by laminar flow. In another ap-
plication, piezoelectric harvesters have been utilised to power the electronic systems of
aeroplanes. The harvester transforms kinetic energy from the intake air current to elec-
tricity during flights. A device was constructed and examined by simulating airflow in
the air cylinders. These findings indicated that the airflow velocity, sound pressure, and
open-circuit voltage were linearly related. This demonstrates the suitability of harvesters
for aeroplane applications [69].
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The generated vibrations from vehicle movements in smart cities can also be used as a
source of energy. A piezoelectric harvester was positioned on a vehicle damper to harvest
electrical energy from tyre movements [70]. Energy harvesting has been accomplished via
the utilisation of pneumatic tyre deflections under borne load. This energy is dependent on
the geometry of the tyres, the vehicle’s speed, and the air pressure in the tyres. Piezoelectric
stacks are integrated into the tyre and are made of lead zirconate titanate. In this study, the
harvester is represented by the first-mode vibration of a cantilever. Despite the fact that it
captures only modest quantities of energy, it is sufficient to power wireless sensors [71].
Kulkarni et al. [72] were the first to demonstrate the use of piezoelectric energy harvesters
in automotive systems; they demonstrated that a gasoline injector that uses piezoelectric
materials can be more precise than a traditional one.

Infrastructure in smart cities, such as roads, buildings, and bridges, can be also
considered as sources of vibration. To exploit the vibrations of high-rise structures caused
by wind, Xie et al. [73] constructed a linked piezoelectric cantilever with a proof mass. They
showed that the device can be optimised by examining the influence of the connected mass
position, length, radius, and the ratio of the piezoelectric component to the beam. They
refined their design and exhibited a unique harvester. The new version was made up of
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two sets of generators that were linked in series through a shared shaft. This harvester was
able to generate power from harmonic motions and, at the same time, acted as a damper,
dissipating structure vibrations [74]. In similar research, Chen et al. [75] looked at the use
of piezoelectric materials in the structure of buildings, as well as the use of these materials
in the bodies of energy harvesters, actuators, and sensors. Elhalwagy et al. [76] provided a
feasibility study on the use of piezoelectric energy harvesters in building floors and also
adopted a strategy for maximising the amount of energy produced by these harvesters.
According to Garimella et al. [77], a system for producing electrical power from vibration
has been developed, with the capability of generating energy from undesirable vibrations.
Li et al. [78] recently developed a piezoelectric energy harvester that can generate electricity
from roadways while cars are passing. As shown in Figure 7, they designed a device that
can be placed in pavement. They were able to harvest a maximum voltage of 170 V and a
maximum power of 92 mW.
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Moure et al. [79] examined the integration of piezoelectric cymbal harvesters in 29-cm-
diameter asphalt for the first time. It was discovered that each cymbal collects up to 16 µW
of electricity from the passage of a single large car. When 30,000 cymbals were integrated
into a 100 m stretch of road, the generated energy was between 40 and 50 MW h/m2, which
equates to around 65 MW per year. The results show that traffic on bridges can generate
enough vibration to be used as a source of kinetic energy. One study revealed that such
devices are capable of harvesting up to 12.5 mW of energy. Experiments were undertaken
to show the operation of wireless systems utilising accumulated energy harvested from
vibration of a rural highway bridge with low traffic flow [80]. Road-energy harvesting
has also been studied by Xu et al. [81], who investigated the electromechanical conversion
properties of piezoelectric materials applied to pavement and demonstrated that it is viable.
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In another case, piezoelectric energy harvesters were used to power the transmitters
tracking insect movements. Shearwood et al. [82] used a small piezoelectric energy har-
vester, a battery-less 5.8 GHz transmitter, and a compact antenna on 90 mg honeybees. The
harvester was able to generate more than 2 V, which was enough to power the transmitter.
In similar research work, Aktakka et al. [83] designed and fabricated a small piezoelectric
energy harvester that can harvest energy from the wing motion of green June beetles. Their
microgenerator was a non-resonant piezoelectric bimorph operating in d31 mode. They
claimed that a maximum power of 115 µW was able to be generated from insect movement.
They also found that a direct connection between the flight muscles of the insects and the
microgenerator can result in increased power output. Using piezoelectric energy harvesters,
it might be possible to monitor the movements of insects in future smart cities.

4. Conclusions

Ambient energy-harvesting sources in smart cities have sparked considerable interest
because they can provide power for small micro-electronic devices and real-time IoT
sensors. Piezoelectric materials are great candidates for this purpose. In this review paper,
current piezoelectric energy-harvesting systems for kinetic energy sources were discussed
and reviewed. Research with a focus on piezoelectric energy harvesting from various
energy sources, such as wind, ocean, vehicles, roads, bridges, infrastructures, and human
and animal movements, were explained to verify the potential of using mechanical energy
harvesters to power advanced IoT applications in smart cities. The operational parameters
and mechanical architectures of various energy harvesters were elucidated. Optimized
construction, proper materials, and power management circuits are all scientifically proven
to increase output power.

There have been significant recent successes concerning supporting services in smart
cities by using IoT sensors and applications that could be powered by improved piezoelec-
tric energy harvesters.
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