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Abstract. Spinal cord injury (SCI) is a severe neurological 
complication following spinal fracture, which has long 
posed a challenge for clinicians. Microglia play a dual role 
in the pathophysiological process after SCI, both beneficial 
and detrimental. The underlying mechanisms of microglial 
actions following SCI require further exploration. The present 
study combined three different machine learning algorithms, 
namely weighted gene co‑expression network analysis, random 
forest analysis and least absolute shrinkage and selection 
operator analysis, to screen for differentially expressed genes 
in the GSE96055 microglia dataset after SCI. It then used 
protein‑protein interaction networks and gene set enrichment 
analysis with single genes to investigate the key genes and 
signaling pathways involved in microglial function following 
SCI. The results indicated that microglia not only participate 
in neuroinflammation but also serve a significant role in 
the clearance mechanism of apoptotic cells following SCI. 
Notably, bioinformatics analysis and lipopolysaccharide + 
UNC569 (a MerTK‑specific inhibitor) stimulation of BV2 
cell experiments showed that the expression levels of Anxa2, 
Myo1e and Spp1 in microglia were significantly upregulated 
following SCI, thus potentially involved in regulating the 
clearance mechanism of apoptotic cells. The present study 
suggested that Anxa2, Myo1e and Spp1 may serve as poten‑
tial targets for the future treatment of SCI and provided a 

theoretical basis for the development of new methods and 
drugs for treating SCI.

Introduction

Spinal cord injury (SCI) is a severe complication of spinal 
fractures, where the spinal cord or cauda equina sustains 
varying degrees of damage due to vertebral displace‑
ment or bone fragments invading the spinal canal (1). The 
necrotic and apoptotic cells at the site of SCI release various 
neuroinflammatory signals recruiting local and infiltrating 
immune cells and regulating inflammatory cascade reactions. 
Sensory, motor and autonomic dysfunction caused by SCI 
leaves patients unable to care for themselves, resulting in a 
significant economic burden on their family and on society (2). 
Despite significant advances in medical care for SCI, it 
remains a challenge for clinical physicians for a number of 
years and current treatment plans primarily focus on providing 
supportive measures (3,4).

Microglia are permanent immune cells widely distributed 
in the central nervous system (CNS), contributing to the 
maintenance of neuronal function and playing a crucial role in 
phagocytosis, immune regulation and neural repair (5). Under 
physiological conditions, microglia can actively monitor the 
CNS environment and respond to disruptive signals, clearing 
cell debris and modulating synaptic transmission (6). The 
microglial population is dynamic in regulating the innate 
immune response of the CNS (7). Additionally, the functional 
phenotype of microglia varies when different regions of the 
CNS are damaged (8,9). Compared with neurotrauma in brain 
regions, microglia play a more pronounced dual role in the 
pathophysiological processes following SCI, acting both bene‑
ficially and harmfully (10). In the early stages of SCI, microglia 
rapidly gather around the lesion to provide protection, but with 
the continued accumulation of injury factors, over‑activated 
microglia produce harmful substances, exacerbating spinal 
cord tissue damage and affecting functional recovery (11). 
Although numerous studies demonstrate the crucial role of 
microglia post‑SCI (10‑14), the potential mechanisms require 
further exploration.

Microglia are macrophages resident in the CNS, main‑
taining tissue homeostasis through phagocytosis (15). The 
apoptotic cell clearance is the final step in efferocytosis (16). 
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Efferocytosis mainly comprises four steps: Identification 
of apoptotic cells, recognition of apoptotic cells adjacent to 
engulfing cells, internalization of apoptotic cells by engulfing 
cells and degradation of apoptotic cells within engulfing 
cells (17). Multiple signaling molecules cooperate to regulate 
the entire phagocytic clearance process, from ‘find me’ signals 
to ‘eat me’ signals and beyond (18). The distinct expression 
of apoptotic cell surface markers initiates the migration 
and recognition of early phagocytic cells, triggering timely 
and efficient phagocytosis to avoid inflammation spreading 
or to maintain homeostatic balance (19). The clearance of 
apoptotic cells by microglia not only serves a significant 
neuroprotective role in degenerative diseases (20) but also 
has positive effects in neuronal death and clearance in 
acute brain trauma (21) and brain ischemia‑hypoxia (22). 
Despite the considerable attention focused on efferocytosis, 
the mechanisms of microglial clearance of apoptotic cells 
following SCI have been overlooked and require further 
research for clarification.

Bioinformatics, as a practical interdisciplinary field 
combining molecular biology and information technology, 
has partially revealed the potential mechanisms of diseases at 
the molecular level, providing new avenues for the diagnosis 
and treatment of human diseases (23). High‑throughput chip 
sequencing technology rapidly captures differential gene 
expression profiles and efficiently acquires biological informa‑
tion on a large scale and is widely employed in basic medical 
research and disease diagnostics (24). Machine learning refers 
to a category of algorithms aiming to extract hidden rules 
from extensive historical data for prediction or classification 
purposes (25). Due to the expanding scale of biological data 
and the inherent complexity of machine learning, it has been 
widely and deeply applied in bioinformatics to aid in estab‑
lishing predictive and analytical models explaining potential 
biological processes (25). Innovations in technologies such as 
high‑throughput sequencing have brought new advancements 
in the study of microglial heterogeneity (26). The present study 
aimed to explore the mechanism of apoptosis clearance of 
microglia post‑SCI using various machine‑learning algorithms.

Mertk, a member of the TAM (Tyro3, Axl, Mertk) receptor 
tyrosine kinase family, is primarily expressed by microglial 
cells (27,28). A number of studies indicate that Mertk regu‑
lates the phagocytic clearance of apoptotic cells and myelin 
debris by microglia and macrophages (29‑31). UNC569 is an 
ATP‑competitive, reversible, orally active MerTK‑specific 
inhibitor that can inhibit the clearance function of 
microglia (32). It is well‑known that stimulating microglia with 
lipopolysaccharide (LPS) can simulate neuroinflammation in 
microglia (33‑35), with multiple studies demonstrating the 
feasibility of this method (36‑39). 

The present study comprehensively analyzed the data from 
GSE96055 (40) using various machine learning algorithms 
and bioinformatics tools to uncover the crucial mechanisms 
and key genes of microglia involved in SCI and experimen‑
tally validate them through treatment with LPS + UNC569 
on the BV2 cell line. The present study provided unique 
insights into the mechanisms through which microglia regu‑
late inflammation following SCI and their involvement in 
neuronal regulation, offering potential targets and theoretical 
foundations for the diagnosis and treatment of SCI.

Materials and methods

Download expression matrix data. The expression matrix 
for GSE96055 (40) was derived from the GEO database 
(https://www.geoncbi.nlm.nih.gov/). The age of rats used 
in the data set is ~12 weeks and the data set is based on 
GPL17021 platform analysis (40). Microglia were purified 
by flow cytometry fluorescence sorter (FACS) in non‑injured 
CX3CR1+/eGFP mice and at 3 time points (3, 7 and 14 days) 
following moderate and severe SCI (40). Gene profiles were 
then compared (Fig. 1A).

Data preprocessing and identification of differentially 
expressed genes (DEGs). The expression matrix was 
subjected to batch effect elimination and batch normal‑
ization using R software (v4.1.3; https://www.r‑project.
org/) and R‑package SVA (v3.3; https://www.bioconductor.
org/packages/release/bioc/html/sva.html) (41). The Limma 
package (v3.4; http://www.bioconductor.org/packages/
release/bioc/html/limma.html) was used to identify DEGs 
by comparing expression values between the sham and SCI 
group (42). The adjusted P<0.05 and |logFC|>1 were used as 
the selection criteria (42).

Weighted correlation network analysis (WGCNA) and 
Random forest analysis (RF). WGCNA (v1.6.1; cran.r‑project.
org/web/packages/WGCNA/index.html) is a tool (43) for 
constructing gene co‑expression networks and identifying 
gene clusters or modules, which was used to analyze highly 
relevant native gene clusters or modules for SCI. Based on 
the conventional gene screening method of WGCNA (44), 
the following parameters were set in the present study: A 
total of ≥10 cut‑off genes, cutting height=0.90, Z‑score 
≥5 and stability‑related stability correlation P≤0.05; the 
connection of nodes (genes) between the two was used to 
calculate the dataset and genes with the correlation coef‑
ficient <0.5 were excluded. The conservation status of the 
WGCNA module and the traits‑related characteristics 
were analyzed. RF (v4.7.1; https://www.bioconductor.
org/packages/release/bioc/html/randomForest.html) is an 
integrated algorithm composed of decision trees and one 
of the commonly used machine learning algorithms (45). It 
can be used for both classification problems and regression 
problems (45). This algorithm was used to screen genes with 
variable importance >0 for subsequent analysis.

Functional enrichment analysis and protein‑protein 
interaction network (PPI) analysis. Gene Set Enrichment 
Analysis (GSEA) (46) is a computational method that 
determines whether an a priori defined set of genes 
shows statistically significant, concordant differences 
between two biological states and its R package is 
clusterProfiler (47) (v4.0.5; https://www.bioconductor.
org/packages/release/bioc/html/clusterProfiler.html). The 
Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene 
Ontology (GO) and protein‑protein interaction network 
(PPI) analysis was performed using the Metascape website 
(http://www.metascape.org/) (48). The connectivity (degree) 
and hub nodes (genes) in PPI (49) were obtained using 
scale‑free property (48). The results of PPI were imported into 
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Cytoscape software (v3.9.1; http://www.cytoscape.org/) and 
further analyzed in combination with the results of DEGs. 

Comparison of expression of hub genes. The heat map 
was generated using R‑packages Complex‑Heatmap 
(v3.1;  h t t p s : / /c r a n . r‑ p r o j e c t . o r g /web /p a ck a ge s /
ComplexHeatmap/index.html) and GGplots (v3.0; https://
cran.r‑project.org/web/packages/ggplots/index.html) to 
compare the expression levels of hub genes (50). The 

least absolute shrinkage and selection operator (LASSO) 
analysis (51) (v4.1.4; https://cran.r‑project.org/web/packages/
glmnet/index.html) is also one of the commonly used machine 
learning algorithms, which is characterized by variable selec‑
tion and regularization while fitting the generalized linear 
model. The degree of adjustment of the regression complexity 
of LASSO is controlled by the parameter λ (51). The larger λ 
is, the stronger the penalization for the linear model with more 
variables (51). The goal is to choose the λ model corresponding 

Figure 1. Identification of DEGs. (A) Research roadmap. (B) Heat map of relative expression levels of various cellular markers for 20 samples in the data set, 
with the deepest blue representing 0. Venn diagram of DEGs between the SHAM operation group and at 3, 7 and 14 days after SCI of the (C) HS and the 
(D) FT, respectively. In each annotation circle, red represented the number of upregulated genes, blue represented the number of downregulated genes and 
yellow represented the number of genes with the opposite trend in the intersection set. (E) BP, KEGG and Reactome analysis in GSEA between the SHAM 
and the SCI group. DEGs, differentially expressed genes; SCI, spinal cord injury; HS, hemiparaplegia injury group; FT, complete paraplegia injury group; 
BP, biological process; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, Gene Set Enrichment Analysis; WGCNA, weighted correlation network 
analysis; RF, random forest; PPI, protein‑protein interaction network; RT‑PCR, reverse transcription‑quantitative PCR.
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to the minimum variable characteristics and errors as much 
as possible because after the λ value reaches a certain size, 
continuing to increase the number of model‑independent 
variables or reducing the λ value cannot significantly improve 
the model performance. Thus, a model with fewer variables 
is obtained finally. The present study calculated LASSO‑Cox 
coefficients using a Lasso regression model to select key genes 
in microglia following SCI.

Cell culture and reverse transcription‑quantitative (RT‑q) 
PCR. The microglia cell line BV2 was purchased from the 
China Academy of Sciences Cell Bank. LPS can stimulate 
microglia to switch to M1 phenotype to express pro‑inflam‑
matory cytokines (52). The present study used LPS to simulate 
the neuroinflammatory state. The relative expression levels 
of the common pro‑inflammatory factors IL1b, IL6 and TNF 
were measured to verify whether the BV2 cells were converted 
to M1 type. Following resuscitation of BV2 microglia, 10% 
fetal bovine serum (cat. no. 30067334; Invitrogen; Thermo 
Fisher Scientific, Inc.) was added into DMEM medium 
(cat. no. 11320033; Invitrogen; Thermo Fisher Scientific, 
Inc.) and incubated at 37˚C and 5% CO2 for at least 8 h. The 
medium was changed every other day and passaged every 
2 days. The morphology of the cells was observed under a light 
microscope at a magnification of x20. After the BV2 microglia 
entered the logarithmic phase, the cells were stimulated with 
LPS (100 ng/ml) for 6, 12 and 24 h. Total RNA was isolated 
using TRIzol® reagent (Thermo Fisher Scientific, Inc.) and 
reverse transcribed into cDNA according to the manufacturer's 
instructions. TRIzol® (500 µl) was added and mixed well. A 
total of 200 µl chloroform was added, shaken and allowed to 
stand for 5 min. The mixture was centrifuged at 4˚C, 4,000 x g 
for 15 min and collected the upper phase. An equal amount of 
isoamyl alcohol was added, mixed evenly and allowed to stand 
for 5 min. After centrifuging at 4˚C, 4,000 g for 10 min, the 
supernatant was discarded. 1 ml of 75% ethanol was added with 
gentle oscillation. The RNA concentration was determined 
after drying. The cell density for RNA extraction is approxi‑
mately 8x105/ml, and RNA purity and quantification are tested 
by spectrophotometry. RNA extraction, cDNA synthesis, and 
qPCR are performed according to the manufacturer's protocol. 
RT‑qPCR was performed using SYBR green dye (Takara 
Biotechnology Co., Ltd.) under the following parameters: 
Initial denaturation step at 95˚C for 30 min; 40 cycles at 95˚C 
for 5 sec; and 60˚C for 30 sec. Each sample was repeated three 

times independently and the PCR results were statistically 
analyzed by the 2‑ΔΔCq method (53). The entire experimental 
procedure was completed independently for each sample. The 
mRNA primers are shown in Table I.

ELISA. The expression levels of Anxa2 (cat. no. E1944r; ElAab 
Biotechnology Inc.), Myo1e (cat. no. KTE61422; Abbkine 
Scientific Co., Ltd.) and Spp1 (cat. no. E0899m; ElAab 
Biotechnology, Inc.) in BV2 cells were determined by ELISA 
kits. The sample were stored at ‑80˚C before measurement. 
The optical density at 450 nm was calculated by subtracting 
the background value and the standard curve was drawn.

Data analysis. SPSS 22.0 software (IBM Corp.) was used 
for all statistical analyses. One‑way ANOVA was used for 
comparison between groups. All experiments were inde‑
pendently repeated three times. Tukey's honestly significant 
difference test was conducted as post‑hoc analyses. All 
data are presented as the mean ± SEM. GraphPad Prism 6 
(Dotmatics) was used for plotting. P<0.05 was considered to 
indicate a statistically significant difference.

Results

Identification of DEGs. Following standardized pretreat‑
ment of microarray results from GSE96055, the present 
study compared the expression levels of microglia and other 
cell marker genes. The analysis revealed that the sequencing 
target in the dataset was microglia following SCI (Fig. 1B). 
DEGs were identified by comparing the SHAM group with 
the SCI group at 3, 7 and 14 days, leading to the detection of 
a total of 6,513 DEGs in the hemiparaplegia injury group as 
moderate SCI and 1,348 DEGs in the common intersection 
of the three groups (Fig. 1C). In comparison with the SHAM 
group, the 3‑day group exhibited 1,724 downregulated genes 
and 1,436 upregulated genes, while the 7‑day group showed 
218 downregulated genes and 224 upregulated genes and the 
14‑day group displayed 143 downregulated genes and 123 
upregulated genes (Fig. 1C). In the complete paraplegia injury 
group, as severe SCI, 6,076 DEGs were detected, with 1,414 
DEGs at the intersections shared by the three groups (Fig. 1D). 
The SHAM group demonstrated 1,295 downregulated genes 
and 1,024 upregulated genes compared with the 3‑day group, 
93 downregulated genes and 96 upregulated genes compared 
with the 7‑day group and 330 downregulated genes and 

Table I. Gene primers used in the present study.

Gene Name Forward primer 5'‑ Reverse primer 3'‑

GAPDH Glyceraldehyde‑3‑ ACAGCAACAGGGTGGTGGAC TTTGAGGGTGCAGCGAACTT
 Phosphate Dehydrogenase  
IL1b Interleukin 1 β GCCAGTGAAATGATGGCTTATT AGGAGCACTTCATCTGTTTAGG
IL6 Interleukin 6 CACTGGTCTTTTGGAGTTTGAG GGACTTTTGTACTCATCTGCAC
TNFα Tumor necrosis factor α AAGGACACCATGAGCACTGAAAGC AGGAAGGAGAAGAGGCTGAGGAAC
Anxa2 Annexin A2 CTGGGGACTGACGAGGACT GTTGATCTCTTGCAGCTCCTG
Myo1e Myosin IE AGAGCAAAGTCAACCCTCCTG GGTTCCAGCTGTTGAAGTGC
Spp1 Secreted phosphoprotein 1 AGCTGGATGAACCAAGTCTGG GGCTGTGAAACTTGTGGCTC
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284 upregulated genes compared with the 14‑day group 
(Fig. 1D). Altogether, 7,340 DEGs were identified across 
both groups with varying degrees of SCI. GSEA performed 
on these genes indicated their close association with the 
progression of neuroinflammation, highlighting enhanced 
recruitment of microglia, heightened endocytosis and intensi‑
fied inflammatory responses, along with increased expression 
levels of various inflammatory cytokine signaling pathways 
(Fig. 1E).

WGCNA and RF analysis of DEGs. The expression matrix 
of 7,340 DEGs was used for network construction. A soft 
threshold power of 18 was determined for the adjacency matrix 
and module recognition in WGCNA was carried out based on a 

gene correlation coefficient >0.90 (Fig. 2A). The resulting gene 
modules demonstrated a near scale‑free topology standard 
(Fig. 2B). After determining the soft threshold, the expression 
matrix of differential genes was further processed to identify 
modules using hierarchical clustering and the dynamic cutting 
algorithm (Fig. 2C). A total of 15 different co‑expression 
modules were identified and visualized in different colors, 
with the Green module displaying the highest correlation coef‑
ficient with SCI (ρ=0.97) and the smallest P value (P=10‑12), 
indicating strong association with subacute SCI (Fig. 2D). This 
module comprised 498 genes. Subsequently, RF analysis was 
conducted on the 7,340 DEGs to select genes highly relevant 
to microglia following SCI, resulting in the identification of 
458 genes (Fig. 2E).

Figure 2. WGCNA and RF of DEGs. (A) Scale independence. (B) Mean connectivity. The network topology analysis for adjacency matrix with different 
soft threshold power. Red numbers in the boxes indicate the soft thresholding power corresponding to the correlation coefficient square value (y‑axis). 
(C) Consensus module dendrogram was produced by 7,340 DEGs with a variation coefficient of expression >0.1, based on the criteria of correlation coefficient 
square of eigengenes above 0.90, soft threshold power of 18, the number of genes >10 and cut height=0.90. (D) Module‑trait associations. Each row corresponds 
to a module trait gene and each column corresponds to a trait. Red indicated a positive correlation between modular trait genes and traits and blue indicated 
a negative correlation. Each cell contains correlation coefficient ρ and the P‑value in parentheses. (E) Two calculation methods of DEGs related to SCI for 
random forest screening. Mean decrease accuracy: The reducing degree of the accuracy of the random forest prediction by changing the value of a variable 
into a random number. A larger value indicates that the variable is more significant. Mean decrease gini: The effect of each variable on that heterogeneity of 
the observation at each node of the classification tree is calculated to compare the importance of the variable. A larger value indicates that the variable is more 
significant. WGCNA, weighted correlation network analysis; RF, random forest; DEGs, differentially expressed genes; SCI, spinal cord injury.
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Functional enrichment, PPI and LASSO of hub genes. The 
intersection of 498 genes in the green module of WGCNA 
and 458 genes in RF yielded 301 hub genes (Fig. 3A). Further 
analysis of the GO functions and KEGG pathways of these 
hub genes suggested a close association between post‑SCI 
microglia and neuroinflammation, participating in the regu‑
lation of apoptosis (Fig. 3B and Table II). PPI revealed that 
205 genes could serve as central nodes, with the expression 
levels of 111 genes upregulated and 94 genes downregulated 
post‑SCI (Fig. 3C). Subsequently, through LASSO analysis of 
the 205 hub nodes (Fig. 3D and E), key genes were identified. 

The two dashed lines in Fig. 3E represent two specific λ values, 
namely λmin and λ1se, which were 0.03236614 and 0.0763, 
respectively. λ‑min is the average minimum targeted parameter 
value of all λ values. The λ1se value represents a model with 
good performance and minimal parameters. When selecting 
λ1se, the performance of the model is optimal. Ultimately, the 
top three key genes in LASSO based on parameter values were 
identified as Anxa2, Myo1e and Spp1.

Single‑gene GSEA analysis of key genes. To further investi‑
gate the specific functional mechanisms of these three key 

Figure 3. Functional enrichment, PPI and LASSO analysis of hub genes. (A) Venn diagram of intersection genes between WGCNA and RF. (B) Functional 
enrichment analysis for 301 hub genes. (C) PPI analysis of hub genes. Red indicates that the gene expression level is upregulated after SCI and blue indicates 
that the gene expression level is downregulated. The darker the color, the greater the difference in expression level. (D) The locus of change of independent 
variable coefficient of LASSO analysis. Each curve in the figure represents the change trace of coefficient of each independent variable. The ordinate is the 
value of the coefficient, the lower abscissa is log(λ) and the upper abscissa is the number of non‑zero coefficients in the model at this time. The later the 
coefficient is compressed to 0, the more important the variable is as the value of λ changes. (E) Model error diagram of LASSO analysis. On the ordinate is 
Mean‑Squared Error. Cross Validation of LASSO analysis allows that for each λ value, around the mean of the target parameter shown by the red dot, one 
can obtain the confidence interval of the target parameter. There are two numerical dashed lines, the line with the lowest error on the left (λmin) and the line 
with the least feature on the right (λ1se), which are 0.03236614 and 0.0763 respectively. λmin is the average of the minimum objective parameters that give all 
λ values. The value of λ1se is a model with good performance but the least parameters. When λ1se was chosen, the performance of the model is the best. PPI, 
protein‑protein interaction; LASSO, least absolute shrinkage and selection operator; WGCNA, weighted correlation network analysis; RF, random forest; SCI, 
spinal cord injury; PPI, protein‑protein interaction network; GO, Gene Ontology.
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genes, single gene GSEA analysis was conducted, dividing 
20 samples into corresponding high and low expression groups 
based on the expression levels of Anxa2, Myo1e and Spp1. The 
results showed a close correlation between the upregulation of 
Anxa2 in post‑SCI microglia and inflammatory factors such as 
IL‑6, IL‑17 and TNF signaling pathways (Fig. 4A). Similarly, 
activation of JAK‑STAT, p38MAPK cascade and Notch 
signaling pathways was observed (Fig. 4A). In addition, Myo1e 
was upregulated in post‑SCI microglia and may participate in 
mechanisms such as enhanced responsiveness to interferons, 
increased expression of inflammatory signaling pathways 
and NF‑κB activation (Fig. 4B). Spp1 was closely associated 
with enhanced phagocytic activity and complement activation 
in post‑SCI microglia (Fig. 4C). Notably, in the biological 
functional analysis of these three genes, all three key genes 
were closely related to the gene set involved in the clearance 
of apoptotic cells, suggesting that these key genes may play 
important roles in the mechanism of clearing apoptotic cells 
in post‑SCI microglia (Fig. 4A‑C).

Comparison and verification of expression of key genes. The 
present study analyzed the relative expression levels of three 
key genes from the GSE96055 dataset to study their expres‑
sion patterns in post‑SCI microglia, considering changes 

in time and severity of injury (Fig. 5A‑C). The expression 
levels of Anxa2 and Spp1 appeared to be minimally affected 
by injury time and severity, while the expression level of 
Myo1e slightly increased with time post‑injury. In addition, 
the expression levels of 203 central genes in the dataset 
were examined and a heatmap generated (Fig. 5D). Heatmap 
analysis revealed that genes with upregulated expression in 
the upper part were more influenced by the injury time than 
the severity, whereas genes in the lower part exhibited the 
opposite trend (Fig. 5D).

It is known that the phagocytic cell receptor MerTK 
regulates phagocytic activity in BV2 cells (54). To determine 
whether key genes are involved in the clearance of apoptotic 
cells in BV2 cells, cells were treated with LPS (100 nM) 
and the MerTK‑specific inhibitor UNC569 (500 nM) and 
changes in gene expression monitored. Compared with the 
control group, Anxa2, Myo1e and Spp1 mRNA levels were 
upregulated in the LPS group, indicating increased expres‑
sion in pro‑inflammatory microglial states, while they were 
downregulated in the LPS + UNC569 group, suggesting 
that inhibition of phagocytosis also suppressed their expres‑
sion (Fig. 6A‑C). Consistent with mRNA results, protein 
levels of Anxa2, Myo1e and Spp1 exhibited a similar trend 
(Fig. 6D‑F).

Figure 4. Single‑gene GSEA analysis of key genes. BP, KEGG and Reactome analysis in GSEA analysis between the high‑expression and low‑expression 
group of (A) Anxa2. (B) Myo1e. (C) Spp1. BP, biological process; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, Gene Set Enrichment Analysis.
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Discussion

In the present study, through bioinformatics analysis, a close 
correlation was discovered between microglia after SCI and 

neuroinflammation and efferocytosis. It is worth noting that 
the expression levels of Anxa2, Myo1e and Spp1 in microglia 
following SCI were significantly upregulated. These three 
genes are closely associated with various biological functions, 

Figure 5. Comparison of hub genes expression levels. Histogram of relative expression levels of (A) Anxa2, (B) Myo1e and (C) Spp1 in GSE96055 expression 
matrix. (D) Heat map of 203 hub nodes in PPI. PPI, protein‑protein interaction. **P<0.01, ***P<0.001 vs. sham.
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such as signaling pathways involved in the release of inflam‑
matory factors, amplification of inflammatory cascades and 
phagocytosis. Notably, they are all significantly enriched in 
the gene set related to the clearance of apoptotic cells.

GSEA results for the SHAM group and SCI group revealed 
that microglia mainly play an immunomodulatory role and 
participate in the polarization and recruitment of macrophages 
derived from microglia and monocytes at the site of injury. 
Additionally, they regulate the secretion of interleukins and 
interferons. These results indicated that microglia primarily 
play a pro‑inflammatory role at the site of SCI, consistent with 
the views of other researchers (12‑14). Widely used machine 
learning algorithms, WGCNA, RF and LASSO analysis, have 
been employed in biomedical research, typically used individu‑
ally (55,56). The present study integrated these three different 
algorithms for key gene screening and analysis for the first 
time, to the best of the authors' knowledge. WGCNA focuses 
on specific phenotypes and co‑expression modules, where 
genes within the same module are considered functionally 
related with higher reliability and biological significance (56). 

RF evaluates the importance of variables in determining 
categories (57,58), while LASSO effectively selects features 
and addresses multicollinearity issues (59).

Conventional bioinformatics analysis relies on researchers 
manually designing rules and processes, which introduces 
subjectivity and limitations, potentially hindering the full 
exploration of potential patterns and information within the 
data, as well as struggling to effectively handle complex data 
structures and relationships. The present study effectively iden‑
tified and predicted biological characteristics, gene expression 
patterns and disease‑related genes of microglial cells post‑SCI 
using the GSE96055 dataset for machine learning algorithms, 
thereby enhancing the accuracy and precision of data analysis. 
It identified a characteristic gene set of microglia after SCI 
and found that key genes Anxa2, Myo1e and Spp1 are closely 
associated with the clearance of apoptotic cells.

The clearance of apoptotic cells is crucial for the restora‑
tion of extracellular environment homeostasis (60). Despite 
extensive attention to efferocytosis in inflammatory macro‑
phages (61) and cancerous macrophages (62), specific research 

Figure 6. RT‑qPCR and ELISA validation. The mRNA expression levels of (A) Anxa2, (B) Myo1e and (C) Spp1. (The protein expression levels of three key 
genes, (D) Anxa2, (E) Myo1e and (F) Spp1. A total of three samples per group in duplicate were summarized as the mean ± SEM with P<0.05. BV2 microglia 
were stimulated with 100 ng/ml LPS for 6, 12 and 24 h, compared with the unstimulated group, respectively. One‑way ANOVA was performed. *P<0.05, 
**P<0.01, ***P<0.001. RT‑qPCR, reverse transcription‑quantitative PCR; SCI, spinal cord injury; SE, standard error; LPS, lipopolysaccharide.
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on the mechanisms of microglia in the nervous system, 
particularly after SCI, is lacking. The MerTK signaling 
pathway plays a vital role in the clearance of apoptotic cells by 
microglia (63). In the present study, the MerTK‑specific inhib‑
itor UNC569 was used to suppress the clearance of apoptotic 
cells in microglia, widely utilized for the phagocytic clearance 
function of microglia (54). Finally, the results of analysis were 
validated using BV2 cells in vitro, consistent with the findings 
of the bioinformatics analysis.

Anxa2, a member of the calcium‑dependent phospho‑
lipid‑binding protein family, plays a role in cell growth regulation 
and signal transduction pathways (64,65). Anxa2 is involved in 
various cellular processes such as proliferation, differentiation, 
apoptosis, migration, membrane repair, immune suppression 
and inflammatory responses, closely associated with the 
prognosis and severity of various diseases (66‑68). GSEA 
analysis of Anxa2 suggested its involvement in regulating 
relevant inflammatory factor signaling pathways, consis‑
tent with the findings of other researchers. Previous studies 
have shown that Anxa2 promotes phagocytic cell assembly, 
regulates the endosomal recycling pathway and multicellular 
endosome biogenesis (69,70). Anxa1 has been implicated in 
the efferocytosis of microglia. In addition, GSEA analysis of 
Myo1e and Spp1 indicated their participation in regulating 
inflammation responses and inflammatory factor signaling 
pathways related to microglia. Myo1e, as an unconventional 
myosin, plays various critical roles in physiological processes 
such as cell adhesion, migration, phagocytosis and cell expul‑
sion based on its motility and structural features (71,72). Spp1, 
a non‑collagenous bone protein, has been shown to modulate 
macrophage polarization (73). Recent studies suggest a crucial 
role for Spp1 in monitoring and regulating acute and chronic 
neuroinflammation (74,75). Notably, SPP1 induces phagocytic 
and synaptic engulfment of microglia in an Alzheimer's 
disease mouse model (76). 

These research findings are consistent with the discoveries 
of the present study. In the results of single‑gene GSEA analysis, 
the three key genes Anxa2, Myo1e and Spp1 not only play a 
negative role in regulating inflammation but also actively partic‑
ipate in the clearance of apoptotic cells, which may be a critical 
manifestation of the dual role of microglia after SCI. However, 
there is a lack of literature on their specific roles in clearing 
apoptotic cells. The present study suggested that they may be 
involved in regulating efferocytosis mechanisms, serving as 
important targets for treating SCI. Whether these three key 
genes can be used as indicators to determine the progression of 
SCI requires extensive clinical research practice.

Despite significant progress in research on the clearance of 
apoptotic cells, the study of efferocytosis mechanisms in the 
CNS is still in its early stages. Combining results from studies 
of other diseases, the type of disease and the duration of the 
disease, efferocytosis may have different effects on disease 
progression (11). Studies have indicated significant differ‑
ences in the phagocytic response of peripheral macrophages 
and microglia and variations in the efficiency of neuronal 
apoptosis clearance. Additionally, compared with brain 
injuries, the phagocytic capacity and phagocytic cell ratio of 
microglia after SCI are quite heterogeneous (77‑79). There 
is a lack of literature on specific mechanisms, necessitating 
further research. In SCI, current research suggests that white 

matter and gray matter microglia have different transcrip‑
tional profiles in disease progression and spatial axes (7,10). 
However, their contributions to the clearance of apoptotic cells 
remain unknown, highlighting the need for further investiga‑
tion into the efferocytosis functions of microglia with different 
functional phenotypes and how to regulate microglia to exert 
neuroprotective effects.

However, the present study had some limitations. The data 
used for analysis came from experimental animal models, 
which may have limitations in the applicability of the analysis 
results to human disease models due to genomic differences 
between species. Subsequent studies should establish disease 
models using different animal species, compare the consis‑
tency and differences in various models and validate the results 
in human tissues to enhance the reliability and applicability 
of the findings. In addition, future research should integrate 
proteomic, single‑cell sequencing and spatial transcriptomic 
data to comprehensively reflect the functional mechanisms of 
microglia post‑SCI, providing clues to uncover the pathological 
mechanisms of SCI.

In conclusion, the present study showed that microglia after 
SCI play essential roles not only in neuroinflammation but 
also in the mechanism of apoptotic cell clearance. Notably, the 
expression levels of Anxa2, Myo1e and Spp1 in microglia after 
SCI are significantly upregulated, potentially participating in 
the regulation of apoptotic cell clearance mechanisms. The 
present study suggested that Anxa2, Myo1e and Spp1 may be 
potential targets for future SCI treatments, providing a scien‑
tific basis for the development of new therapeutic approaches 
and drugs for SCI.
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