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Abstract
Distance measure is one of the research hotspot in Pythagorean fuzzy environment due to its quantitative ability of

distinguishing Pythagorean fuzzy sets (PFSs). Various distance functions for PFSs are introduced in the literature and have

their own pros and cons. The common thread of incompetency for these existing distance functions is their inability to

distinguish highly uncertain PFSs distinctly. To tackle this point, we introduce a novel distance measure for PFSs. An

added advantage of the measure is its simple mathematical form. Moreover, superiority and reasonability of the prescribed

definition are demonstrated through proper numerical examples. Boundedness and nonlinear behaviour of the distance

measure is established and verified via suitable illustrations. In the current scenario, selecting an antivirus face-mask as a

preventive measure in the COVID-19 pandemic and choosing the best school in private sector for children are some of the

burning issues of a modern society. These issues are addressed here as multi-attribute decision-making problems and

feasible solutions are obtained using the introduced definition. Applicability of the distance measure is further extended in

the areas of pattern recognition and medical diagnosis.

Keywords Pythagorean fuzzy sets (PFSs) � Distance measure and similarity � Medical diagnosis � Pattern recognition �
Multi-attribute decision making

1 Introduction

The fuzzy sets [1] allow an element under consideration to

have a partial membership degree of belongingness to a set

instead of the classical cases of ‘‘belongs to’’ or ‘‘not

belongs to’’. This revolutionary idea of fuzzy sets which

can accommodate uncertainty naturally has been studied

and applied extensively by researchers across different

communities. Later, it was realized that, like the partial

grade of membership for belongingness, the non-member-

ship grade is equally important. Thereby, intuitionistic

fuzzy sets (IFSs) were introduced and studied by Ata-

nossov [2–5] which is a generalization of fuzzy set. IFSs

consider degrees of membership (l) as well as non-mem-

bership (m), with their sum restricted to a value less than

equals to one, for an element in the universe of discourse.

Obviously, for fuzzy sets the non-membership grade is

always fuzzy complement of the membership grade. Con-

sidering l as abscissa and m as ordinate, the area under the
line lþ m ¼ 1 in the first quadrant geometrically represents

the admissible region for IFSs. There are instances where

the sum of membership and non-membership grades

exceeds one, viz. l ¼ m ¼ 1
ffiffi

2
p , and these can’t be repre-

sented by IFSs. It necessitates a further generalization of

IFSs to encompass such cases. Subsequently, Pythagorean

fuzzy sets (PFSs) were introduced by Yager [6, 7] which

allow a larger admissible area with sum of the squares of l
and m is less than equals to one. It is evident that, every

fuzzy set is an IFS, each IFS is a PFS, but not conversely.

PFSs allow more accessible area than IFSs, so it can effi-

ciently and accurately handle uncertainty. Because of that,

PFSs have drawn the attention of researchers and are being

applied in myriad fields like pattern recognition [8–12],

decision making [13–19], medical diagnosis [20–24] and

others [25–31], resulting in improved outcomes, since

inception.
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To estimate the similarity or difference between PFSs,

various distance and similarity measures have been intro-

duced and studied in the literature. These measures are

successfully employed to different regime of applications;

few among them are delineated here. On the basis of the

Minkowski distance measure, Chen [32] introduced a dis-

tance for PFSs and applied it to problems of Internet stock

and R&D project investment along with some other real-

world problems. In [33], the authors proposed several

distance measures for PFSs and Pythagorean fuzzy num-

bers and demonstrated their usefulness via examples. Wei

& Wei [23] presented ten different types of similarity

measures for PFSs based on cosine function and illustrated

their serviceability in medical diagnosis & pattern recog-

nition problems. Ejegwa [34] extended the distance mea-

sures for IFSs, viz, Hamming, Euclidean, normalized

Hamming, and normalized Euclidean distances, and simi-

larities to PFSs and applied them to multi-criteria decision-

making problems and multi-attribute decision-making

problems. Taking advantage of the Jensen–Shannon

divergence, a new divergence measure for PFSs was

introduced in [21]. This measure was further established as

a superior tool than the existing ones and was used to solve

medical diagnosis problems. Generalized Pythagorean

fuzzy normalized Hamming distance, the generalized

Pythagorean fuzzy normalized Hausdorff distance and the

generalized hybrid Pythagorean fuzzy normalized distance

were introduced in [27]. Peng [35] came up with new

Pythagorean distance and similarity measures [36] to

overcome the deficiencies of existing such measures. In

[9], the author modified the distance function introduced by

Zhang & Xu in [37] by normalizing it and validated the

axiomatic definition of a metric for modified version which

was missing in [37].

Summarizing the existing literature, we observe that

most of the distance functions for PFSs are introduced as a

generalization of IFS counterparts. Few among them are

not even normalized and thereby were reintroduced with

suitable normalization. On the other hand, the complex

mathematical form of some distance measures hinders their

applicability and popularity as a handy mathematical tool.

In addition to that, none among the existing measures could

distinctly distinguish highly uncertain PFSs, i.e. PFSs with

very small values of membership and non-membership

grades. One encounters such PFSs when minimal knowl-

edge or information is available about a system. So, there is

a need for a suitable distance measure to deal with such

PFSs. To fill the above-stated lacunae, we introduce a new

distance function with simple mathematical form for PFSs

which can effectively handle highly uncertain PFSs and is

equally efficient in other cases also. Therefore, the main

contributions of this work are

• introduction of a new distance measure for PFSs.

• construction of simple mathematical form of it to avoid

calculation complicacy.

• ability of handling effectively PFSs with higher degree

of uncertainty and equal efficiency in other cases also.

• applicability of the introduced definition in the fields of

multi-attribute decision making (MADM), pattern

recognition & medical diagnosis.

The paper is organized as follows. Section 2 recalls the

mathematical background of related concepts. The new

definition of distance measure for PFSs is proposed and

some properties are studied in Sect. 3. Different charac-

teristics of the proposed measure are verified via various

numerical examples in Sect. 4. Applicability of the pre-

scribed distance function in various fields is elaborated in

Sect. 5 followed by the conclusions in the last section.

2 Mathematical background

In this section, we quickly recall some of the basic defi-

nitions and results required for our further studies.

Definition 2.1 [2] Let X be a finite universe of discourse.

An IFS K in X is defined as K ¼ fhlKðxÞ; mKðxÞijx 2
Xg; lK : X ! ½0; 1� and mK : X ! ½0; 1� are, respectively,

the membership and non-membership functions, such that

0� lKðxÞ þ mKðxÞ� 1; 8x 2 X. The degree of hesitancy is

given by pKðxÞ ¼ 1� lKðxÞ � mKðxÞ.

Definition 2.2 [6, 13] Let X be a finite universe of dis-

course. A Pythagorean fuzzy set (PFS) K in X is defined as

K ¼ fhKYðxÞ;KNðxÞi j x 2 Xg; KY : X ! ½0; 1� and

KN : X ! ½0; 1�, respectively, indicate the guaranteed

membership and non-membership functions, such that

0�K2
YðxÞ þ K2

NðxÞ� 1; 8x 2 X. The degree of hesitancy is

given by KHðxÞ ¼ HesðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� K2
YðxÞ � K2

NðxÞ
p

.

It is clear from the definitions that the admissible area

under Pythagorean membership grades is greater than that

of intuitionistic membership grades.

Unless mentioned otherwise, from now onward any

PFS, say K ¼ fhKYðxÞ;KNðxÞi j x 2 Xg is denoted simply

as K for brevity. The guaranteed membership KY , non-

membership KN and the degree of hesitancy KH are always

associated with the PFS K in this notation.

2.1 Operations

Let PFSðXÞ denote the class of all Pythagorean fuzzy sets

defined on the finite universe of discourse X. The following

operations [6, 13] are valid for all members

K; L 2 PFSðXÞ,
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K ¼ L , KYðxÞ ¼ LYðxÞ&KNðxÞ ¼ LNðxÞ 8x 2 X; ð1Þ

K � L , KYðxÞ� LYðxÞ&KNðxÞ� LNðxÞ 8x 2 X;

wesayK � L , K � L;K 6¼ L;
ð2Þ

the complement of K is defined as

Kc ¼ fhKNðxÞ;KYðxÞi j x 2 Xg;
ð3Þ

K [ L ¼ fhmax KYðxÞ; LYðxÞ½ �;min KNðxÞ; LNðxÞ½ �i j x 2 Xg;
ð4Þ

K \ L ¼ fhmin KYðxÞ; LYðxÞ½ �;max KNðxÞ; LNðxÞ½ �i j x 2 Xg:
ð5Þ

2.2 Distance measures

Below we list some of the popularly used definitions of

distance measure for Pythagorean fuzzy sets. The follow-

ing normalized versions of distance functions between two

PFSs K, L were introduced in [21].

1. Normalized Hamming distance

DHmNðK; LÞ ¼
1

2n

X

n

i¼1

jK2
YðxiÞ � L2YðxiÞj þ jK2

NðxiÞ
�

�L2NðxiÞj þ jK2
HðxiÞ � L2HðxiÞjÞ;

ð6Þ

2. The Euclidean distance

3. The normalized Chen’s distance

DCNðK; LÞ ¼
1

2n

X

n

i¼1

jK2
YðxÞ � L2YðxÞj

b þ jK2
NðxÞ

�

"

�L2NðxÞj
b þ jK2

HðxÞ � L2HðxÞj
bÞ�

1
b;

ð8Þ

where b� 1 is a distance parameter. For b ¼ 1 we get

the Hamming distance and b ¼ 2 gives the Euclidean

distance.

4. The normalized PFSJS distance

where K2
HðxÞ ¼ 1� K2

YðxÞ � K2
NðxÞ and p 2 fY;N;Hg.

5. Normalized Hausdorff distance [38]

DHNðK;LÞ ¼
1

n

X

n

i¼1

max jK2
YðxiÞ � L2YðxiÞj; jK2

NðxiÞ � L2NðxiÞj
� �

;

ð10Þ

6. Zhang and Xu distance [37]

DZXðK; LÞ ¼
1

2

X

n

i¼1

jK2
YðxiÞ � L2YðxiÞj

�

þjK2
NðxiÞ � L2NðxiÞj þ jK2

HðxiÞ � L2HðxiÞjÞ;
ð11Þ

7. Modified Zhang and Xu distance [9]

DMZXðK; LÞ ¼
1

n
DZXðK; LÞ; ð12Þ

where DZXðK; LÞ denotes Zhang and Xu distance as

mentioned in Eq. (11).

This list is by no means exhaustive and few of the popular

distance measures are mentioned above. We have com-

pared our results with those obtained through some of the

aforesaid distances.

DENðK; LÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2n

X

n

i¼1

ðK2
YðxiÞ � L2YðxiÞÞ

2 þ ðK2
NðxiÞ � L2NðxiÞÞ

2 þ ðK2
HðxiÞ � L2HðxiÞÞ

2
� �

s

; ð7Þ

DFWðK; LÞ ¼
1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2

X

p

K2
pðxiÞ log

2K2
p ðxiÞ

K2
pðxiÞ þ L2pðxiÞ

 !

þ
X

p

L2pðxiÞ log
2L2pðxiÞ

K2
pðxiÞ þ L2pðxiÞ

 !" #

v

u

u

t ; ð9Þ
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3 Proposed definition with mathematical
properties

Here we introduce a novel distance measure for PFSs and

study some of its mathematical properties.

Definition 3.1 Given a finite universe

X ¼ fxi j i ¼ 1; 2; . . .; ng, distance between any two PFSs

K& L is defined as

DðK; LÞ ¼ 1

n

X

n

i¼1

jK2
YðxiÞ � L2YðxiÞj þ jK2

NðxiÞ � L2NðxiÞj
K2
YðxiÞ þ L2YðxiÞ þ K2

NðxiÞ þ L2NðxiÞ
;

ð13Þ

where K ¼ fhKYðxiÞ;KNðxiÞi j xi 2 Xg and

L ¼ fhLYðxiÞ; LNðxiÞi j xi 2 Xg.

Then we have the following theorem.

Theorem 3.2 Let K1;K2 and K3 be three PFS defined in

the universe of discourse X. The introduced distance

measure D satisfies the following properties:

(i) Boundedness: 0�DðK1;K2Þ� 1; 8Ki;

(ii) Reflexivity: DðK1;K1Þ ¼ 0 8Ki ;

(iii) Symmetry: DðK1;K2Þ ¼ DðK2;K1Þ;
(iv) Separability: DðK1;K2Þ ¼ 0 iff K1 ¼ K2;

A distance function satisfying the conditions (ii), (iii) &

(iv) of Theorem 3.2 is known as semi-metric in the liter-

ature [39].

Proof

(i) It is evident that,

max
jK2

YðxiÞ � L2YðxiÞj þ jK2
NðxiÞ � L2NðxiÞj

K2
YðxiÞ þ L2YðxiÞ þ K2

NðxiÞ þ L2NðxiÞ

� 	

¼ 1

for each xi

) 1

n

X

n

i¼1

jK2
YðxiÞ � L2YðxiÞj þ jK2

NðxiÞ � L2NðxiÞj
K2
YðxiÞ þ L2YðxiÞ þ K2

NðxiÞ þ L2NðxiÞ
� 1.

We have KYðxiÞ; LYðxiÞ 2 ½0; 1� 8xi 2 X. So

D(K, L) is a nonnegative quantity and hence we

conclude 0�DðK; LÞ� 1.

(ii) Obvious implication from equality of two PFSs.

(iii) Follows from the definition of distance function.

(iv) Using reflexivity property, we are left to show

DðK1;K2Þ ¼ 0 ) K1 ¼ K2.

NowDðK1;K2Þ ¼ 0

) 1

n

X

n

i¼1

jK2
1YðxiÞ � K2

2YðxiÞj þ jK2
1NðxiÞ � K2

2NðxiÞj
K2
1YðxiÞ þ K2

2YðxiÞ þ K2
1NðxiÞ þ K2

2NðxiÞ
¼ 0

)jK2
1YðxiÞ � K2

2YðxiÞj þ jK2
1NðxiÞ � K2

2NðxiÞj ¼ 0

)K2
1YðxiÞ � K2

2YðxiÞ ¼ 0&K2
1NðxiÞ � K2

2NðxiÞ ¼ 0

)K1YðxiÞ ¼ K2YðxiÞ&K1NðxiÞ ¼ K2NðxiÞ 8xi
)K1 ¼ K2:

4 Numerical examples and characteristics

4.1 Boundedness and nonlinearity

	 Consider two PFSs K and L defined on X ¼ fxg,
where K ¼ ha; bi; L ¼ hb; ai. As K and L are PFSs,

we must have a2 þ b2 � 1. Distance between such K

and L using Eq. (13), is portrayed in Fig. 1 (left) and

it is verified that, the distance is 0 iff a ¼ b, i.e. when

A ¼ B. We adhere to the fact that, the PFS L is the

complement of K and a mirror reflection about the

45
 line will take PFS L to PFS K. This geometrical

interpretation infers that, the PFSs lying on a ¼ b line

are self-complement and thereby result in null dis-

tances as evident from Fig. 1 (left). It further verifies

that the proposed distance function is bounded

between 0 and 1. Additionally, for a selected value of

b, say 0.2, Fig. 1 (right) portrays the nonlinear

behaviour of the distance function. In a similar

manner, for a given value of a, the proposed distance

yields similar characteristics against b.

	 Let us take a PFS, K ¼ ha; bi defined on X ¼ fxg.
Being the membership & non-membership values of

a PFS, a; b 2 ½0; 1� and a2 þ b2 � 1. Considering a2,

b2 as the membership & non-membership grades,

respectively, we construct another PFS, say

L ¼ ha2; b2i. Now, we calculate the distance between
PFSs K & L using Eq. (13) and plot its variation in

Fig. 2, for all allowed values of a and b. Boundedness

and nonlinearity of the proposed distance are appar-

ent here.
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	 Next, consider the PFSs, K ¼ ha; bi and L ¼ hb; 1�
bi defined on X ¼ fxg. For such a choice of L, the

distance between them now varies against a, b and

b. Without loss of generality, following four choices

of K are considered

ðiÞK ¼ h1; 0i; ðiiÞK ¼ h0; 1i;

ðiiiÞK ¼ h0:4; 0:8i and ðivÞK ¼ 1
ffiffiffi

2
p ;

1
ffiffiffi

2
p


 �

:

and variations of D(K, L) with respect to b are

portrayed in Fig. 3. It is evident from the figure that

the distance function D is bounded for all allowed

values of b and its variation shows nonlinearity in all

the cases.

4.2 Superiority

To demonstrate the superiority of the introduced distance

function, a comparison among results obtained by our

method and few popular distance functions is executed. For

this purpose, let us take three PFSs, K, L, M defined on

X ¼ fxg, where

K ¼ h:01; :02i; L ¼ h:02; :02i; M ¼ h:1; :2i. As mentioned

earlier, the proposed function is sensitive to highly uncer-

tain PFSs, thereby, without loss of generality, aforesaid

three PFSs are chosen as exemplary. Then, we calculate the

distances D(M, K) and D(M, L) using Eq. (13) and few

other distance functions (using Eqs. (6)–(10)). The results

are displayed in Table 1. It is evident that the distance

measures DHmN ; DEN &DHN couldn’t differentiate K & L

from M . However, DCN and DFW could distinguish, but

they fall short when the results are rounded off to second

decimal places only. On the other hand, the proposed

function could clearly identify them as distinct sets even

after rounding off to second decimal place. This affirms the

superiority of our proposed definition.

Next example demonstrates that the applicability of the

introduced definition is not limited to highly uncertain

PFSs only.

4.3 Counter-intuitive case

We consider pairs of PFSs A1 ¼ fh:10; :10i;h:10; :
10ig ¼ A2; A3 ¼ fh:714; :640i; h:640; :557ig ¼ A4.

B1 ¼ fh:02; :02i; h:02; :01ig;
B2 ¼ fh:01; :01i; h:02; :02ig;

0

0.2

0.4

0.6

0.8

1.0

0 0.3 0.6 0.9

0

0.5

1.

a

D
(K
,L
)

Fig. 1 Variation of distance function D(K, L) with respect to (left) a and b. (right) a for a fixed b ¼ 0:2

0

0.2

0.4

0.6

0.8

1.0

Fig. 2 Variation of D(K, L) against all feasible values of a & b
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B3 ¼ fh:640; :640i; h:714; :640ig;
B4 ¼ fh:781; :557i; h:557; :458ig, such that A1 6¼ A3 and all

Bi’s are distinct. Distances between such pairs of PFSs are

evaluated using the proposed definition (Eq. (13)) & some

popular distance measures (using Eqs. (6)–(10)) with a

comparison given in Table 2.

It is evident from Table 2 that, our distance function can

clearly distinguish such pairs by comparing the values in

columns 1 & 2 and 3 & 4, respectively, while others fail to

do so. Results obtained via the proposed distance are

marked in bold faces in the table.

5 Applications of the proposed definition

5.1 Multi-attribute decision-making (MADM)
problems

In an MADM problem, one tries to make the best possible

decision out of finite alternatives, by taking into account a

collection of clashing attributes with preferred weights.

Here all the alternatives against each attribute are repre-

sented by PFSs and the concept of similarity measure is

used to obtain a decision. Summarizing the scores of

evaluators for each attribute concerning every alternative

the representation is obtained. Weights for the attributes

have to be determined a priori. A decision is achieved by

implementing the following algorithm.

Step 1: Write the PFS representation of the alterna-

tives, say, Mi ¼ fhMðiÞ
Y ðxjÞ;MðiÞ

N ðxjÞijxj 2 Xg,

Fig. 3 Variation of D(K, L) with respect to b for some selected K

Table 1 Comparison of different distance measures

Distance D DHmN DEN DCNðb ¼ 5Þ DFW DHN

D(M, K) .980 .049 .045 .046 .128 .040

D(M, L) .969 .049 .045 .045 .126 .040

The results for proposed distance functions are marked in bold face

Table 2 Comparison of distance measures for different pairs of PFSs

A & B

Ai A1 A2 A3 A4

Bi B1 B2 B3 B4

D .94 .95 .090 .135

DHmN .02 .02 .150 .150

DEN .02 .02 .141 .141

DHN .01 .01 .100 .100

DCNðb ¼ 5Þ .02 .02 .155 .155

DFW .08 .08 .150 .111
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popularly known as decision matrix. Here,

M
ðiÞ
Y and M

ðiÞ
N represent the guaranteed mem-

bership and non-membership grades, respec-

tively, for the ith alternative, Mi.

Step 2: Construct positive ideal PFS using Eq. (4)

from the alternatives as

Mþ ¼
[

i

Mi: ð14Þ

Step 3: Similarly construct negative ideal PFS using

Eq. (5) as

M� ¼
\

i

Mi: ð15Þ

Step 4: Calculate the distances DðMi;M
þÞ and

DðMi;M
�Þ. For a given weight vector w ¼

fwi; 1� i� ng the distance measure should be

interpreted as the weighted distance given by

DðK; LÞ ¼ 1

n

X

n

i¼1

wi
jK2

YðxiÞ � L2YðxiÞj þ jK2
NðxiÞ � L2NðxiÞj

K2
YðxiÞ þ L2YðxiÞ þ K2

NðxiÞ þ L2NðxiÞ
:

ð16Þ

Step 5: Measure the similarity S, using the distance

calculated in the step 4. Here various func-

tional forms of similarity measure can be

explored.

Step 6: Evaluate relative similarity Sr for Mi through

the formula

SrðMiÞ ¼
SðDðiÞ

þ Þ
SðDðiÞ

þ Þ þ SðDðiÞ
� Þ

; ð17Þ

whereD
ðiÞ
þ ¼ DðMi;M

þÞ andDðiÞ
� ¼ DðMi;

M�Þ are estimated using Eq. (16).

Step 7: Rank the alternatives Mi in ascending order of

relative similarity values.

5.1.1 Face mask selection

In the COVID-19 pandemic, wearing a face-mask has

become an integral part of the life. There are plenty of face-

masks available in the market, few among them are dis-

posable medical masks (M1), medical surgical masks (M2),

particulate respirators (N95) (M3), ordinary non-medical

masks (M4), medical protective masks (M5) and gas masks

(M6). The set of clashing attributes for each mask type are

leakage rate (A1), reutilizability (A2), quality of raw

material (A3) and filtration capability (A4). To buy a face-

mask a person will put his/her preferred weight on the four

attributes which leads to an MADM problem. The PFS

representation of each attribute for every mask type is

given in Table 3 (for more details please refer to [40]).

From Table 3, positive and negative ideal PFSs are

calculated using Eqs. (14) & (15), respectively, as

Mþ ¼ fh0:73; 0:25i; h0:80; 0:12i; h0:73; 0:31i; h0:73; 0:42ig;
M� ¼ fh0:10; 0:64i; h0:32; 0:66i; h0:27; 0:68i; h0:23; 0:68ig:

Table 3 PFS representation of different mask types

Mask type A1 A2 A3 A4

M1 h0:73; 0:29i h0:8; 0:12i h0:28; 0:44i h0:28; 0:68i
M2 h0:29; 0:61i h0:54; 0:63i h0:27; 0:68i h0:30; 0:63i
M3 h0:54; 0:49i h0:44; 0:56i h0:61; 0:54i h0:73; 0:42i
M4 h0:39; 0:64i h0:34; 0:43i h0:45; 0:31i h0:23; 0:61i
M5 h0:53; 0:29i h0:45; 0:66i h0:73; 0:44i h0:60; 0:63i
M6 h0:10; 0:25i h0:32; 0:27i h0:43; 0:37i h0:60; 0:60i

Table 4 Distances of Mi from Mþ=M� and relative similarity

measures

M1 M2 M3 M4 M5 M6

DðMþ;MiÞ 0.306 0.632 0.322 0.577 0.323 0.540

DðM�;MiÞ 0.497 0.104 0.424 0.288 0.429 0.514

Sr 0.513 0.464 0.507 0.480 0.508 0.498

Table 6 Relative similarity measures corresponding to w1 &w2

SrðSiÞ S(D)

SrðS1Þ SrðS2Þ SrðS3Þ SrðS4Þ SrðS5Þ

1� D w1 0.5007 0.5016 0.4975 0.5093 0.5010

w2 0.4986 0.4987 0.5013 0.5096 0.5012

1� D

1þ D

w1 0.5013 0.5031 0.4953 0.5180 0.5018

w2 0.4974 0.4975 0.5024 0.5183 0.5023

e�D � e�1

1� e�1

w1 0.5011 0.5025 0.4962 0.5145 0.5015

w2 0.4979 0.4980 0.5019 0.5148 0.5018

Table 5 PFS representation of different schools

Schools A1 A2 A3 A4 A5

S1 h0:7; 0:6i h0:9; 0:4i h0:8; 0:4i h0:6; 0:5i h0:5; 0:4i
S2 h0:6; 0:5i h0:8; 0:3i h0:9; 0:1i h0:7; 0:6i h0:5; 0:6i
S3 h0:8; 0:4i h0:7; 0:5i h0:6; 0:2i h0:4; 0:3i h0:7; 0:2i
S4 h0:6; 0:4i h0:9; 0:2i h0:8; 0:5i h0:7; 0:5i h0:8; 0:3i
S5 h0:8; 0:5i h0:7; 0:4i h0:9; 0:3i h0:4; 0:5i h0:6; 0:5i
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By putting equal weight on each attribute, i.e.

w ¼ f:25; :25; :25; :25g, we calculate the distances between
Mi and Mþ=M� which are listed in Table 4. Using the

distance calculated, measure the similarity between Mi and

Mþ=M� via the operator SðDÞ ¼ 1� D. Further the rela-

tive similarity SrðMiÞ is obtained using Eq. (17) and results

are displayed in Table 4.

Finally, using Step 7, the ranking of face-mask is

obtained as follows

M1�M5�M3�M6�M4�M2:

Therefore, the best choice for the face-mask turned out to

be M1, i.e. disposable medical masks which is consistent

with the existing result [40]. A buyer may put more stress

on a particular attribute compared to rest, say the attribute -

filtration capability (A4) to select a face-mask. So, the

weight vector modifies to, w ¼ f0:2; 0:1; 0:1; 0:6g for the

attributes, A ¼ fA1;A2;A3;A4g. Following the steps of the

algorithm, the best choice of face-mask is M3 i.e. particu-

late respirators (N95) mask. Above discussion demon-

strates the effect of individual preference on attributes in

the outcome of decision-making process.

5.1.2 School selection [38]

Nowadays in spite of having good public sector schools,

the trend among parents is to send their children to private

sector. Of late private sector schools just spring up like

mushrooms. So selecting a suitable private school has

become a daunting task for parents. Let us consider a

collection of five private sector schools, designated as Si
where i ¼ 1; 2; . . .5, in a locality. Considering education-

alists and experts opinion the following attributes of the

schools are found to be the most influencing and significant

[38]: personalized attention (A1), academic accolades (A2),

skilful and up-to-date teachers (A3), parents and commu-

nity engagement (A4) and technical facilities (A5). The PFS

representation of each school against the attributes is

detailed in Table 5.

Following the algorithm, we obtain

Sþ ¼ fh0:8; 0:4i; h0:9; 0:2i; h0:9; 0:1i; h0:7; 0:3i; h0:8; 0:2ig
S� ¼ fh0:6; 0:6i; h0:7; 0:5i; h0:6; 0:5i; h0:4; 0:6i; h0:5; 0:6ig

Choices of weightage to the attributes are subjective. Here,

we consider two distinct weight vectors, say

w1 ¼ f0:18; 0:32; 0:23; 0:13; 0:14g, a case of unequal

Fig. 4 PFS distances of a test

sample from patterns
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weightage and w2 ¼ f0:2; 0:2; 0:2; 0:2; 0:2g, an example of

equal emphasis to each attribute. Using w1 &w2, we eval-

uate the weighted distance between Si and Sþ=S� using

Eq. (16). These weighted distances are further used to

obtain similarity measures and subsequently relative simi-

larity measures. We have employed three distinct func-

tional forms of similarity measure (S(D)) as listed in

Table 6.

Higher the value of relative similarity, better is the rank.

On that note,

	 ranking corresponding to w1 is S4�S2�S5�S1�S3. The

best choice of the private sector school turns out to be

S4 which is matching with the existing literature [38].

	 Ranking corresponding to w2 is S4�S3�S5�S2�S1.

Interestingly, here also the best option is found to be

S4; however positions of the rest have altered.

Table 7 PFS representation of

symptoms
Name of patient S1 S2 S3 S4 S5

Ali h0:8; 0:1i h0:6; 0:1i h0:2; 0:8i h0:6; 0:1i h0:1; 0:6i
Baruah h0:0; 0:8i h0:4; 0:4i h0:6; 0:1i h0:1; 0:7i h0:1; 0:8i
Chatterjee h0:8; 0:1i h0:8; 0:1i h0:0; 0:6i h0:2; 0:7i h0:0; 0:5i
Deka h0:6; 0:1i h0:5; 0:4i h0:3; 0:4i h0:7; 0:2i h0:3; 0:4i

Table 8 Symptom characteristics for diagnosis

Disease S1 S2 S3 S4 S5

D1 h0:4; 0:0i h0:3; 0:5i h0:1; 0:7i h0:4; 0:3i h0:1; 0:7i
D2 h0:7; 0:0i h0:2; 0:6i h0:0; 0:9i h0:7; 0:0i h0:1; 0:8i
D3 h0:3; 0:3i h0:6; 0:1i h0:2; 0:7i h0:2; 0:6i h0:1; 0:9i
D4 h0:1; 0:7i h0:2; 0:4i h0:8; 0:0i h0:2; 0:7i h0:2; 0:7i
D5 h0:1; 0:8i h0:0; 0:8i h0:2; 0:8i h0:2; 0:8i h0:8; 0:1i

Table 9 Comparison of

prediction
Patient Our prediction Others’ prediction

Ali Malaria Malaria [21, 24, 42–48, 50] , Viral fever [49]

Baruah Stomach problem Stomach problem [21, 24, 42–50]

Chatterjee Typhoid Typhoid [21, 42, 43, 45–50], Malaria [24, 44]

Deka Malaria Viral fever [21, 42, 45, 47, 48, 50] , Malaria [24, 43, 44, 46, 49]

Fig. 5 PFS distances of each

symptom from all possible

diagnosis
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It is to be observed that, different functional forms of

similarity measures have provided same ranking irrespec-

tive of the weight vector.

5.2 Pattern recognition

A pattern recognition problem is addressed using the pro-

posed distance measure. The problem is consisting of a test

sample S ¼ fh0:7; 0:7i; h0:3; 0:8i; h0:7; 0:2ig, which is to

be classified as one among three given patterns P1 ¼
fh0:5; 0:6i; h0:7; 0:3i; h0:8; 0:5ig; P2 ¼ fh0:6; 0:6i; h0:4;
0:8i; h0:6; 0:1ig and P3 ¼ fh0:6; 0:7i; h0:4; 0:9i;
h0:6; 0:4ig. The steps to be followed in the process are:

	 Step 1: Obtain the PFS representations of the patterns

as well as the sample.

	 Step 2: Calculate the distance of S from each of P1;P2

and P3 via Eq. (13).

	 Step 3: Classify the test sample as the pattern from

which minimum value is obtained in step 2.

	 Step 4: Calculate degree of confidence (DoC) [41]

using the formula :

DoC ¼
X

n

j¼1;j6¼j0

DðPj;SÞ � DðPj0 ;SÞ
�

�

�

�; ð18Þ

where Pj0 is the classified pattern for the test sample

S. Greater value of DoC guarantees the higher confi-

dence level of the prediction. It is to be noted that, the

process can be readily applied for a problem with

n numbers of patterns.

Figure 4 includes the distances of S from the three given

patterns using our proposed definition and DoC against this

prediction. From Fig. 4, it is evident that the test sample S
has minimum distance from pattern P2 and hence is clas-

sified as P2. For comparison step 2 is repeated using

DHmN ;DEN ;DCN ;DHN &DFW and the results are displayed

in Fig. 4. Except DCN , others have predicted the test sample

as pattern P2, whereas the distance formula DCN with b ¼
4 has classified it as P3. Our result coincides with the

conclusions drawn through majority of the distance mea-

sures. Besides that, the proposed distance has the highest

value of DoC which assures the confidence level of the

classification.

5.3 Medical diagnosis [24, 42–50]

Suppose there are four patients P=

fAli;Baruah;Chatterjee;Dekag having the symptoms S ¼
{S1: Temperature, S2: Headache, S3: Stomach pain, S4:

Cough, S5: Chest paing. The symptoms of the patients

represented by PFS are listed in Table 7. The set of

possible diagnosis D ¼ fD1 : Viral fever, D2 : Malaria,

D3 : Typhoid, D4 : Stomach problem, D5 : Chest problem g
is represented in Table 8.

Now we calculate the distance between S and D for each

of the patients using the proposed definition (Eq. (13)) and

have obtained the results as displayed in Fig. 5. In Table 9

we provide a comparison of our prediction with that of few

existing results obtained via either IFS- or PFS-based dis-

tance measures and thereby confirming our predictions

with the majority of existing ones.

6 Conclusions

Here, we have introduced a distance measure for PFSs

whose simplicity in the mathematical form is an extra boon

to it. The salient feature of the distance measure is its

efficacy in distinguishing PFSs with high hesitancy.

Supremacy of the distance function is established via

suitable numerical examples and reasonability is tested by

beating the counter-intuitive cases. Nonlinearity & boun-

ded characteristics are proved and verified through proper

examples. Applicability of the distance measure is estab-

lished in various fields like pattern recognition, medical

diagnosis and multi-attribute decision-making problems.

We believe, the proposed distance function will find its

serviceability in new avenues of application.
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