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Analysis of gene expression in microglial apoptotic cell clearance
following spinal cord injury based on machine learning algorithms
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Abstract. Spinal cord injury (SCI) is a severe neurological
complication following spinal fracture, which has long
posed a challenge for clinicians. Microglia play a dual role
in the pathophysiological process after SCI, both beneficial
and detrimental. The underlying mechanisms of microglial
actions following SCI require further exploration. The present
study combined three different machine learning algorithms,
namely weighted gene co-expression network analysis, random
forest analysis and least absolute shrinkage and selection
operator analysis, to screen for differentially expressed genes
in the GSE96055 microglia dataset after SCI. It then used
protein-protein interaction networks and gene set enrichment
analysis with single genes to investigate the key genes and
signaling pathways involved in microglial function following
SCI. The results indicated that microglia not only participate
in neuroinflammation but also serve a significant role in
the clearance mechanism of apoptotic cells following SCI.
Notably, bioinformatics analysis and lipopolysaccharide +
UNC569 (a MerTK-specific inhibitor) stimulation of BV2
cell experiments showed that the expression levels of Anxa2,
Myole and Sppl in microglia were significantly upregulated
following SCI, thus potentially involved in regulating the
clearance mechanism of apoptotic cells. The present study
suggested that Anxa2, Myole and Sppl may serve as poten-
tial targets for the future treatment of SCI and provided a
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theoretical basis for the development of new methods and
drugs for treating SCI.

Introduction

Spinal cord injury (SCI) is a severe complication of spinal
fractures, where the spinal cord or cauda equina sustains
varying degrees of damage due to vertebral displace-
ment or bone fragments invading the spinal canal (1). The
necrotic and apoptotic cells at the site of SCI release various
neuroinflammatory signals recruiting local and infiltrating
immune cells and regulating inflammatory cascade reactions.
Sensory, motor and autonomic dysfunction caused by SCI
leaves patients unable to care for themselves, resulting in a
significant economic burden on their family and on society (2).
Despite significant advances in medical care for SCI, it
remains a challenge for clinical physicians for a number of
years and current treatment plans primarily focus on providing
supportive measures (3,4).

Microglia are permanent immune cells widely distributed
in the central nervous system (CNS), contributing to the
maintenance of neuronal function and playing a crucial role in
phagocytosis, immune regulation and neural repair (5). Under
physiological conditions, microglia can actively monitor the
CNS environment and respond to disruptive signals, clearing
cell debris and modulating synaptic transmission (6). The
microglial population is dynamic in regulating the innate
immune response of the CNS (7). Additionally, the functional
phenotype of microglia varies when different regions of the
CNS are damaged (8,9). Compared with neurotrauma in brain
regions, microglia play a more pronounced dual role in the
pathophysiological processes following SCI, acting both bene-
ficially and harmfully (10). In the early stages of SCI, microglia
rapidly gather around the lesion to provide protection, but with
the continued accumulation of injury factors, over-activated
microglia produce harmful substances, exacerbating spinal
cord tissue damage and affecting functional recovery (11).
Although numerous studies demonstrate the crucial role of
microglia post-SCI (10-14), the potential mechanisms require
further exploration.

Microglia are macrophages resident in the CNS, main-
taining tissue homeostasis through phagocytosis (15). The
apoptotic cell clearance is the final step in efferocytosis (16).
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Efferocytosis mainly comprises four steps: Identification
of apoptotic cells, recognition of apoptotic cells adjacent to
engulfing cells, internalization of apoptotic cells by engulfing
cells and degradation of apoptotic cells within engulfing
cells (17). Multiple signaling molecules cooperate to regulate
the entire phagocytic clearance process, from ‘find me’ signals
to ‘eat me’ signals and beyond (18). The distinct expression
of apoptotic cell surface markers initiates the migration
and recognition of early phagocytic cells, triggering timely
and efficient phagocytosis to avoid inflammation spreading
or to maintain homeostatic balance (19). The clearance of
apoptotic cells by microglia not only serves a significant
neuroprotective role in degenerative diseases (20) but also
has positive effects in neuronal death and clearance in
acute brain trauma (21) and brain ischemia-hypoxia (22).
Despite the considerable attention focused on efferocytosis,
the mechanisms of microglial clearance of apoptotic cells
following SCI have been overlooked and require further
research for clarification.

Bioinformatics, as a practical interdisciplinary field
combining molecular biology and information technology,
has partially revealed the potential mechanisms of diseases at
the molecular level, providing new avenues for the diagnosis
and treatment of human diseases (23). High-throughput chip
sequencing technology rapidly captures differential gene
expression profiles and efficiently acquires biological informa-
tion on a large scale and is widely employed in basic medical
research and disease diagnostics (24). Machine learning refers
to a category of algorithms aiming to extract hidden rules
from extensive historical data for prediction or classification
purposes (25). Due to the expanding scale of biological data
and the inherent complexity of machine learning, it has been
widely and deeply applied in bioinformatics to aid in estab-
lishing predictive and analytical models explaining potential
biological processes (25). Innovations in technologies such as
high-throughput sequencing have brought new advancements
in the study of microglial heterogeneity (26). The present study
aimed to explore the mechanism of apoptosis clearance of
microglia post-SCI using various machine-learning algorithms.

Mertk, a member of the TAM (Tyro3, Axl, Mertk) receptor
tyrosine kinase family, is primarily expressed by microglial
cells (27,28). A number of studies indicate that Mertk regu-
lates the phagocytic clearance of apoptotic cells and myelin
debris by microglia and macrophages (29-31). UNC5609 is an
ATP-competitive, reversible, orally active MerTK-specific
inhibitor that can inhibit the clearance function of
microglia (32). It is well-known that stimulating microglia with
lipopolysaccharide (LPS) can simulate neuroinflammation in
microglia (33-35), with multiple studies demonstrating the
feasibility of this method (36-39).

The present study comprehensively analyzed the data from
GSE96055 (40) using various machine learning algorithms
and bioinformatics tools to uncover the crucial mechanisms
and key genes of microglia involved in SCI and experimen-
tally validate them through treatment with LPS + UNC569
on the BV2 cell line. The present study provided unique
insights into the mechanisms through which microglia regu-
late inflammation following SCI and their involvement in
neuronal regulation, offering potential targets and theoretical
foundations for the diagnosis and treatment of SCI.

Materials and methods

Download expression matrix data. The expression matrix
for GSE96055 (40) was derived from the GEO database
(https://www.geoncbi.nlm.nih.gov/). The age of rats used
in the data set is ~12 weeks and the data set is based on
GPL17021 platform analysis (40). Microglia were purified
by flow cytometry fluorescence sorter (FACS) in non-injured
CX3CRI1+/eGFP mice and at 3 time points (3, 7 and 14 days)
following moderate and severe SCI (40). Gene profiles were
then compared (Fig. 1A).

Data preprocessing and identification of differentially
expressed genes (DEGs). The expression matrix was
subjected to batch effect elimination and batch normal-
ization using R software (v4.1.3; https://www.r-project.
org/) and R-package SVA (v3.3; https://www.bioconductor.
org/packages/release/bioc/html/sva.html) (41). The Limma
package (v3.4; http://www.bioconductor.org/packages/
release/bioc/html/limma.html) was used to identify DEGs
by comparing expression values between the sham and SCI
group (42). The adjusted P<0.05 and llogFCI>1 were used as
the selection criteria (42).

Weighted correlation network analysis (WGCNA) and
Random forest analysis (RF). WGCNA (v1.6.1; cran.r-project.
org/web/packages/ WGCNA/index.html) is a tool (43) for
constructing gene co-expression networks and identifying
gene clusters or modules, which was used to analyze highly
relevant native gene clusters or modules for SCI. Based on
the conventional gene screening method of WGCNA (44),
the following parameters were set in the present study: A
total of =10 cut-off genes, cutting height=0.90, Z-score
=5 and stability-related stability correlation P<0.05; the
connection of nodes (genes) between the two was used to
calculate the dataset and genes with the correlation coef-
ficient <0.5 were excluded. The conservation status of the
WGCNA module and the traits-related characteristics
were analyzed. RF (v4.7.1; https://www.bioconductor.
org/packages/release/bioc/html/randomForest.html) is an
integrated algorithm composed of decision trees and one
of the commonly used machine learning algorithms (45). It
can be used for both classification problems and regression
problems (45). This algorithm was used to screen genes with
variable importance >0 for subsequent analysis.

Functional enrichment analysis and protein-protein
interaction network (PPI) analysis. Gene Set Enrichment
Analysis (GSEA) (46) is a computational method that
determines whether an a priori defined set of genes
shows statistically significant, concordant differences
between two biological states and its R package is
clusterProfiler (47) (v4.0.5; https://www.bioconductor.
org/packages/release/bioc/html/clusterProfiler.html). The
Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene
Ontology (GO) and protein-protein interaction network
(PPI) analysis was performed using the Metascape website
(http://www.metascape.org/) (48). The connectivity (degree)
and hub nodes (genes) in PPI (49) were obtained using
scale-free property (48). The results of PPI were imported into
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Figure 1. Identification of DEGs. (A) Research roadmap. (B) Heat map of relative expression levels of various cellular markers for 20 samples in the data set,
with the deepest blue representing 0. Venn diagram of DEGs between the SHAM operation group and at 3, 7 and 14 days after SCI of the (C) HS and the
(D) FT, respectively. In each annotation circle, red represented the number of upregulated genes, blue represented the number of downregulated genes and
yellow represented the number of genes with the opposite trend in the intersection set. (E) BP, KEGG and Reactome analysis in GSEA between the SHAM
and the SCI group. DEGs, differentially expressed genes; SCI, spinal cord injury; HS, hemiparaplegia injury group; FT, complete paraplegia injury group;
BP, biological process; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, Gene Set Enrichment Analysis; WGCNA, weighted correlation network
analysis; RF, random forest; PPI, protein-protein interaction network; RT-PCR, reverse transcription-quantitative PCR.

Cytoscape software (v3.9.1; http://www.cytoscape.org/) and
further analyzed in combination with the results of DEGs.

Comparison of expression of hub genes. The heat map
was generated using R-packages Complex-Heatmap
(v3.1; https://cran.r-project.org/web/packages/
ComplexHeatmap/index.html) and GGplots (v3.0; https://
cran.r-project.org/web/packages/ggplots/index.html) to
compare the expression levels of hub genes (50). The

least absolute shrinkage and selection operator (LASSO)
analysis (51) (v4.1.4; https://cran.r-project.org/web/packages/
glmnet/index.html) is also one of the commonly used machine
learning algorithms, which is characterized by variable selec-
tion and regularization while fitting the generalized linear
model. The degree of adjustment of the regression complexity
of LASSO is controlled by the parameter A (51). The larger A
is, the stronger the penalization for the linear model with more
variables (51). The goal is to choose the A model corresponding
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Table I. Gene primers used in the present study.

Gene Name

Forward primer 5'-

Reverse primer 3'-

GAPDH Glyceraldehyde-3-
Phosphate Dehydrogenase

ACAGCAACAGGGTGGTGGAC

TTTGAGGGTGCAGCGAACTT

IL1b Interleukin 1 GCCAGTGAAATGATGGCTTATT AGGAGCACTTCATCTGTTTAGG

IL6 Interleukin 6 CACTGGTCTTTTGGAGTTTGAG GGACTTTTGTACTCATCTGCAC
TNFa Tumor necrosis factor a AAGGACACCATGAGCACTGAAAGC AGGAAGGAGAAGAGGCTGAGGAAC
Anxa2 Annexin A2 CTGGGGACTGACGAGGACT GTTGATCTCTTGCAGCTCCTG

Myole  Myosin IE AGAGCAAAGTCAACCCTCCTG GGTTCCAGCTGTTGAAGTGC

Sppl Secreted phosphoprotein I  AGCTGGATGAACCAAGTCTGG GGCTGTGAAACTTGTGGCTC

to the minimum variable characteristics and errors as much
as possible because after the A value reaches a certain size,
continuing to increase the number of model-independent
variables or reducing the A value cannot significantly improve
the model performance. Thus, a model with fewer variables
is obtained finally. The present study calculated LASSO-Cox
coefficients using a Lasso regression model to select key genes
in microglia following SCI.

Cell culture and reverse transcription-quantitative (RT-q)
PCR. The microglia cell line BV2 was purchased from the
China Academy of Sciences Cell Bank. LPS can stimulate
microglia to switch to M1 phenotype to express pro-inflam-
matory cytokines (52). The present study used LPS to simulate
the neuroinflammatory state. The relative expression levels
of the common pro-inflammatory factors IL1b, IL6 and TNF
were measured to verify whether the BV2 cells were converted
to M1 type. Following resuscitation of BV2 microglia, 10%
fetal bovine serum (cat. no. 30067334; Invitrogen; Thermo
Fisher Scientific, Inc.) was added into DMEM medium
(cat. no. 11320033; Invitrogen; Thermo Fisher Scientific,
Inc.) and incubated at 37°C and 5% CO, for at least 8 h. The
medium was changed every other day and passaged every
2 days. The morphology of the cells was observed under a light
microscope at a magnification of x20. After the BV2 microglia
entered the logarithmic phase, the cells were stimulated with
LPS (100 ng/ml) for 6, 12 and 24 h. Total RNA was isolated
using TRIzol® reagent (Thermo Fisher Scientific, Inc.) and
reverse transcribed into cDNA according to the manufacturer's
instructions. TRIzol® (500 ul) was added and mixed well. A
total of 200 ul chloroform was added, shaken and allowed to
stand for 5 min. The mixture was centrifuged at 4°C, 4,000 x g
for 15 min and collected the upper phase. An equal amount of
isoamyl alcohol was added, mixed evenly and allowed to stand
for 5 min. After centrifuging at 4°C, 4,000 g for 10 min, the
supernatant was discarded. 1 ml of 75% ethanol was added with
gentle oscillation. The RNA concentration was determined
after drying. The cell density for RNA extraction is approxi-
mately 8x10°/ml, and RNA purity and quantification are tested
by spectrophotometry. RNA extraction, cDNA synthesis, and
qPCR are performed according to the manufacturer's protocol.
RT-qPCR was performed using SYBR green dye (Takara
Biotechnology Co., Ltd.) under the following parameters:
Initial denaturation step at 95°C for 30 min; 40 cycles at 95°C
for 5 sec; and 60°C for 30 sec. Each sample was repeated three

times independently and the PCR results were statistically
analyzed by the 2224 method (53). The entire experimental
procedure was completed independently for each sample. The
mRNA primers are shown in Table I.

ELISA. The expression levels of Anxa2 (cat. no. E1944r; ElAab
Biotechnology Inc.), Myole (cat. no. KTE61422; Abbkine
Scientific Co., Ltd.) and Sppl (cat. no. E0899m; ElAab
Biotechnology, Inc.) in BV2 cells were determined by ELISA
kits. The sample were stored at -80°C before measurement.
The optical density at 450 nm was calculated by subtracting
the background value and the standard curve was drawn.

Data analysis. SPSS 22.0 software (IBM Corp.) was used
for all statistical analyses. One-way ANOVA was used for
comparison between groups. All experiments were inde-
pendently repeated three times. Tukey's honestly significant
difference test was conducted as post-hoc analyses. All
data are presented as the mean + SEM. GraphPad Prism 6
(Dotmatics) was used for plotting. P<0.05 was considered to
indicate a statistically significant difference.

Results

Identification of DEGs. Following standardized pretreat-
ment of microarray results from GSE96055, the present
study compared the expression levels of microglia and other
cell marker genes. The analysis revealed that the sequencing
target in the dataset was microglia following SCI (Fig. 1B).
DEGs were identified by comparing the SHAM group with
the SCI group at 3, 7 and 14 days, leading to the detection of
a total of 6,513 DEGs in the hemiparaplegia injury group as
moderate SCI and 1,348 DEGs in the common intersection
of the three groups (Fig. 1C). In comparison with the SHAM
group, the 3-day group exhibited 1,724 downregulated genes
and 1,436 upregulated genes, while the 7-day group showed
218 downregulated genes and 224 upregulated genes and the
14-day group displayed 143 downregulated genes and 123
upregulated genes (Fig. 1C). In the complete paraplegia injury
group, as severe SCI, 6,076 DEGs were detected, with 1,414
DEGs at the intersections shared by the three groups (Fig. 1D).
The SHAM group demonstrated 1,295 downregulated genes
and 1,024 upregulated genes compared with the 3-day group,
93 downregulated genes and 96 upregulated genes compared
with the 7-day group and 330 downregulated genes and
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Figure 2. WGCNA and RF of DEGs. (A) Scale independence. (B) Mean connectivity. The network topology analysis for adjacency matrix with different
soft threshold power. Red numbers in the boxes indicate the soft thresholding power corresponding to the correlation coefficient square value (y-axis).
(C) Consensus module dendrogram was produced by 7,340 DEGs with a variation coefficient of expression >0.1, based on the criteria of correlation coefficient
square of eigengenes above 0.90, soft threshold power of 18, the number of genes >10 and cut height=0.90. (D) Module-trait associations. Each row corresponds
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284 upregulated genes compared with the 14-day group
(Fig. 1D). Altogether, 7,340 DEGs were identified across
both groups with varying degrees of SCI. GSEA performed
on these genes indicated their close association with the
progression of neuroinflammation, highlighting enhanced
recruitment of microglia, heightened endocytosis and intensi-
fied inflammatory responses, along with increased expression
levels of various inflammatory cytokine signaling pathways
(Fig. 1E).

WGCNA and RF analysis of DEGs. The expression matrix
of 7,340 DEGs was used for network construction. A soft
threshold power of 18 was determined for the adjacency matrix
and module recognition in WGCNA was carried out based on a

gene correlation coefficient >0.90 (Fig. 2A). The resulting gene
modules demonstrated a near scale-free topology standard
(Fig. 2B). After determining the soft threshold, the expression
matrix of differential genes was further processed to identify
modules using hierarchical clustering and the dynamic cutting
algorithm (Fig. 2C). A total of 15 different co-expression
modules were identified and visualized in different colors,
with the Green module displaying the highest correlation coef-
ficient with SCI (p=0.97) and the smallest P value (P=10"?),
indicating strong association with subacute SCI (Fig. 2D). This
module comprised 498 genes. Subsequently, RF analysis was
conducted on the 7,340 DEGs to select genes highly relevant
to microglia following SCI, resulting in the identification of
458 genes (Fig. 2E).
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Figure 3. Functional enrichment, PPI and LASSO analysis of hub genes. (A) Venn diagram of intersection genes between WGCNA and RF. (B) Functional
enrichment analysis for 301 hub genes. (C) PPI analysis of hub genes. Red indicates that the gene expression level is upregulated after SCI and blue indicates
that the gene expression level is downregulated. The darker the color, the greater the difference in expression level. (D) The locus of change of independent
variable coefficient of LASSO analysis. Each curve in the figure represents the change trace of coefficient of each independent variable. The ordinate is the
value of the coefficient, the lower abscissa is log(L) and the upper abscissa is the number of non-zero coefficients in the model at this time. The later the
coefficient is compressed to 0, the more important the variable is as the value of A changes. (E) Model error diagram of LASSO analysis. On the ordinate is
Mean-Squared Error. Cross Validation of LASSO analysis allows that for each A value, around the mean of the target parameter shown by the red dot, one
can obtain the confidence interval of the target parameter. There are two numerical dashed lines, the line with the lowest error on the left (Amin) and the line
with the least feature on the right (Alse), which are 0.03236614 and 0.0763 respectively. Amin is the average of the minimum objective parameters that give all
) values. The value of Alse is a model with good performance but the least parameters. When Alse was chosen, the performance of the model is the best. PPI,
protein-protein interaction; LASSO, least absolute shrinkage and selection operator; WGCNA, weighted correlation network analysis; RF, random forest; SCI,
spinal cord injury; PPI, protein-protein interaction network; GO, Gene Ontology.

Functional enrichment, PPI and LASSO of hub genes. The
intersection of 498 genes in the green module of WGCNA
and 458 genes in RF yielded 301 hub genes (Fig. 3A). Further
analysis of the GO functions and KEGG pathways of these
hub genes suggested a close association between post-SCI
microglia and neuroinflammation, participating in the regu-
lation of apoptosis (Fig. 3B and Table II). PPI revealed that
205 genes could serve as central nodes, with the expression
levels of 111 genes upregulated and 94 genes downregulated
post-SCI (Fig. 3C). Subsequently, through LASSO analysis of
the 205 hub nodes (Fig. 3D and E), key genes were identified.

The two dashed lines in Fig. 3E represent two specific A values,
namely Amin and Alse, which were 0.03236614 and 0.0763,
respectively. A-min is the average minimum targeted parameter
value of all A values. The Alse value represents a model with
good performance and minimal parameters. When selecting
Mse, the performance of the model is optimal. Ultimately, the
top three key genes in LASSO based on parameter values were
identified as Anxa2, Myole and Sppl.

Single-gene GSEA analysis of key genes. To further investi-
gate the specific functional mechanisms of these three key
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Figure 4. Single-gene GSEA analysis of key genes. BP, KEGG and Reactome analysis in GSEA analysis between the high-expression and low-expression
group of (A) Anxa2. (B) Myole. (C) Sppl. BP, biological process; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, Gene Set Enrichment Analysis.

genes, single gene GSEA analysis was conducted, dividing
20 samples into corresponding high and low expression groups
based on the expression levels of Anxa2, Myole and Sppl. The
results showed a close correlation between the upregulation of
Anxa2 in post-SCI microglia and inflammatory factors such as
IL-6, IL-17 and TNF signaling pathways (Fig. 4A). Similarly,
activation of JAK-STAT, p38MAPK cascade and Notch
signaling pathways was observed (Fig. 4A). In addition, Myole
was upregulated in post-SCI microglia and may participate in
mechanisms such as enhanced responsiveness to interferons,
increased expression of inflammatory signaling pathways
and NF-«B activation (Fig. 4B). Sppl was closely associated
with enhanced phagocytic activity and complement activation
in post-SCI microglia (Fig. 4C). Notably, in the biological
functional analysis of these three genes, all three key genes
were closely related to the gene set involved in the clearance
of apoptotic cells, suggesting that these key genes may play
important roles in the mechanism of clearing apoptotic cells
in post-SCI microglia (Fig. 4A-C).

Comparison and verification of expression of key genes. The
present study analyzed the relative expression levels of three
key genes from the GSE96055 dataset to study their expres-
sion patterns in post-SCI microglia, considering changes

in time and severity of injury (Fig. SA-C). The expression
levels of Anxa2 and Sppl appeared to be minimally affected
by injury time and severity, while the expression level of
Myole slightly increased with time post-injury. In addition,
the expression levels of 203 central genes in the dataset
were examined and a heatmap generated (Fig. SD). Heatmap
analysis revealed that genes with upregulated expression in
the upper part were more influenced by the injury time than
the severity, whereas genes in the lower part exhibited the
opposite trend (Fig. 5D).

It is known that the phagocytic cell receptor MerTK
regulates phagocytic activity in BV2 cells (54). To determine
whether key genes are involved in the clearance of apoptotic
cells in BV2 cells, cells were treated with LPS (100 nM)
and the MerTK-specific inhibitor UNC569 (500 nM) and
changes in gene expression monitored. Compared with the
control group, Anxa2, Myole and Sppl mRNA levels were
upregulated in the LPS group, indicating increased expres-
sion in pro-inflammatory microglial states, while they were
downregulated in the LPS + UNC569 group, suggesting
that inhibition of phagocytosis also suppressed their expres-
sion (Fig. 6A-C). Consistent with mRNA results, protein
levels of Anxa2, Myole and Sppl exhibited a similar trend
(Fig. 6D-F).
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Figure 5. Comparison of hub genes expression levels. Histogram of relative expression levels of (A) Anxa2, (B) Myole and (C) Sppl in GSE96055 expression
matrix. (D) Heat map of 203 hub nodes in PPI. PPI, protein-protein interaction. “P<0.01, ““P<0.001 vs. sham.

Discussion neuroinflammation and efferocytosis. It is worth noting that

the expression levels of Anxa2, Myole and Sppl in microglia
In the present study, through bioinformatics analysis, a close ~ following SCI were significantly upregulated. These three
correlation was discovered between microglia after SCI and  genes are closely associated with various biological functions,
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Figure 6. RT-qPCR and ELISA validation. The mRNA expression levels of (A) Anxa2, (B) Myole and (C) Sppl. (The protein expression levels of three key
genes, (D) Anxa2, (E) Myole and (F) Sppl. A total of three samples per group in duplicate were summarized as the mean + SEM with P<0.05. BV2 microglia
were stimulated with 100 ng/ml LPS for 6, 12 and 24 h, compared with the unstimulated group, respectively. One-way ANOVA was performed. "P<0.05,
“P<0.01, ""P<0.001. RT-qPCR, reverse transcription-quantitative PCR; SCI, spinal cord injury; SE, standard error; LPS, lipopolysaccharide.

such as signaling pathways involved in the release of inflam-
matory factors, amplification of inflammatory cascades and
phagocytosis. Notably, they are all significantly enriched in
the gene set related to the clearance of apoptotic cells.

GSEA results for the SHAM group and SCI group revealed
that microglia mainly play an immunomodulatory role and
participate in the polarization and recruitment of macrophages
derived from microglia and monocytes at the site of injury.
Additionally, they regulate the secretion of interleukins and
interferons. These results indicated that microglia primarily
play a pro-inflammatory role at the site of SCI, consistent with
the views of other researchers (12-14). Widely used machine
learning algorithms, WGCNA, RF and LASSO analysis, have
been employed in biomedical research, typically used individu-
ally (55,56). The present study integrated these three different
algorithms for key gene screening and analysis for the first
time, to the best of the authors' knowledge. WGCNA focuses
on specific phenotypes and co-expression modules, where
genes within the same module are considered functionally
related with higher reliability and biological significance (56).

RF evaluates the importance of variables in determining
categories (57,58), while LASSO effectively selects features
and addresses multicollinearity issues (59).

Conventional bioinformatics analysis relies on researchers
manually designing rules and processes, which introduces
subjectivity and limitations, potentially hindering the full
exploration of potential patterns and information within the
data, as well as struggling to effectively handle complex data
structures and relationships. The present study effectively iden-
tified and predicted biological characteristics, gene expression
patterns and disease-related genes of microglial cells post-SCI
using the GSE96055 dataset for machine learning algorithms,
thereby enhancing the accuracy and precision of data analysis.
It identified a characteristic gene set of microglia after SCI
and found that key genes Anxa2, Myole and Sppl are closely
associated with the clearance of apoptotic cells.

The clearance of apoptotic cells is crucial for the restora-
tion of extracellular environment homeostasis (60). Despite
extensive attention to efferocytosis in inflammatory macro-
phages (61) and cancerous macrophages (62), specific research
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on the mechanisms of microglia in the nervous system,
particularly after SCI, is lacking. The MerTK signaling
pathway plays a vital role in the clearance of apoptotic cells by
microglia (63). In the present study, the MerTK-specific inhib-
itor UNC569 was used to suppress the clearance of apoptotic
cells in microglia, widely utilized for the phagocytic clearance
function of microglia (54). Finally, the results of analysis were
validated using BV2 cells in vitro, consistent with the findings
of the bioinformatics analysis.

Anxa2, a member of the calcium-dependent phospho-
lipid-binding proteinfamily,playsaroleincell growthregulation
and signal transduction pathways (64,65). Anxa2 is involved in
various cellular processes such as proliferation, differentiation,
apoptosis, migration, membrane repair, immune suppression
and inflammatory responses, closely associated with the
prognosis and severity of various diseases (66-68). GSEA
analysis of Anxa2 suggested its involvement in regulating
relevant inflammatory factor signaling pathways, consis-
tent with the findings of other researchers. Previous studies
have shown that Anxa2 promotes phagocytic cell assembly,
regulates the endosomal recycling pathway and multicellular
endosome biogenesis (69,70). Anxal has been implicated in
the efferocytosis of microglia. In addition, GSEA analysis of
Myole and Sppl indicated their participation in regulating
inflammation responses and inflammatory factor signaling
pathways related to microglia. Myole, as an unconventional
myosin, plays various critical roles in physiological processes
such as cell adhesion, migration, phagocytosis and cell expul-
sion based on its motility and structural features (71,72). Sppl,
a non-collagenous bone protein, has been shown to modulate
macrophage polarization (73). Recent studies suggest a crucial
role for Sppl in monitoring and regulating acute and chronic
neuroinflammation (74,75). Notably, SPP1 induces phagocytic
and synaptic engulfment of microglia in an Alzheimer's
disease mouse model (76).

These research findings are consistent with the discoveries
of the present study. In the results of single-gene GSEA analysis,
the three key genes Anxa2, Myole and Sppl not only play a
negative role in regulating inflammation but also actively partic-
ipate in the clearance of apoptotic cells, which may be a critical
manifestation of the dual role of microglia after SCI. However,
there is a lack of literature on their specific roles in clearing
apoptotic cells. The present study suggested that they may be
involved in regulating efferocytosis mechanisms, serving as
important targets for treating SCI. Whether these three key
genes can be used as indicators to determine the progression of
SCI requires extensive clinical research practice.

Despite significant progress in research on the clearance of
apoptotic cells, the study of efferocytosis mechanisms in the
CNS is still in its early stages. Combining results from studies
of other diseases, the type of disease and the duration of the
disease, efferocytosis may have different effects on disease
progression (11). Studies have indicated significant differ-
ences in the phagocytic response of peripheral macrophages
and microglia and variations in the efficiency of neuronal
apoptosis clearance. Additionally, compared with brain
injuries, the phagocytic capacity and phagocytic cell ratio of
microglia after SCI are quite heterogeneous (77-79). There
is a lack of literature on specific mechanisms, necessitating
further research. In SCI, current research suggests that white

matter and gray matter microglia have different transcrip-
tional profiles in disease progression and spatial axes (7,10).
However, their contributions to the clearance of apoptotic cells
remain unknown, highlighting the need for further investiga-
tion into the efferocytosis functions of microglia with different
functional phenotypes and how to regulate microglia to exert
neuroprotective effects.

However, the present study had some limitations. The data
used for analysis came from experimental animal models,
which may have limitations in the applicability of the analysis
results to human disease models due to genomic differences
between species. Subsequent studies should establish disease
models using different animal species, compare the consis-
tency and differences in various models and validate the results
in human tissues to enhance the reliability and applicability
of the findings. In addition, future research should integrate
proteomic, single-cell sequencing and spatial transcriptomic
data to comprehensively reflect the functional mechanisms of
microglia post-SCI, providing clues to uncover the pathological
mechanisms of SCI.

In conclusion, the present study showed that microglia after
SCI play essential roles not only in neuroinflammation but
also in the mechanism of apoptotic cell clearance. Notably, the
expression levels of Anxa2, Myole and Sppl in microglia after
SCI are significantly upregulated, potentially participating in
the regulation of apoptotic cell clearance mechanisms. The
present study suggested that Anxa2, Myole and Sppl may be
potential targets for future SCI treatments, providing a scien-
tific basis for the development of new therapeutic approaches
and drugs for SCI.
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