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Controllable atom‑photon 
entanglement via quantum 
interference near plasmonic 
nanostructure
Behzad Sangshekan1*, Mostafa Sahrai1, Seyyed Hossein Asadpour2 & 
Jafar Poursamad Bonab3

A five‑level atomic system is proposed in vicinity of a two‑dimensional (2D) plasmonic nanostructure 
with application in atom‑photon entanglement. The behavior of the atom‑photon entanglement 
is discussed with and without a control laser field. The amount of atom‑photon entanglement is 
controlled by the quantum interference created by the plasmonic nanostructure. Thus, the degree 
of atom‑photon entanglement is affected by the atomic distance from the plasmonic nanostructure. 
In the presence of a control field, maximum entanglement between the atom and its spontaneous 
emission field is observed.

The light-matter coherent interaction leads to an important phenomenon in quantum science such as quantum 
 entanglement1,2. Quantum entanglement has widely been proposed due to its applications in quantum comput-
ing and quantum information  technology3,4. Some important applications of entangled particles are their use 
in quantum  algorithms5, quantum  cryptography6, quantum  networks7,8, and  teleportation9. In last two decades, 
different approaches were presented to generate entangled  particles10,11. Lately, matter-field entanglement has 
reached specific regard, because photons are used to carry the quantum information, and atoms are used to store 
 it12. Many proposals were presented to produce the entanglement between quantum systems and their spontane-
ous emission field. Some of these articles are including the generation of entanglement between the atom and its 
spontaneous emission field via quantum entropy under the EIT  conditions13–15. Time dependent behavior of the 
atom-photon entanglement is discussed when a four-level atom is embedded near the band edge of a photonic 
 crystal16. The time evolution of the quantum entropy in a triple quantum dot molecule is controlled by the gate 
voltage and the rate of an incoherent pump  field17. It was also shown that atom-photon entanglement can be 
controlled by the relative phase of the applied  fields18, and the quantum interference  parameter19,20. Basically, 
atom-photon entanglement can be achieved by the atomic coherence that is created by the coherent laser fields. 
Instead, when the system interacts with the surrounding reservoirs, due to the decoherence processes, the degree 
of entanglement and the information degrades. Spontaneous emission is an important phenomenon that leads to 
disentanglement of the two entangled states. However, spontaneous emission is an incoherent process, which can 
be controlled by placing the emitters in frequency-dependent  reservoirs21, near the edges of photonic bandgaps 
(PBG)22,23, or in a microwave  cavity24. The spectrum of the spontaneous emission strongly depends on the energy 
levels structure and the generated quantum  coherence25. Therefore, due to quantum interference mechanism, 
the rate of spontaneous emission may be decreased or even suppressed.

On the other hand, the optical properties of the quantum emitters, i.e. atoms or semiconductor quantum 
dots, can significantly be modified when quantum systems are placed near the plasmonic  nanostructures26. In 
vicinity of plasmonic nanostructures, the strong interaction between the electromagnetic field and the quantum 
emitters can be  occurred27. Therefore, the optical response of the quantum emitter can be controlled using a 
hybrid quantum-plasmonic system. Quenching or enhancement of the spontaneous  emission28–30, gain without 
population  inversion31, enhancement of nonlinear optical  response32–34 are described in hybrid plasmonic nano-
structure. The effect of plasmonic nanostructure on optical  grating35, probe field  absorption36, and slow-light 
 propagation37 was also proposed.

OPEN

1Faculty of Physics, University of Tabriz, Tabriz, Iran. 2Young Researchers and Elite Club, Central Tehran Branch, 
Islamic Azad University, Tehran, Iran. 3Department of Optical and Laser Engineering, University of Bonab, Bonab, 
Iran. *email: b.sangshekan@tabrizu.ac.ir

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-04641-6&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |          (2022) 12:677  | https://doi.org/10.1038/s41598-021-04641-6

www.nature.com/scientificreports/

Now, we study the entanglement of a five-level quantum emitter coupled to a plasmonic nanostructure, 
namely a periodic 2D array of metal-coated dielectric nanospheres, and its spontaneous emission field. The com-
bined density matrix approach and ab initio electromagnetic calculations are employed to discuss the response 
of the system. Steady-state population distribution of the various levels of the quantum emitter with and without 
the control laser field are investigated. We show that the population distribution and consequently atom-photon 
entanglement is strongly affected by the distance of quantum emitter from the plasmonic nanostructure. We show 
that the maximum value of entanglement can be achieved at a certain distance from the plasmonic nanostructure. 
We also prove that the degree of entanglement can effectively be controlled by the quantum interference between 
decay processes due to the proximity of the plasmonic nanostructure.

In the following discussion; we first present the coherently driven atomic model. Then, we obtain the relevant 
density matrix equations in the presence of the plasmonic nanostructure, and present the reduced entropy for 
calculating the atom-photon entanglement. In “Results and discussions” section some numerical results of the 
atom-photon entanglement are presented. Finally, the paper is concluded in “Conclusion” section.

Model and equations
Consider a five-level atomic system with two lower levels |1� and |2� , two closely lying middle Zeeman sublevels 
|3� and |4� , and an additional higher-level |5� as depicted in Fig. 1. Assume this atomic system is fixed at a distance 
d from the plasmonic nanostructure’s surface, which is located in vacuum space (Fig. 2). The strength of the 
interaction between the atom and nearly-resonant optical electric field −̂→E  is characterized by the dipole moment 
operator −̂→µ  . Hamiltonian for this interaction is Ĥint = −−̂→µ .

−̂→
E  . The diagonal matrix elements −→µ ii of this opera-

tor determine the dipole moments of the electron in the states |i� , and are non-zero only in atoms with permanent 
dipole moments. The off-diagonal matrix elements −→µ ij are transition dipole moment, which demonstrates the 
transition of an electron from the state |i� to the state |j� and vice versa. The matrix elements µij can be real or 
complex and µij = µ∗

ji . We take −→µ 32 = −→µ 42 = −→µ  , −→µ 31 = −→µ 41 = −→µ ′ and −→µ 53 = −→µ 54 = −→µ ′′ . The diagonal 
matrix elements −→µ  , −→µ ′ and −→µ ′′  are assumed to be real. The electric dipole moment operator is written as

(1)−̂→µ = −→µ ′′(|5��3|ε̂− + |5��4|ε̂+
)
+−→µ ′(|3��1|ε̂− + |4��1|ε̂+

)
+−→µ

(
|3��2|ε̂− + |4��2|ε̂+

)
+H .c.,

Figure 1.  Energy diagram of a five-level atomic system.
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where ε̂+ and ε̂− describe the right- and left-rotating unit vectors, which are defined as

Here, ez and ex are unit vectors in z and x directions. Two linearly polarized continuous electric fields as −→
E (t) = ezE0cos(νt) and −→E

′
(t) = ezE

′
0cos

(
ν′t

)
 are applied to the quantum system, where E0 ( E′0 ) and ν ( ν′ ) are 

the amplitude and angular frequency of the electric field, respectively. The electric field −→E (t) drives transition 
|1� ↔ |i� ( i = 3, 4 ), while controlling electric field −→E

′
(t) couples level |5� to Zeeman sublevels |3� and |4� . The 

atom–field interaction in dipole and rotating-wave approximation is described by Hamiltonian

Here, δ ( δ′) is the detuning between respected energy levels and applied fields, which is measured 
from average transition frequencies of level |3� and level |4� with level |1� ( |5� ). So, detunings define as 
δ = ν −

(
ω31 + 1

2ω43

)
= ν −

(
ω41 − 1

2ω43

)
 ,  and δ′ = ν′ −

(
ω54 + 1

2ω43

)
= ν′ −

(
ω53 − 1

2ω43

)
 ,  where, 

ωij are transition frequencies between the energy level |i� and level |j� . The parameters � = µE0/
√
2ℏ and 

�′ = µ′′E′0/
√
2ℏ are the corresponding Rabi-frequencies.

The spontaneous emission rates from the excited level |5� to the other lower levels are denoted by 2γ5i 
( i = 1, 2, 3, 4 ). The transitions from level |5� to level |3� and level |4� are influenced by the interaction of the quan-
tum system with free-space vacuum modes, so these transitions are not affected by the plasmonic nanostructure. 
The Zeeman sublevels |3� and |4� spontaneously decay to level |1� ( |2� ) with decay rates 2γ ′

3 ( 2γ3 ) and 2γ ′
4 ( 2γ4 ), 

respectively. Moreover, we assume the transitions from level |3� and level |4� to level |2� spectrally be located in 
the surface-plasmon band of the plasmonic nanostructure, while the transitions from level |3� and level |4� to 
level |1� are also far from the surface-plasmon bands.

Note that, if we consider the transitions from level |3�  and level |4�  to level |1�  near the surface plasmon band 
of the plasmonic nanostructure, the Rabi frequency of the coupling light, which couples the ground level |1�  to 
upper-intermediate states, may be affected by plasmonic nanostructure. In fact, the plasmonic nanostructure 
affects the Rabi frequency of coupling light, and its value may be changed.

For simplicity, we assume ω43 to be relatively small that equals to a few Ŵ0 (decay rate of level |3� and level |4� 
to level |2� in the vacuum). Later, the energy of both middle levels is taken to be the same; thus decay rates from 
level |3� and level |4� to level |1� are coupled by the same vacuum mods. Therefore, these transitions are free-space 
spontaneous decay. In addition, spontaneous decay from level |3� and level |4� to level |2� are coupled by the same 
mods that affected by plasmonic nanostructure. Then, we can assume γ3 = γ4 = γ and γ ′

3 = γ ′
4 = γ ′38.

Considering the Hamiltonian described in Eq. (3), the density matrix equations of motion in rotating frame 
are obtained by quantum Liouville equation

where Lρ is Liouville operator and expresses the dissipation processes which is given by

where, σij = |i��j| is the atom transition operator (see Eq. 1 in Supplementary Note). κ represents the coupling 
coefficient between level |3� and level |4� . This coefficient is due to anisotropic vacuum influence on spontaneous 
emission due to the existence of plasmonic nanostructure (anisotropic Purcell effect)39, which arises due to the 

(2)ε̂± = (ez ± iex)/
√
2.

(3)
H = −

1

2
ℏ�e

−i

(
δ+ 1

2
ω43

)
t |3��1|−

1

2
ℏ�e

−i

(
δ− 1

2
ω43

)
t |4��1|−

1

2
ℏ�′

e
−i

(
δ′− 1

2
ω43

)
t |5��3|−

1

2
ℏ�′

e
−i

(
δ′+ 1

2
ω43

)
t |5��4| +H .c..

(4)ρ̇ = −
i

ℏ
[H , ρ]+ Lρ,

(5)

Lρ = −γ [σ32σ23ρ − 2σ23ρσ32 + ρσ32σ23]− γ [σ42σ24ρ − 2σ24ρσ42 + ρσ42σ24]

− γ ′
[σ31σ13ρ − 2σ13ρσ31 + ρσ31σ13]− γ ′

[σ41σ14ρ − 2σ14ρσ41 + ρσ41σ14]

− γ ′′
[σ21σ12ρ − 2σ12ρσ21 + ρσ21σ12]− γ51[σ51σ15ρ − 2σ15ρσ51 + ρσ51σ15]

− γ52[σ52σ25ρ − 2σ25ρσ52 + ρσ52σ25]− γ53[σ53σ35ρ − 2σ35ρσ53 + ρσ53σ35]

− γ54[σ54σ45ρ − 2σ45ρσ54 + ρσ54σ45]− κe−iω43t[σ32σ24ρ − 2σ24ρσ32 + ρσ32σ24]

− κeiω43t[σ42σ23ρ − 2σ23ρσ42 + ρσ42σ23],

Figure 2.  A 2D array of plasmonic nanostructures used in this study.
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quantum interference  mechanism40. The values of γ and κ can be obtained by the dyadic electromagnetic Green’s 
tensor G

(−→r ,−→r ;ω
)

41, as

where ω = (ω4 + ω3)/2− ω2 , −→r  displays the position of the atomic system, and µ0 refers to the permeability 
of vacuum space. Due to the Eq. (5), we can write the values of γ and κ42, as

Moreover, G⊥
(−→r ,−→r ;ω

)
= Gzz

(−→r ,−→r ;ω
)
 , G�

(−→r ,−→r ;ω
)
= Gxx

(−→r ,−→r ;ω
)
 indicates the elements of the 

electromagnetic wave Green’s tensor. Here, index ‖ ( ⊥ ) denotes the dipole oriented parallel (normal) along the 
x-axis (z-axis) to the surface of the plasmonic  nanostructure38. Therefore, we express the spontaneous emission 
rates in parallel and normal directions to the surface of the plasmonic nanostructure as

Now, we introduce the quantum interference parameter as p = Ŵ⊥−Ŵ�
Ŵ⊥+Ŵ�

= κ
γ

 that arises due to existence of 
plasmonic nanostructure. Spontaneous emission may be enhanced or even quenched via the quantum interfere 
mechanism depending on Ŵ‖ and Ŵ⊥ . When quantum system is very far from the plasmonic nanostructure, i.e. 
Ŵ⊥ = Ŵ� and κ = 0 , no quantum interference  appears37,43,44. However, if the emitter is placed near the plasmonic 
nanostructure, i.e. Ŵ� = 0 , the parameter κ is identical and quantum interference is maximum.

Here, we propose a 2D array of plasmonic nanostructures, where metal-coated silica nanospheres are con-
nected to each other (Fig. 2). The shell has a frequency-dependent dielectric function represented by a Drude-
model electric permittivity

where τ demonstrates the relaxation time for electrons of metal conduction-band, and ωp represents the plasma 
frequency of the bulk. The plasma frequency for silver metal is ℏωp = 3.8eV  . Also, this value specifies the length 
order of the system as c/ωp ≈ 22 nm . For SiO2 the dielectric constant is ǫ = 2.1 . In the calculation process, 
we assume τ−1 = 0.1ωp . This square lattice has a lattice constant a = 104 nm and radius of the sphere (core) 
S = 52 nm ( Sc = 36.4 nm)27.

Now, we consider a model with two subsystems such as atom ( A ) and its spontaneous emission photon ( F ). If 
this atom–field pure state system cannot be expressed as a tensor product of the two subsystems ( ρ  = ρA ⊗ ρF ), 
the atom and its spontaneous emission photon will be entangled. We utilize the reduced quantum entropy to 
measure the amount of atom-photon entanglement. To measure the degree of entanglement of a pure state ρ , we 
only need the atomic quantum entropy SA(t)45,46. The reduced quantum entropy for the bipartite pure system is 
the von-Neumann reduced entropy as defined

We can also represent the atomic quantum entropy according to terms eigenvalues �A(F)(t) of reduced density 
operators as a degree of entanglement ( DEM)

where �(j)A  are the eigenvalues of the ρA . To achieve a quantum pure state, we assume all the atoms initially in 
their ground states ( ρ11 = 1 ). If this reduced density matrix, SA(t) , describes a (maximally) mixed subsys-
tem, then the whole pure state ρ , will be (maximally) entangled. When entropy of entanglement is equal to 
E(ρ) = log2[min(dA, dF)] , we will have a maximally entangled state. In addition, the amount of the entropy 
is limited by the 0 ≤ S(ρ) ≤ log2D , where D is the dimension of a Hilbert space H . The entropy is maximized 
when the quantum state is maximally mixed, i.e. ρ = 1

D I , where I is an identity  matrix47. Therefore, by evenly 
distributed population on the atomic levels, we will have the maximum amount of entanglement. Hence, the rate 
of spontaneous emission affects the population distribution leading to change of the atom-photon entanglement.

(6a)γ =
µ0µ

2ω2

2ℏ
ε̂−.Im

[
G
(−→r ,−→r ;ω

)]
.̂ε+,

(6b)κ =
µ0µ

2ω2

2ℏ
ε̂+.Im

[
G
(−→r ,−→r ;ω

)]
.̂ε+,

(7a)γ =
µ0µ

2ω2

2ℏ
Im

[
G⊥

(−→r ,−→r ;ω
)
+ G�

(−→r ,−→r ;ω
)]

=
1

2

(
Ŵ⊥ + Ŵ�

)
,

(7b)κ =
µ0µ

2ω2

2ℏ
Im

[
G⊥

(−→r ,−→r ;ω
)
− G�

(−→r ,−→r ;ω
)]

=
1

2

(
Ŵ⊥ − Ŵ�

)
.

(8a)Ŵ� = µ0µ
2ω2Im

[
G�

(−→r ,−→r ;ω
)]
/ℏ,

(8b)Ŵ⊥ = µ0µ
2ω2Im

[
G⊥

(−→r ,−→r ;ω
)]
/ℏ.

(9)ǫ(ω) = 1−
ω2
p

ω(ω + i/τ)
,

(10)SA(F)(t) = −Tr
[
ρA(F)log2ρA(F)

]
.

(11)DEM = SA(t) = SF(t) = −
5∑

j=1

�
(j)
A (t)log2�

(j)
A (t),
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Results and discussions
Now, density matrix equations (4) along with Eq. (11) should numerically be solved to reach the DEM . In this 
regard, DEM relates to the atomic parameters given in supplementary Eq. (1), and will characterize the degree of 
atom-photon entanglement. In following discussion, all the parameters are scaled by the parameter Ŵ0 that is the 
decay rate of spontaneous emission in free space. The decay rates from level |5� to level |i� ( i = 1, 2, 3, 4 ) are defiend 
as γ51 = γ52 = 0.02Ŵ0 and γ53 = γ54 = Ŵ0 . The transitions from level |3� and level |4� to level |1� and from level |2� 
to level |1� are the dipole-allowed spontaneous decay rates that are equal to γ ′ = Ŵ0 and γ ′′ = 0.2Ŵ0 , respectively. 
For transitions from level |3� and level |4� to level |2� , the dipole-allowed spontaneous decay rates are equal to γ . The 
parameters γ and κ are obtained according to Eq. (8) in terms of Ŵ⊥ and Ŵ‖ for the distances expressed in Table 1. 
Note that the values for the controlling parameters are chosen according to the 87Rb atom as a areal atomic system. 
In fact, the proposed five-level quantum system can be realized in hyperfine sublevels of 87Rb. Thus the proposed 
levels are labeled by the spectroscopic definition as |1� = |5S1/2; F = 1,mF = 0� , |2� = |5S1/2; F = 2,mF = 0� , 
|3� = |5P1/2; F ′ = 2,mF ′ = −1� , |4� = |5P1/2; F ′ = 2,mF ′ = +1� , and |5� = |6S1/2; F ′′ = 2,mF ′′ = 0� . In this 
regards transition |1 � → |2� is corresponding to the D1 line of 87Rb48–51.

Table 1.  The values of Ŵ⊥ and Ŵ‖ according to distances of the atom from the plasmonic nanostructure for 
ℏω = 2.4eV  ( Ŵ0 = 2π × 2.9MHz).

Distance d (nm) 10.4 20.8 31.2 41.6 52 ∞

Ŵ⊥ ( Ŵ0) 27.081 6.417 1.774 0.559 0.196 1

Ŵ‖ ( Ŵ0) 0.105 0.038 0.021 0.021 0.026 1

γ (Ŵ0) 13.958 3.228 0.898 0.290 0.111 1

κ (Ŵ0) 13.853 3.190 0.877 0.269 0.085 0

p 0.993 0.988 0.977 0.928 0.766 0

(a)

(b)

Figure 3.  The time evolution of normalized DEM ( (DEM(t)/DEMmax) ≤ 1 ) of the quantum system in the 
absence of plasmonic nanostructure for (a) �′/Ŵ0 = 0 , and (b) �′/Ŵ0 = �/Ŵ0 = 15.
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Here, we are interested in studying the steady-state and dynamical behavior of the atom-photon entan-
glement under the condition δ = 0 . Note that maximum value of the entanglement for the N-levels atomic 
system is DEMmax = log2N , where we use the concept of normalized entanglement as a ratio of DEM(x) per 
DEMmax . Here, x represents variables such as Rabi-frequencies and quantum interference that may change 
the DEM . Hence, the amount of normalized entanglement of any N-level atomic system can be expressed as 
0 ≤ (DEM(x)/DEMmax) ≤ 1 . For the proposed five-level quantum system, the maximum value of expected 
entanglement must be DEMmax = log25 = 2.32 , where its normalized value is 0 ≤ {DEM(x)/2.32} ≤ 1.

Figure 3, displays the time-dependent normalized behavior of DEM in the absence of plasmonic nanostruc-
ture, i.e. d → ∞ , where Ŵ⊥ = Ŵ� and κ = 0 . The atoms initially are in their ground state, ρ11 = 1 and ρij = 0 , thus 
the whole system is in a pure state. Therefore, the atom and its spontaneous emission field is initially disentangled. 
By increasing the normalized time, the two subsystems including the atom and photon reache to a mixed state, 
and the DEM increases by the time. In the absence of the control field, i.e. �′ = 0 , the five-level atomic system 
converts to a four-level one. Without the control field (Fig. 3a), the DEM reaches to 0.56 , while it increases to 
0.68 for �′ �= 0 (Fig. 3b). So, in the presence of control field, the DEM is higher than the case without control 
field. This is due to the existence of spontaneous emission from upper level |5� to lover levels leading to equally 
population distribution of each levels.

The steady-state behavior of the normalized DEM as a function of the Rabi-frequency �/Ŵ0 without plas-
monic nanostructure is displayed in Fig. 4. The results are in a good agreement with Fig. 3.

In Fig. 5, the time evolution of normalized DEM is presented in the presence of plasmonic nanostructure 
with and without control field. Similarly, the atom and its spontaneous emission field are initially disentangled, 
but by increasing the normalized time the DEM also increases. In vicinity of nanostructure, the atom and its 
spontaneous emission field undergoes different degrees of entanglement depending on the distance of atom 
from the plasmonic nanostructure. We find that for both cases �′ = 0 and �′ �= 0 , by increasing the distance 
of atom from the plasmonic nanostructure, the atom-photon entanglement increases (Fig. 5). Similar to Fig. 3, 
for �′ �= 0 the DEM is higher than �′ = 0 . But in d = 52 nm the amount of DEM for �′ = 0 is about 0.8 , while 
it reaches to 1 for �′ �= 0 . This DEM is the optimal normalized entanglement. Note that the quantum interfer-
ence arising from the existence of plasmonic nanostructure has crucial role in atom-photon entanglement. By 
increasing the distance of the emitter from the plasmonic nanostructure, quantum interference reduces as can be 
seen from table (1). Thus, the spontaneous emission from level |3� and level |4� to level |2� can be controlled by the 
quantum interference that depends on the distance of atom from the nanostructure. Then, DEM will change just 
by the spontaneous emission of level |3� and level |4� to level |2� , where it controls by the quantum interference.

(a)

(b)

Figure 4.  The normalized DEM ( (DEM(�)/DEMmax) ≤ 1 ) of the quantum system in the absence of 
plasmonic nanostructure for (a) �′/Ŵ0 = 0 , and (b) �′/Ŵ0 = �/Ŵ0.



7

Vol.:(0123456789)

Scientific Reports |          (2022) 12:677  | https://doi.org/10.1038/s41598-021-04641-6

www.nature.com/scientificreports/

The normalized DEM as a function of the Rabi-frequency �/Ŵ0 for various distances is denoted in Fig. 6. It 
is obviously realized that by increasing the distance of atom from the plasmonic nanostructure, the atom-photon 
entanglement increases. These results are confirmed by Fig. 5, and we concluded that the amount of atom-photon 
entanglement in vicinity of the plasmonic nanostructure can be controlled just by the distance d.

In order to discuss the physical mechanism of the obtained results, the population distribution of the bare 
and dressed states is analyzed in the following discussion.

Figure 7 shows the population distribution of the bare states. We observe that the population is not equally 
distributed among the bare states, and this may reduce the DEM (Fig. 7a). However, when the population is 
equally distributed among the bare states, the maximum atom-photon entanglement is observed. Thus the 
obtained results in previous figures are approved by the population distribution.

To give more physical insight on the maximal atom-photon entanglement, the dressed state formalism is also 
presented. Without the control field, i.e. �′ = 0 , the transformed Hamiltonian can be written as

By calculating the eigenvalues of this Hamiltonian, using the relation det
(
H̃ − �I

)
= 0 , we obtain

where � ’s are eigenvalues of this Hamiltonian operator. For δ = 0 , the eigenvalue � ’s are given by

where �d ≡
√

ω2
43 + 2|�|2 called generalized Rabi-frequency. So, the corresponding dressed states are

(12)H̃ = −ℏ

(
δ +

1

2
ω43

)
|3��3| − ℏ

(
δ −

1

2
ω43

)
|4��4| −

{
1

2
ℏ�[|3��1| + |4��1|]+H .c.

}
.

(13)�
3 + 2ℏδ�2 + ℏ

2

[
δ2 −

1

4
ω2
43 −

1

2
|�|2

]
�−

1

2
ℏ
3|�|2δ = 0,

(14)�1,2,3 = 0,±
1

2
ℏ�d ,

(a)

(b)

Figure 5.  The time evolution of normalized DEM ( (DEM(t)/DEMmax) ≤ 1 ) of the quantum system in the 
presence of plasmonic nanostructure for (a) �′/Ŵ0 = 0 , and (b) �′/Ŵ0 = �/Ŵ0 = 15.
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When the control field �′ is on, transformed Hamiltonian are written as

Thus, using the relation det
(
H̃ − �I

)
= 0 , we can reach to

For δ = δ′ = 0 , eigenvalues � ’s are obtained as follows

where, generalized Rabi-frequency is �d ≡
√

ω2
43 + 2

(
|�1|2 + |�2|2

)
 . So, the corresponding dressed states are

(15)

|α� =
|�|
�d

(ω43

�
|1� − |3� + |4�

)
,

|2� = |2�,

|β� =
|�|2

�2
d + ω43�d

(
ω43 +�d

�
|1� +

ω2
43 + |�|2 + ω43�d

|�|2
|3� + |4�

)
,

|η� =
|�|2

�2
d − ω43�d

(
ω43 −�d

�
|1� +

ω2
43 + |�|2 − ω43�d
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Figure 6.  The normalized DEM ( (DEM(�)/DEMmax) ≤ 1 ) of the quantum system in the presence of 
plasmonic nanostructure for (a) �′/Ŵ0 = 0 , and (b) �′/Ŵ0 = �/Ŵ0.
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Figure 8 demonstrates the evolution of dressed state’s population. According to 8(a), the dressed state |α� 
has no population distribution, and the population are equally distributed in other three dressed states. In this 
case, the system operates as a three-level dressed atom, and the maximum value of normalized DEM should be (
log23/log24

)
= 0.79 . This anticipation is in a good agreement of obtained results in Figs. 5a and 6a. In Fig. 8b, all 

the levels are populated, and the population distributed are almost equal in five dressed states. In this regards, the 
system acts as a five-level atom, and the maximum value of normalized DEM should be equal to 

(
log25/2.32

)
= 1 . 

This is also covering the obtained result of Figs. 5b and 6b.
Physically, existence of plasmonic nanostructure affects the transition |3� ( |4� ) → |2� that appears in parameter 

κ . In fact, the five-level atomic system has two V-type transitions |i� → |1� , and |i� → |2� ( i = 3, 4 ). The second 
transitions are coupled due to existence of plasmonic nanostructure that creates the parameter κ . These transi-
tions may destroy the equality of the population distribution that leads in reduction of atom-photon entangle-
ment as can be viewed in Figs. 7a and 8a. However, this may be balanced by the other laser field namely �′ as 
can be confirmed in Figs. 7b and 8b.
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Figure 7.  The population distribution of the bare states as a function of Rabi-frequencies at d = 52 nm for (a) 
�′/Ŵ0 = 0 , and (b) �′/Ŵ0 = �/Ŵ0.
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Conclusion
The entanglement of a five-level atomic system and its spontaneous emission field is investigated with and with-
out plasmonic nanostructure. For two linear laser fields, two different cases are examined. For turn off control 
laser field, the five-level system converts to a four-level one. In free space, the degree of created entanglement in 
five-level atomic system with its spontaneous emission is larger than the four-level atom. In the vicinity of the 
nanostructure, the atom-photon entanglement is affected by the distances of the atomic system from plasmonic 
nanostructure. The degree of entanglement depends on the distance of atom and the plasmonic nanostructure. 
Maximal atom-photon entanglement is obtained for a distance of 52 nm from the nanostructure. Because no 
coupling field drives the level |2� , the only way to populate this level is spontaneously emitted photons from higher 
levels. Then, we are able to control the quantum interference using plasmonic nanostructure and therefore can 
control the spontaneous emission from level |3� and level |4� to level |2� . By controlling the amount of population 
of level |2� , we will be able to control the amount of normalized entanglement.
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