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There is compelling evidence linking the commensal intestinal microbiota with host health

and, in turn, antibiotic induced perturbations of microbiota composition with distinct

pathologies. Despite the attractiveness of probiotic therapy as a tool to beneficially alter

the intestinal microbiota, its immunological effects are still incompletely understood. The

aim of the present study was to assess the efficacy of the probiotic formulation VSL#3

consisting of eight distinct bacterial species (including Streptococcus thermophilus,

Bifidobacterium breve, B. longum, B. infantis, Lactobacillus acidophilus, L. plantarum,

L. paracasei, and L. delbrueckii subsp. Bulgaricus) in reversing immunological effects of

microbiota depletion as compared to reassociation with a complex murine microbiota.

To address this, conventional mice were subjected to broad-spectrum antibiotic therapy

for 8 weeks and perorally reassociated with either VSL#3 bacteria or a complex murine

microbiota. VSL#3 recolonization resulted in restored CD4+ and CD8+ cell numbers

in the small and large intestinal lamina propria as well as in B220+ cell numbers in the

former, whereas probiotic intervention was not sufficient to reverse the antibiotic induced

changes of respective cell populations in the spleen. However, VSL#3 application was as

efficient as complex microbiota reassociation to attenuate the frequencies of regulatory

T cells, activated dendritic cells and memory/effector T cells in the small intestine, colon,

mesenteric lymph nodes, and spleen. Whereas broad-spectrum antibiotic treatment

resulted in decreased production of cytokines such as IFN-γ, IL-17, IL-22, and IL-10

by CD4+ cells in respective immunological compartments, VSL#3 recolonization was

sufficient to completely recover the expression of the anti-inflammatory cytokine IL-10

without affecting pro-inflammatory mediators. In summary, the probiotic compound

VSL#3 has an extensive impact on mucosal, peripheral, and systemic innate as

well as adaptive immunity, exerting beneficial anti-inflammatory effects in intestinal as

well as systemic compartments. Hence, VSL#3 might be considered a therapeutic

immunomodulatory tool following antibiotic therapy.

Keywords: probiotics, antibiotics, innate and adaptive immunity, microbiota, fecal microbiota transplantation,
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INTRODUCTION

In the past decades the commensal gut microbiota has been
established as an indispensable major key factor in host
physiology. The microbiota has been shown to be involved in
numerous physiological processes, including vitamin synthesis
(LeBlanc et al., 2013), food digestion (Hooper et al., 2002),
fat metabolism (Backhed et al., 2004), intestinal angiogenesis
(Stappenbeck et al., 2002), enteric nerve function (Husebye
et al., 1994), protection from pathogens (Sekirov et al., 2008;
Bereswill et al., 2011), and immune system development (Cebra,
1999). Moreover, perturbations of the complex host resident
intestinal ecologic system, termed dysbiosis, have been linked
to a wide range of pathological conditions including intestinal
disorders such as inflammatory bowel diseases (IBD; Baumgart
and Carding, 2007), irritable bowel syndrome (IBS; Carroll et al.,
2010), and coeliac disease (De Palma et al., 2010), as well as
extra-intestinal pathologies such as allergy and asthma (Noverr
and Huffnagle, 2004), arthritis (Taurog et al., 1994), type 1
diabetesmellitus (Wen et al., 2008), obesity (Backhed et al., 2007),
multiple sclerosis (Ochoa-Reparaz et al., 2009), and distinct
cardiovascular diseases (Serino et al., 2014).

With this growing body of evidence concerning the pivotal
role of the microbiota in health and disease, the potential of
altering andmodulating themicrobiota composition in beneficial
ways has become an increasing focus of attention. Microbiota-
modulating intervention strategies include administration of
probiotics, defined as live microorganisms conferring a health
benefit on the host when administered in adequate amounts
(FAO/WHO, 2002). So far, the most emphasis has been laid
on investigating the role of probiotic compounds in intestinal
inflammation. For instance, Escherichia coli strain Nissle 1917
was shown to prevent acute and chronic colitis (Kamada et al.,
2005) and to enhance mucosal barrier functions in mice (Ukena
et al., 2007; Wassenaar, 2016). Moreover, treating IL-10 deficient
mice with Lactobacillus plantarum attenuated the severity of
colonic inflammation by reducing mucosal IL-12p40 and IFN-γ
levels (Schultz et al., 2002). Similarly, the application of VSL#3,
a probiotic mixture of eight different bacterial strains (namely
Streptococcus thermophilus, Bifidobacterium breve, B. longum,
B. infantis, Lactobacillus acidophilus, L. plantarum, L. paracasei,
and L. delbrueckii subsp. Bulgaricus) was demonstrated as an
effective therapy in both murine IL-10−/− colitis (Jijon et al.,
2004) and trinitrobenzenesulphonic acid (TNBS) induced colitis
through enhancement of IL-10 and TGF-β expressing T cells
(Di Giacinto et al., 2005). Additionally, the induction of TGF-β
following oral VSL#3 administration was shown to be effective in
ameliorating inflammation in a murine model of T-helper (Th-)

Abbreviations: ABx, secondary abiotic; BSA, bovine serum albumin; CD, Crohn’s

disease; CFU, colony forming units; DC, dendritic cells; DTE, dithioerythritol;

EDTA, ethylene diamine tetraacetic acid; FCS, fetal calf serum; FMT, fecal

microbiota transplantation; HBSS, Hanks balanced salt solution; HPF, high power

field; IBD, inflammatory bowel disease; IBS, irritable bowel syndrome; LPL, lamina

propria lymphocytes; MLN, mesenteric lymph nodes; PBS, phosphate buffered

saline; PMA, phorbol myristate acetate; SPF, special pathogen free; Th, T helper

cell; TNBS, trinitrobenzenesulphonic acid; Treg, regulatory T cells; UC, ulcerative

colitis.

2 cells mediated food allergy (Barletta et al., 2013). The efficacy
of probiotic compounds has also been examined in clinical trials
with IBD patients. For instance, E. coliNissle 1917 exerted similar
efficacy as compared to the established standard medication
(i.e., mesalazine) in maintenance therapy of ulcerative colitis
(UC) (Kruis et al., 2004). Moreover, a meta-analysis including
three controlled trials demonstrated the capability of VSL#3 to
induce remission in UC patients (Jonkers et al., 2012). Several
studies have also confirmed the protective role of VSL#3 in
preventing relapses of pouchitis (Gionchetti et al., 2003), a
condition developed by ∼50% of UC patients following ileo-
anal pouch anastomosis (Shen and Lashner, 2008). In contrast,
studies in patients suffering from Crohn’s disease (CD) did not
unravel a beneficial role of probiotics, neither in induction nor
maintenance of remission of this inflammatory disease (Shen
et al., 2014).

Several mechanisms to explain the beneficial role of probiotics
have been proposed including enhancement of intestinal barrier
functions (Ukena et al., 2007), amendment of microbiota
diversity, and modulation of the innate and adaptive immune
system (Grabig et al., 2006). However, these mechanisms remain
in need of further investigation.

In the present study, we focussed on the impact of the
commercial probiotic compound VSL#3 on restoring distinct
immune cell functions that were affected in mice upon broad-
spectrum antibiotic treatment. We therefore performed a
comprehensive analysis of the mucosal (i.e., ileal and colonic
lamina propria lymphocytes, LPL), peripheral (i.e., mesenteric
lymph nodes, MLN) and systemic (i.e., splenic lymphocytes)
immune responses in conventional mice with a depleted
microbiota following 8 weeks of broad-spectrum antibiotic
treatment and upon reassociation with either VSL#3 or fecal
microbiota transplantation (FMT) as compared to mice without
antibiotic challenge.

MATERIALS AND METHODS

Ethics Statement
All animal experiments were conducted according to the
European Guideline for animal welfare (2010/63/EU) with
approval from the commission for animal experiments headed
by the “Landesamt für Gesundheit und Soziales” (LaGeSo, Berlin,
Germany, registration number G0184/12 and G0097/12).

Mice
Animals were bred and maintained in the facilities of the
“Forschungseinrichtungen für Experimentelle Medizin” (FEM,
Charité – Universitätsmedizin, Berlin, Germany) under specific
pathogen-free (SPF) conditions. Female age matched C57BL/6j
wildtype mice were used.

Generation of Microbiota Depleted Mice
and Bacterial Recolonization
To eradicate themurine intestinalmicrobiota 8–10week oldmice
were transferred to sterile cages and treated with a quintuple
broad-spectrum antibiotic cocktail as previously described
(Heimesaat et al., 2006). Three days prior recolonization

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2 May 2017 | Volume 7 | Article 167

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Ekmekciu et al. VSL#3 and Host Immunity

experiments the antibiotic cocktail was withdrawn and replaced
by autoclaved drinking water. For FMT, fresh murine fecal
samples were collected from 10 individual female 3 months
old naive mice (harboring a conventional SPF microbiota),
pooled, dissolved in 10 ml sterile phosphate buffered saline
(PBS; Gibco, life technologies, Paisley, UK), and bacterial loads
were evaluated by cultural and molecular methods before
peroral challenge of mice with 0.3 ml of the suspension by
gavage. Another group of mice received an oral suspension of
VSL#3 bacteria. VSL#3 is a commercially available probiotic
mixture (Manufacturer: SIIT S.r.l, Trezzano sul Naviglio, Italy;
distributed by Actial Farmaceutica, Funchal, Madeira, Portugal)
consisting of the following eight bacterial species: Streptococcus
thermophilus, Bifidobacterium breve, Bifidobacterium longum,
Bifidobacterium infantis, Lactobacillus acidophilus, Lactobacillus
plantarum, Lactobacillus paracasei, and Lactobacillus delbrueckii
subsp. Bulgaricus. A total of 4.5 × 1011 probiotic bacteria
were dissolved in 50 ml PBS. By gavaging 0.3 ml, each mouse
received ∼109 viable probiotic bacteria as confirmed by cultural
analyses of the suspensions. Mice were continuously kept in
a sterile environment (autoclaved food and drinking water or
sterile antibiotic cocktail) and were handled under strict aseptic
conditions to prevent contaminations.

Clinical Score
To survey clinical signs of inflammation, a standardized
cumulative clinical score (maximum 12 points), addressing the
occurrence of blood in feces (0: no blood; 2: microscopic
detection of blood by the Guajac method using Haemoccult,
BeckmanCoulter/PCD, Krefeld, Germany; 4: overt blood visible),
diarrhea (0: formed feces; 2: pasty feces; 4: liquid feces), and
the clinical aspect (0: normal; 2: ruffled fur, less locomotion; 4:
isolation, severely compromized locomotion, pre-final aspect)
was applied daily as described earlier (Haag et al., 2012).

Sampling Procedures
Mice were sacrificed by isofluran treatment (Abbott, Greifswald,
Germany) at day (d) 28 post recolonization. Tissue samples
from spleen, MLN, ileum and colon, and luminal samples from
colon were removed under sterile conditions. Ileal and colonic
ex vivo biopsies were collected from each mouse in parallel
for immunological, microbiological, and immunohistochemical
analysis. For immunohistochemical stainings, ileum and colon
samples were immediately fixed in 5% formalin and embedded
in paraffin, and sections (5 µm) were stained with the respective
antibodies as described below.

Bacterial Colonization Densities Following
Recolonization of Secondary Abiotic Mice
with VSL#3 or Complex Murine Microbiota
Total intestinal loads of VSL#3 bacteria were quantified in serial
dilutions of fecal and large intestinal luminal samples streaked
onto Columbia-Agar supplemented with 5% sheep blood and
Columbia-CNA Agar supplemented with colistin and nalidixic
acid (both Oxoid) in parallel and incubated under aerobic
(with 5% CO2), microaerophilic (in jars using CampGen gas
packs; Oxoid) and obligate anaerobic (in jars using Anaerogen

gas packs; Oxoid) conditions for at least 2 days. Bacterial
species were identified according to their typical morphological
appearances. The total VSL#3 bacterial loads of intestinal samples
were approximated as the sum of identified colony forming
units (CFU) derived from the respective culture conditions. The
detection limit of viable bacteria was≈100 CFU per g.

The complex intestinal microbiota composition in
conventionally colonized SPF mice and mice subjected to
FMT was assessed by quantitative 16S rRNA based real time PCR
as described previously (Heimesaat et al., 2010, 2014; Rausch
et al., 2013; Thoene-Reineke et al., 2014).

Immunohistochemistry
In situ immunohistochemical analysis of ileal and colonic paraffin
sections was performed as previously described (Heimesaat et al.,
2007, 2010; Alutis et al., 2015). Primary antibodies against
cleaved caspase-3 (Asp175, Cell Signaling, Beverly, MA, USA,
1:200), Ki67 (TEC3, Dako, Glostrup, Denmark, 1:100), CD3
(#N1580, Dako, 1:10), FOXP3 (FJK-16s, eBioscience, San Diego,
CA, USA, 1:100), and B220 (eBioscience, 1:200) were used. For
detection, the LSAB method was applied with FastRed (Dako) as
chromogen. For each animal, the average number of positively
stained cells within at least six high power fields (HPF, 400×
magnification) was determined microscopically by a blinded
investigator.

Lymphocytes Isolation from Spleens and
Mesenteric Lymph Nodes
Single cell suspensions were generated from spleens and MLN,
and erythrocytes were removed from splenic samples by 1.66%
ammonium chloride. All samples were resuspended in defined
volumes of PBS/0.5% BSA and subjected to further processing
(Cording et al., 2013).

LPL Isolation
Segments of the murine gut were removed and freed from fat,
connective tissue and PP, cut longitudinally and cleared from
luminal content and mucus with ice-cold PBS. The isolation
of LPL followed a standard protocol with minor modifications
(Sheridan and Lefrancois, 2012). Briefly, the intestines were
cut into 0.5 cm pieces and incubated twice with 25 ml
Hanks balanced salt solution (HBSS; Gibco) containing 1 mM
dithioerythritol (DTE; Carl Roth) for 20 min at 37◦C and
220 rpm. Afterwards the intestines were introduced to HBSS
containing 1.3 mM ethylenediaminetetraacetic acid (EDTA;
Life Technologies, Eugene, Oregon, USA). Subsequently the
cells were placed in digestion solution, containing 0.5 mg/ml
collagenase A (Roche, Mannheim, Germany), 0.5 mg/ml DNAse
I (Roche), 10% FCS, and 1 mM of each CaCl2 and MgCl2 (both
Carl Roth). Digestion was performed through incubation for 45
min at 37◦ and 220 rpm. After the incubation the digested tissues
were washed with RPMI containing 5% FCS, resuspended in 5
ml 44% Percoll (GE Healthcare, Uppsala, Sweden), and overlaid
on 5 ml 67% Percoll in a 15 ml Falcon tube. Percoll gradient
separation was performed by centrifugation at 600 g for 20 min
at room temperature. LPL were collected from the interphase,
washed once and suspended in PBS/0.5% BSA.
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Surface and Intracellular Stainings and
Flow Cytometry
Surface staining was performed using the following antibodies:
FITC-anti-CD4 (Clone RM4-5; 1:200), PerCP-anti-CD8 (Clone
53-6.7; 1:100), PacBlue-anti-B220 (Clone RA3-6B2, 1:200), APC-
Cy7-anti-CD25 (Clone PC61, 1:200), PE-anti-CD44 (Clone
IM7, 1:200), APC-anti-CD86 (Clone B7-2, 1:200; all from BD
Biosciences, San Jose, CA, USA).

For intracellular staining cells from spleen, MLN and
intestinal LP were restimulated for 5 h with 10 ng/ml phorbol
myristate acetate (PMA) and 1 µg/ml ionomycin, in a tissue
culture incubator at 37◦C (both Sigma-Aldrich). Tenmicrograms
per microliter of brefeldin A (Sigma-Aldrich) was added to the
cell suspensions after 1 h of polyclonal restimulation. Then cells
were treated with LIVE/DEAD Fixable Aqua Dead Cell Stain kit
(life technologies) and hereafter fixed with 2% paraformaldehyde
(PFA; Sigma-Aldrich) for 20min at room temperature. Cells were
stained in 0.5% saponin (Sigma-Aldrich) using the following
antibodies: PacBlue-Anti-CD4 (Clone RM4-5; 1:400), PE-Cy7-
anti-IFN-γ (Clone XMG 1.2; 1:400), (both from BD Biosciences)
FITC-anti-IL17A (Clone TC11-18H10.1; 1:200, BioLegend, San
Diego, CA, USA), PE-anti-IL10 (Clone JESS-16E3; 1:100), APC-
anti-IL22 (Clone IL22JOP; 1:100) (both from eBioscience).
All data were acquired on a MACSQuant analyzer (Miltenyi
Biotec, Bergisch Gladbach, Germany) and analyzed with FlowJo
Software v10.1 (Tree star, Ashland, OR, USA).

Real-Time PCR
RNA was isolated from snap frozen ileal and colonic ex vivo
biopsies, reverse transcribed, and analyzed for cytokine specific
mRNA as described earlier (Munoz et al., 2009). Murine
IL-22, IL-17A, IL-10, and IFN-γ mRNA expressions were
analyzed using Light Cycler Data Analysis Software (Roche).
Expression levels were calculated relative to the housekeeping
gene for hypoxanthine-phosphoribosyltransferase expression
and indicated as “Arbitrary Units” (fold expression).

Statistical Analysis
Medians and significance levels using appropriate tests as
indicated (Mann Whitney U-test and one-way ANOVA with
Tukey’s post-hoc test for multiple comparisons) were determined
using GraphPad Prism Software v6 (La Jolla, CA, USA). Two-
sided probability (p) values ≤ 0.05 were considered significant.
All experiments were repeated at least twice.

RESULTS

Macroscopic and Microscopic Intestinal
Changes in Secondary Abiotic Mice upon
Recolonization with VSL#3 or Fecal
Microbiota Transplantation
Given a better acceptance by the patients and more practical
mode of peroral application of a probiotic formulation as
compared to FMT in both ambulant and hospital settings,
we compared the immunopathological impact of the probiotic
compound VSL#3 and complex microbiota in the with broad-
spectrum antibiotics treated host. Therefore, we virtually

depleted the intestinal microbiota of conventional mice by
quintuple antibiotic treatment. These secondary abiotic (ABx)
mice then received either 109 viable VSL#3 bacteria via the
oral route or were subjected to FMT by gavage, whereas naive,
conventionally colonized and ABx mice served as positive and
negative controls, respectively. From day 3 until day 28 following
VSL#3 peroral challenge, mice could be stably colonized as
indicated by 109 CFU of VSL#3 bacteria per g feces (Figure 1A).
In order to exclude that upon cessation of antibiotic treatment
and peroral reconstitution with VSL#3 remnant commensal
bacteria might grow back, we surveyed the intestinal microbiota
composition applying highly sensitive and culture-independent
16S rRNA based molecular quantitative RT-PCR. In fact, only
bifidobacteria and lactobacilli as main bacterial constituents of
the applied probiotic compound increased in fecal samples until
day 28 following probiotic challenge (p < 0.001; Figure 1B),
whereas the other intestinal bacterial commensals remained
virtually unchanged (n.s.; Figure 1B). Moreover, mice subjected
to FMT showed at day 28 after recolonization a complex large
intestinal microbiota composition that was comparable to the
microbiota in conventional control animals (Figure 1C).

Given that mice were clinically/macroscopically
uncompromised upon antibiotic treatment as well as
following respective recolonization regimens as assessed by
a clinical scoring system on a daily basis (not shown), we
next assessed potential microscopic changes in the intestinal
tract. To address this, we quantitatively surveyed apoptotic
cell numbers in small and large intestinal epithelia applying
in situ immunohistochemistry. In line with the uncompromised
clinical conditions, apoptosis was neither induced by broad-
spectrum antibiotic treatment nor by respective peroral
reassociation (n.s.; Figure 2A; Figure S1). Numbers of
epithelial cells positive for Ki67, a sensitive marker for cell
proliferation and regeneration (Scholzen and Gerdes, 2000),
however, were significantly reduced in both, ileum and colon
following broad-spectrum antibiotic treatment. Notably,
administration of either VSL#3 or complex SPF microbiota
was sufficient to restore regenerative epithelial properties as
indicated by higher small as well as large intestinal Ki67+ cell
numbers as compared to ABx mice (p < 0.001), that were
comparable to those observed in naive SPF mice (Figure 2B;
Figure S1).

Adaptive Immune Cell Subsets in Small
and Large Intestines In situ Following
Broad-Spectrum Antibiotic Treatment and
Recolonization with VSL#3 or Fecal
Microbiota Transplantation
To further dissect the role of VSL#3 in modulating adaptive
immune responses following microbial depletion, we quantified
cell numbers of distinct immune cell populations in both small
and large intestines of mice at day 28 post recolonization with
either VSL#3 or FMT by in situ immunohistochemical staining
of paraffin sections (Figure 3; Figure S1). Broad-spectrum
antibiotic treatment was associated with reduced numbers of
CD3+ T lymphocytes (p < 0.001; Figures 3A,D; Figure S1),
B220+ B lymphocytes (p < 0.001; Figures 3B,E; Figure S1),
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FIGURE 1 | Bacterial colonization densities following bacterial

recolonization of secondary abiotic mice with VSL#3 or complex

murine microbiota. Secondary abiotic mice were generated by

broad-spectrum antibiotic treatment and perorally reassociated with the

probiotic compound VSL#3 or subjected to fecal microbiota transplantation.

(A) Bacterial colonization densities were assessed in fecal samples (CFU/g,

colony forming units per gram) over time upon reassociation by culture on day

(d) 0, 3, 7, 14, 21, 28 following peroral challenge with the probiotic compound

VSL#3 (white squares). (B) Changes in intestinal microbiota composition of

secondary abiotic mice (d0, closed squares) within 28 days following peroral

VSL#3 reassociation (d28, open squares) or (C) fecal microbiota

transplantation (FMT, white circles) were assessed in fecal samples by

quantitative Real-Time PCR amplifying bacterial 16S rRNA variable regions of

the main intestinal bacterial groups and expressed as 16S rRNA gene

numbers per ng DNA: TL, Total eubacterial load; EB, Enterobacteriaceae; EC,

Enterococcus spp.; LB, Lactic acid bacteria; BIF, Bifidobacteria; BP,

Bacteroides/Prevotella spp.; CC, Clostridium coccoides group; CL,

Clostridium leptum group; and MIB, Mouse Intestinal Bacteroides.

Conventional, naive (N, black circles) mice served as controls. Medians (black

bars) and significance levels determined by Mann Whitney U-test (***p <

0.001) are indicated. Data were pooled from two independent experiments.

and Foxp3+ Treg (p < 0.001; Figures 3C,F; Figure S1) in
mucosa and lamina propria of both ileum and colon. Application
of either VSL#3 or complex SPF microbiota, however, was
sufficient to restore adaptive immune cell populations in the

FIGURE 2 | Small intestinal and colonic epithelial apoptotic and

proliferating cells following recolonization of secondary abiotic mice

with VSL#3 or complex murine microbiota. The average numbers of (A)

apoptotic (positive for Casp3) and (B) proliferating cells (positive for Ki67) in at

least six representative high power fields (HPF, 400× magnification) per animal

were determined in immunohistochemically stained small intestinal and colonic

tissue of naive conventional mice (N), through antibiotic treatment generated

secondary abiotic mice (ABx), and mice subjected to VSL#3 or fecal

microbiota transplantation (FMT) on day 28 following peroral reassociation.

Medians (black bars) and significance levels (p-values) determined with

one-way ANOVA test followed by Tukey post-correction test for multiple

comparisons are indicated. Data shown were pooled from two independent

experiments (n = 10–15/group).

colon as indicated by T and B cell as well as Treg numbers that
were comparable to naive mice at day 28 following respective
recolonization (Figures 3D–F; Figure S1). Numbers of T and B
lymphocyte numbers increased in small intestines of secondary
abiotic mice following FMT, but not VSL#3 recolonization
(p < 0.001; Figures 3A,B; Figure S1). Small intestinal Treg
numbers were elevated upon either reassociation regimen and to
the highest extent by FMT (Figure 3C; Figure S1).

To exclude that the observed effects were microbiota driven
and not due to antibiotic withdrawal per se, we quantitatively
assessed respective intestinal immune cell populations in
secondary abiotic mice 4 weeks following cessation of
broad-spectrum antibiotic treatment (Figure S2). However,
withdrawal of antibiotic treatment (ABx%) did not restore any
of the analyzed small or large intestinal immune cell populations
as indicated by comparable cell numbers in ABx and ABx% mice
(n.s.; Figure S2).

Hence, depending on the intestinal compartment, peroral
application of VSL#3 or complex murine microbiota could
sufficiently reverse antibiotics-induced decreases in intestinal
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FIGURE 3 | Adaptive immune cell subsets in small and large intestines in situ following recolonization of secondary abiotic mice with VSL#3 or

complex murine microbiota. The average numbers of T lymphocytes (positive for CD3, A,D), B lymphocytes (positive for B220, B,E), and regulatory T cells (positive

for FOXP3, C,F) in the small intestinal (upper panel, A–C) and colonic (lower panel, D–F) tissue in at least six representative high power fields (HPF, 400×

magnification) per animal were determined in immunohistochemically stained tissues of naive conventional mice (N), by antibiotic treatment generated secondary

abiotic mice (ABx), and mice subjected to VSL#3 recolonization or fecal microbiota transplantation (FMT) on day 28 following peroral reassociation. Medians and

significance levels (p-values) determined with one-way ANOVA test followed by Tukey post-correction test for multiple comparisons are indicated. Data shown were

pooled from two independent experiments (n = 10–15/group).

immune cell populations with the most prominent effect in the
colon.

Distinct T Cell Populations in Intestinal and
Systemic Compartments of Secondary
Abiotic Mice Following Recolonization with
VSL#3 or Fecal Microbiota Transplantation
We next elaborated the capacities of peroral VSL#3 application
or FMT to induce, maintain and modulate distinct immune cell
populations in mucosal, peripheral, and systemic immunological
sites of mice that had been treated with broad-spectrum
antibiotics. To address this, we performed flow-cytometric
analyses of lymphocytes derived from the lamina propria of
small and large intestine, MLN and spleen of mice at day
28 post-recolonization. The gating strategies are depicted in
Figures S3A–F. We firstly focused on relative abundances
and absolute numbers of the main lymphocytic groups,
namely CD4+ (Figures 4A–H) and CD8+ (Figures 5A–H) T
lymphocytes as well as B220+ B lymphocytes (Figures 6A–H).
Antibiotic treatment resulted in decreased relative abundances

and absolute numbers of CD4+ T helper cells in both the
small and large intestines (p < 0.05–0.001; Figures 4A–D),
whereas VSL#3 administration could sufficiently restore
respective cell numbers at either mucosal site. Furthermore,
abundances of CD4+ cells increased in MLN upon VSL#3
treatment (p < 0.05; Figure 4E). Following FMT, CD4+
cell frequencies were higher in small and large intestines as
compared to ABx mice (p < 0.001; Figures 4A,C). Whereas
frequencies of splenic CD4+ cells were rather unchanged
upon antibiotic treatment and peroral reassociation (n.s.;
Figure 4G), increased CD4+ cell numbers could be observed
in the spleens of mice that had undergone antibiotic therapy,
regardless whether subsequently recolonized or not (p < 0.05;
Figure 4H).

We further analyzed CD8+ cytotoxic T cell responses
in intestinal and systemic compartments upon antibiotic
treatment and subsequent bacterial reassociation. Both VSL#3
treatment and FMT could sufficiently restore the antibiotics
induced CD8+ cell frequency reduction in the small and
large intestines as indicated by higher small and large
intestinal CD8+ cell abundances as compared to ABx mice
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FIGURE 4 | CD4+ cells in intestinal and systemic compartments of secondary abiotic mice following recolonization with VSL#3 or complex murine

microbiota. Conventionally colonized adult mice were treated with broad-spectrum antibiotics for 8 weeks and differentially recolonized by gavage thereafter.

Subsequently, lymphocytes from small intestinal and colonic lamina propria, MLN and spleen were isolated, and analyzed by flow cytometry. The percentages (left

panel A,C,E,G) and absolute cell numbers (right panel B,D,F,H) of the CD4+ lymphocyte population in small intestine (A,B), colon (C,D), MLN (E,F), and spleen (G,H)

in naive conventional mice (N), by antibiotic treatment generated secondary abiotic mice (ABx), and mice subjected to VSL#3 recolonization or fecal microbiota

transplantation (FMT) were determined on day 28 following peroral reassociation. Box plots represent the 75th and 25th percentiles of the medians (black bar inside

the boxes). Total range and significance levels (p-values) determined with one-way ANOVA test followed by Tukey post-correction test for multiple comparisons are

indicated. Data shown were pooled from two independent experiments (n = 10–15/group).

(p < 0.01; Figures 5A,C), which also held true for absolute
CD8+ cell numbers upon VSL#3 treatment (p < 0.05–0.001;
Figures 5B,D). Whereas CD8+ cells were rather unchanged in
MLN of ABx mice with and without bacterial recolonization,
both frequencies and absolute numbers of splenic CD8+
cells increased upon broad-spectrum antibiotic treatment

(p < 0.001; Figures 5G,H). Interestingly, VSL#3, but not FMT
could reverse this effect on CD8+ cell abundances (p <

0.001 vs. ABx mice; Figure 5G). Hence, again peroral VSL#3
application or FMT were able to reverse antibiotics induced
decreases in T cells, depending on the respective immunological
compartment.
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FIGURE 5 | CD8+ cells in intestinal and systemic compartments of secondary abiotic mice following recolonization with VSL#3 or complex murine

microbiota. The percentages (left panel A,C,E,G) and absolute cell numbers (right panel B,D,F,H) of the CD8+ lymphocyte population of small intestine (A,B), colon

(C,D), MLN (E,F), and spleen (G,H) in naive conventional mice (N), by antibiotic treatment generated secondary abiotic mice (ABx), and mice subjected to VSL#3

recolonization or fecal microbiota transplantation (FMT) were determined on day 28 following peroral reassociation. Box plots represent the 75th and 25th percentiles

of the medians (black bar inside the boxes). Total range and significance levels (p-values) determined with one-way ANOVA test followed by Tukey post-correction test

for multiple comparisons are indicated. Data shown were pooled from two independent experiments (n = 10–15/group).

B Lymphocytes in Intestinal and Systemic
Compartments of Secondary Abiotic Mice
Following Recolonization with VSL#3 or
Fecal Microbiota Transplantation
We next expanded our comprehensive survey on lymphocyte

populations during antibiotic treatment and bacterial

recolonization to B220+ B cells. Whereas decreased B220+

cell counts were detected in small and large intestines as well
as in MLN following broad-spectrum antibiotic treatment
(p < 0.05–0.01; Figures 6B,D,F), VSL#3, but not FMT resulted
in elevated small intestinal B lymphocytes (p < 0.001 vs.
ABx; Figure 6B). In the splenic compartment, B220+ cell
numbers increased following antibiotic treatment, but also
upon additional VSL#3 challenge (p < 0.05 and p < 0.01,
respectively; Figure 6H). In addition, B220+ cells were
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FIGURE 6 | B220+ cells in intestinal and systemic compartments of secondary abiotic mice following recolonization with VSL#3 or complex murine

microbiota. The percentages (left panel A,C,E,G) and absolute cell numbers (right panel B,D,F,H) of the B220+ lymphocyte population of small intestine (A,B), colon

(C,D), MLN (E,F), and spleen (G,H) in naive conventional mice (N), by antibiotic treatment generated secondary abiotic mice (ABx), and mice subjected to VSL#3

recolonization or fecal microbiota transplantation (FMT) were determined on day 28 following peroral reassociation. Box plots represent the 75th and 25th percentiles

of the medians (black bar inside the boxes). Total range and significance levels (p-values) determined with one-way ANOVA test followed by Tukey post-correction test

for multiple comparisons are indicated. Data shown were pooled from two independent experiments (n = 10–15/group).

more abundant in the spleen of VSL#3 as compared to
untreated ABx mice (p < 0.05; Figure 6G). Taken together,
our data indicate that an intestinal VSL#3 microbiota is
capable of inducing and modulating distinctive immune cell
populations, thus antagonizing immunological consequences
of antibiotic treatment not only at mucosal site, but, to
some extent, also on a systemic level of the immune
system.

Regulatory T Cells and Dendritic Cells in
Intestinal and Systemic Compartments of
Secondary Abiotic Mice Following
Recolonization with VSL#3 or Fecal
Microbiota Transplantation
In the following, we addressed whether recolonization with
VSL#3 or FMT following broad-spectrum antibiotic treatment
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was associated with changes in defined T cell subsets and in
the activation status of distinct cell populations. We therefore
stained CD4+ cells with antibodies against CD25, a surface
protein characteristic for Treg. Microbial depletion by antibiotic
treatment led to reduced abundances of the CD4+CD25+
subpopulation in all intestinal and systemic immunological
compartments under investigation (p < 0.001; Figure 7).

Remarkably, VSL#3 administration as well as FMT enhanced
Treg abundances and completely reversed the antibiotics
induced effect (p < 0.01–0.001 vs. ABx; Figures 7A,C,E,G).
VSL#3-induced splenic abundances of CD4+CD25+ cells were,
however, less distinct than in naive controls (p < 0.001;
Figure 7G). Broad-spectrum antibiotic treatment was further
accompanied by a down-regulation of the surface marker CD86,

FIGURE 7 | Regulatory T cells and activated dendritic cells in intestinal and systemic compartments of secondary abiotic mice following

recolonization with VSL#3 or complex murine microbiota. The frequencies of regulatory T cells (Treg, CD4+CD25+, gated on CD4+ cells) (left panel A,C,E,G)

and activated dendritic cells (CD86+, gated on live CD4-CD8-cells, right panel B,D,F,H) in the small intestine (A,B), colon (C,D), MLN (E,F), and spleen (G,H) in naive

conventional mice (N), by antibiotic treatment generated secondary abiotic mice (ABx), and mice subjected to VSL#3 recolonization or fecal microbiota transplantation

(FMT) were determined on day 28 following peroral reassociation. Box plots represent the 75th and 25th percentiles of the medians (black bar inside the boxes). Total

range and significance levels (p-values) determined with one-way ANOVA test followed by Tukey post-correction test for multiple comparisons are indicated. Data

shown were pooled from two independent experiments (n = 10–15/group).

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10 May 2017 | Volume 7 | Article 167

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Ekmekciu et al. VSL#3 and Host Immunity

a co-stimulatory molecule marking activated DC (Wallet et al.,
2005), in small intestine, colon, MLN and spleen of ABx mice,
whereas both VSL#3 treatment and FMT virtually reversed
these immune-depressive effects (p < 0.001; Figures 7B,D,F,H).
Hence, the activation status of distinct cells in intestinal as well
as systemic compartments is down-regulated by broad-spectrum
antibiotic treatment, but can be restored upon VSL#3 application
or FMT.

Memory/Effector T Cells in Intestinal and
Systemic Compartments of Secondary
Abiotic Mice Following Recolonization with
VSL#3 or Fecal Microbiota Transplantation
We then investigated the impact of VSL#3 and FMT on the
memory/effector CD4+ and CD8+ cells by evaluating high
expression of CD44, a surface marker expressed (on both, CD4+
and CD8+ cells) upon previous antigen contact (Sprent and
Surh, 2002). ABx mice exhibited a significant reduction in
abundances of both, CD4+CD44+ and CD8+CD44+ cells in all
examined intestinal and systemic lymphoid organs (p < 0.001;
Figure 8). In the small and large intestines, VSL#3 recolonization
and FMT resulted in a strong up-regulation of CD44 expression
on CD4+ as well as CD8+ cells (p< 0.05–0.001; Figures 8A–D).
The same held true for CD8+ cells inMLN and spleen (p< 0.001;
Figures 8F,H), whereas FMT alone resulted in higher frequencies
of memory CD4+ cells in MLN and spleen as compared to
antibiotic treatment (p < 0.001; Figures 8E,G). Hence, microbial
depletion resulted in reduced abundances of memory/effector
T cells in intestinal and systemic lymphoid compartments, that
could, however, at least in part be restored by VSL#3 treatment
or FMT.

Pro- and Anti-Inflammatory Cytokine
Production in Intestinal and Systemic
Compartments of Secondary Abiotic Mice
Following Recolonization with VSL#3 or
Fecal Microbiota Transplantation
We further assessed the cytokine producing properties of
CD4+ T lymphocytes following VSL#3 administration or FMT
in ABx mice. Therefore, we determined the frequencies of
IFN-γ and IL-10 (Figure 9) as well as of IL-17 and IL-
22 (Figure 10) producing CD4+ cells in small and large
intestines, MLN, and spleens. Gating strategies are depicted
in Figures S3G–I and representative dot plots shown in
Figure S4. Small intestinal IFN-γ producing CD4+ cells were
depressed in ABx mice (p < 0.01–0.001; Figure 9A) and
could not be fully recovered by either bacterial recolonization
regimen. Notably, small intestinal CD4+IFN-γ+ cells were
more frequently abundant following FMT as compared to
ABx mice (p < 0.05; Figure 9A). Moreover, IFN-γ producing
CD4+ cells were less abundant in large intestines of ABx
and VSL#3 treated, but not with fecal microbiota transplanted
mice (p < 0.05–0.001; Figure 9C), whereas CD4+IFN-γ+ cells
did not differ between respective groups in MLN and spleen
(n.s.; Figures 9E,G). A strong reduction of CD4+ lymphocytes

producing the anti-inflammatory cytokine IL-10 could be
determined in all immunological sites following antibiotic
therapy (p < 0.001; Figures 9B,D,F,H). Notably, reassociation
with either VSL#3 or complex murine microbiota could fully
restore the frequencies of CD4+IL10+ cells in all compartments
(p < 0.001; Figures 9B,D,F,H) and thus reestablish the pre-
antibiotic (naive) status. Interestingly, intestinal as well as
systemic CD4+ cells producing the pro-inflammatory cytokines
IL-17 or IL-22 were less abundant upon antibiotic and also
subsequent VSL#3 treatment (p < 0.05–0.001; Figures 10A–H),
but not upon FMT, except for small intestinal CD4+IL17+ cells
(p < 0.05; Figure 10A).

These findings were further underlined by results obtained
from mRNA analysis of respective cytokines measured in ileal
and colonic ex vivo biopsies (Figure 11). IL-10 as well as
IL-17, IL-22, and IFN-γ mRNA were all down-regulated in
both small and large intestines of ABx mice (p < 0.05–
0.001; Figure 11). In the small intestine, FMT (p < 0.05),
but not VSL#3 treatment could sufficiently up-regulate IL-
10 expression back to naive levels, whereas the other way
around, recolonization with VSL#3 (p < 0.001), but not with
complex SPF microbiota reversed antibiotics-induced colonic
IL-10 down-regulation (Figure 11A). Furthermore, IL-17 and
IL-22 mRNA expression were down-regulated upon antibiotic
treatment and also subsequent VSL#3 administration (p <

0.001; Figures 11B,C), whereas respective cytokine levels were
comparable in mice subjected to FMT and naive controls, which
also held true for ileal IFN-γ mRNA expression (Figure 11D).
Notably, colonic IFN-γ mRNA levels were highest in mice
following FMT (p < 0.05), but did not differ between secondary
abiotic, VSL#3 treated and naive mice (Figure 11D).

Taken together, peroral probiotic VSL#3 treatment and FMT
are both sufficient to induce regulatory, anti-inflammatory
mechanisms of the peripheral and central immune system and
to restore intestinal as well as systemic immunological collateral
damages of broad-spectrum antibiotic treatment.

DISCUSSION

With increasing robust evidence regarding the indispensability of
gut inhabiting bacteria in host physiology and their contributions
to a plethora of pathologies, potentially beneficial modulations
of intestinal microbiota composition have raised interest in
clinical research and application (McCarville et al., 2016).
Various environmental factors can lead to alterations of the
intestinal microbiota composition, including diet, pathogens,
toxins, and drugs (Carding et al., 2015). One of the most
prominent factors causing perturbation of this well-balanced
and sensitive ecological system is the widespread usage of
antibiotics worldwide. Though being very effective in curing
infectious diseases and having contributed tremendously to
the increased life expectancy, the long-term adverse effects
of antimicrobial compounds have been also recognized and
explored (Becattini et al., 2016). Yet the underlying mechanisms
of the complex crosstalk between microbiota, host, and
potential disruptive factors including antibiotic compounds are
incompletely understood. Hence, it remains of utmost interest
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FIGURE 8 | Memory and effector T cells in intestinal and systemic compartments of secondary abiotic mice following recolonization with VSL#3 or

complex murine microbiota. The proportions of CD4+ memory/effector cells (CD4+CD44hi, gated on CD4+ cells, left panel A,C,E,G) and CD8+ memory/effector

cells (CD8+CD44hi, gated on CD8+ cells, right panel B,D,F,H) in the small intestine (A,B), colon (C,D), MLN (E,F), and spleen (G,H) in naive conventional mice (N),

by antibiotic treatment generated secondary abiotic mice (ABx), and mice subjected to VSL#3 recolonization or fecal microbiota transplantation (FMT) were

determined on day 28 following peroral reassociation. Box plots represent the 75th and 25th percentiles of the medians (black bar inside the boxes). Total range and

significance levels (p-values) determined with one-way ANOVA test followed by Tukey post-correction test for multiple comparisons are indicated. Data shown were

pooled from two independent experiments (n = 10–15/group).

not only to further elucidate them, but also to develop novel
therapeutic approaches to alleviate the potential harm exerted by
antibiotics. In context of the latter, the study of probiotics, their
impact, efficacy, but also limitations is still a challenging and not
fully explored field of research.

In the present study we focused on VSL#3, a well-known and
clinically approved commercially available probiotic compound,

and its impact on the immune system of conventional mice
and assessed its efficacy in reversing immunological effects
of microbiota depletion as compared to reassociation with a
complex murine microbiota. Both complex SPF microbiota
and VSL#3 bacteria were able to stably colonize the murine
intestinal tract of ABx mice, further supporting the suitability of
the microbiota depleted mouse model to explore the complex
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FIGURE 9 | IFN-γ and IL-10 producing CD4+ cells in intestinal and systemic compartments of secondary abiotic mice following recolonization with

VSL#3 or complex murine microbiota. Lymphocytes were isolated from small intestinal and colonic lamina propria, MLN, and spleen and stimulated with

PMA/ionomycin in presence of brefeldin A and subsequently analyzed by flow cytometry. The percentages of IFN-γ (left panel A,C,E,G) and IL-10 (right panel B,D,F,H)

producing CD4+ cells in the small intestine (A,B), colon (C,D), MLN (E,F), and spleen (G,H) in naive conventional mice (N), by antibiotic treatment generated

secondary abiotic mice (ABx), and mice subjected to VSL#3 recolonization or fecal microbiota transplantation (FMT) were determined on day 28 following peroral

reassociation. Box plots represent the 75th and 25th percentiles of the medians (black bar inside the boxes). Total range and significance levels (p-values) determined

with one-way ANOVA test followed by Tukey post-correction test for multiple comparisons are indicated. Data shown were pooled from two independent experiments

(n = 10–15/group).

relationship between the innate and adaptive immune system,
antibiotics, and recolonization with defined intestinal bacteria
as reviewed by Fiebiger et al. (2016). To assure that the
observed immunological responses were merely due to the
applied probiotic bacterial species, we performed highly sensitive
16S rRNA based molecular microbiota analyses before and after
VSL#3 challenge. In fact, only respective probiotic species and
no intestinal bacterial commensals that might have regrown after

cessation of antibiotic pretreatment were able to establish in the
intestinal tract. Notably, conventionally colonizedmice displayed
unchanged compositions of their microbiota before and after
VSL#3 treatment (our unpublished experimental observations),
thus further underlining the physiological colonization resistance
that prevents the host from stable pathogenic, but also
commensal bacterial colonization (Besselink et al., 2008).
Of note, administration of viable microorganisms in an
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FIGURE 10 | IL-17 and IL-22 producing CD4+ cells in intestinal and systemic compartments of secondary abiotic mice following recolonization with

VSL#3 or complex murine microbiota. Lymphocytes were isolated from small intestinal and colonic lamina propria, MLN, and spleen and stimulated with

PMA/ionomycin in presence of brefeldin A and subsequently analyzed by flow cytometry. The percentages of IL-17 (left panel A,C,E,G) and IL-22 (right panel B,D,F,H)

producing CD4+ cells in the small intestine (A,B), colon (C,D), MLN (E,F), and spleen (G,H) in naive conventional mice (N), by antibiotic treatment generated

secondary abiotic mice (ABx), and mice subjected to VSL#3 recolonization or fecal microbiota transplantation (FMT) were determined on day 28 following peroral

reassociation. Box plots represent the 75th and 25th percentiles of the medians (black bar inside the boxes). Total range and significance levels (p-values) determined

with one-way ANOVA test followed by Tukey post-correction test for multiple comparisons are indicated. Data shown were pooled from two independent experiments

(n = 10–15/group).

experimental context, especially in studies conducted with
immunocompromised individuals, rises safety issues for the
prophylactic or therapeutic usage of these compounds. This is
supported by former findings of higher mortality in a probiotic
intervention group as assessed by a study with critically ill
patients suffering from acute pancreatitis (Besselink et al.,
2008). However, in our study neither antibiotic treatment nor
reassociation with VSL#3 or complex microbiota resulted in any
clinical adverse effects in mice such as diarrhea, occurrence of

fecal blood or weight loss, nor in microscopic sequelae including
apoptosis, indicating that both VSL#3 bacteria and complex
microbiota administration are safe and do not cause intestinal
inflammation in our applied murine model.

The indispensability of microbial gut stimulation for
maintaining epithelial colonic proliferation rates has already
been suggested (Reikvam et al., 2011). Our data indicate that
VSL#3 treatment of secondary abiotic mice was as effective as
reassociation with a complex murine microbiota in stimulating
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FIGURE 11 | mRNA analysis of pro- and anti-inflammatory cytokines in small intestinal and colonic tissues. RT-PCR results of (A) IL-10, (B) IL-17, (C)

IL-22, and (D) IFN-γ expression in small intestinal (upper panel) and colonic (lower panel) tissues derived from naive conventional mice (N), from by antibiotic treatment

generated secondary abiotic mice (ABx), and from mice subjected to VSL#3 recolonization or fecal microbiota transplantation (FMT) on day 28 following peroral

reassociation are depicted. Box plots represent the 75th and 25th percentiles of the medians (black bar inside the boxes). Total range and significance levels (p-values)

determined with one-way ANOVA test followed by Tukey post-correction test for multiple comparisons are indicated. Data shown were pooled from two independent

experiments (n = 10–15/group).

recovery of colonic and ileal epithelial proliferative properties,
as indicated by comparably increased Ki67+ cell numbers in
intestinal epithelia that were decreased upon quintuple antibiotic
therapy. This might be of importance, given that the proliferation
of enterocytes is an essential physiological process for tissue
repair and maintenance of gut homeostasis, whereas decreased
proliferation rates may ultimately result in loss of epithelial
integrity (Potten et al., 1997).

To gain an incipient insight into the role of viable
VSL#3 bacteria in modulating intestinal immune cells, we
quantitatively assessed distinct immune cell populations by
applying immunohistochemical analyses of small and large
intestinal paraffin sections in situ. Interestingly, the mere
withdrawal of the antibiotic compounds did not result in
restoring small and large intestinal Treg, T and B lymphocytes,
implying that the observed immunological responses following
VSL#3 or FMT application were attributable to the respective
bacterial reassociation.

Overall, our data revealed that the immunomodulatory
properties of VSL#3 recolonization were more pronounced
in the colon than in the ileum of mice, whereas antibiotic
treatment had resulted in decreased small and large intestinal
cell numbers of Treg, T and B lymphoctes. While being able
to restore the Treg population of the ileum, VSL#3 microbiota
could neither induce T nor B lymphocytes in this compartment.
In the colon, however, mice harboring VSL#3 bacteria displayed
similar numbers of Treg, T and B lymphocytes similar to
their naive conventionally colonized or with a complex

microbiota recolonized counterparts. These data reemphasize
the importance of considering small and large intestine as
two distinctive immunological sites with different properties
and mechanisms as previously postulated (Mann et al., 2016).
Considering that the bacterial loads within the ileum of mice and
men range from 104 to 108 CFU per ml luminal content (Quigley
and Quera, 2006; Bereswill et al., 2010; Heimesaat et al., 2012),
whereas the colonic VSL#3 colonization densities were up to six
orders of magnitude higher, might at least in part explain this
phenomenon. However, these findings seem to be in contrast
to former evidence suggesting the capability of probiotics to
modulate ileal immunological responses (Smelt et al., 2013)
and prevent from ileitis (Pagnini et al., 2009). Given that in situ
immunohistochemistry has its spatial limitations and does not
provide complete information regardingmore complex intestinal
immune responses, we performed FACS analysis including not
only lymphocytes from the lamina propria of the small and large
intestines, but also from the MLN and systemic compartment,
namely the spleen, in order to more comprehensively
address VSL#3 mediated modulations of immune cell
populations.

Remarkably, VSL#3 treatment was more effective in
recovering CD4+ and CD8+ lymphocyte numbers in the lamina
propria of both mucosal sites as compared to reassociation
with complex murine microbiota. Whether this was due to
distinct species mediated effects or other underlying mechanisms
remains to be further investigated. Moreover, VSL#3 treated mice
displayed higher B cell numbers in the small intestinal lamina
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propria as compared to mice from the other cohorts. Most B
cells in the intestinal mucosa are known to be IgA secreting
plasma cells (Hill and Artis, 2010). Increased frequencies
of small intestinal IgA-expressing B cells have already been
demonstrated upon treatment of BALB/c mice with L. casei
(Galdeano and Perdigon, 2006). Furthermore, a study conducted
with intensive care unit patients frequently displaying multiple
organ dysfunction as a major cause of mortality (Antonelli et al.,
1999) which is pathophysiologically linked to a breakdown of
intestinal barrier function and increased translocation of bacteria
and bacterial components into the systemic circulation (Hassoun
et al., 2001), revealed that serum IgA levels were normalized upon
VSL#3 treatment (Alberda et al., 2007). It is therefore tempting to
speculate that VSL#3 contributes beneficial effects to host health
via IgA mediated mechanisms. Notably, neither reassociation
of mice with VSL#3 nor with a complex murine microbiota
could reverse the increased splenic CD4+, CD8+, and B220+
cell numbers pointing toward systemic microbiota-independent
immunological consequences of long-term broad-spectrum
antibiotic therapy. In fact, immunomodulatory properties of
distinct antibiotic classes such as quinolones (Dalhoff and Shalit,
2003) and macrolides (Kanoh and Rubin, 2010) have previously
been described. In terms of activation status of immune cell
populations we could observe that VSL#3 recolonization was
as efficient as complex microbiota recolonization, given that
VSL#3 application resulted in a complete recovery of Treg,
activated DC, and CD8+ memory/effector cells in all included
intestinal and systemic immunological sites and of the CD4+
memory/effector cells in the small and large intestinal lamina
propria. The latter population, however, could only be fully
restored in MLN and spleen upon recolonization with a complex
murine microbiota. Similarly, VSL#3 recolonization led to
an increase of IL-10 producing CD4+ cell population in all
organs, but did not induce the production of pro-inflammatory
cytokines such as IL-17, IL-22, and IFN-γ in any of them. In
fact, mice harboring VSL#3 bacteria exerted lower intestinal
pro-inflammatory cytokine expression levels than their naive
or with SPF microbiota recolonized counterparts. To further
substantiate these findings, we additionally performed mRNA
expression analysis of respective cytokines in ileal and colonic
ex vivo biopsies and obtained similar results. Hence, our
data suggest that VSL#3 dominated microbiota selectively
induces activation of memory/effector T cells, activated DC
and Treg, and the key anti-inflammatory cytokine IL-10
without driving pro-inflammatory Th1 or Th17 type immune
responses. The concept of VSL#3 inducing regulatory immune
responses in Th1 or Th17 mediated immune diseases has already
been proposed (Di Giacinto et al., 2005) and is, in fact, very
attractive for clinical application. Another probiotic mixture
consisting of Lactobacillus acidophilus, L. casei, L. reuteri,
Bifidobacterium bifidium, and Streptococcus thermophilus, has
also been demonstrated to induce regulatory DC and Treg and,
in turn, to suppress experimental immune disorders such as
TNBS colitis, experimental atopic dermatitis and rheumatoid
arthritis (Kwon et al., 2010). Given the important role of the
Th1 and Th17 cell compartments in the protection against
bacterial and fungal pathogens (Aujla et al., 2007), the lack of

recovery of IL-17, IL-22, and IFN-γ expressing CD4+ cells upon
VSL#3 reassociation raises the question, whether mice harboring
probiotic bacteria were only more susceptible to pathogenic
infections. The fact that probiotics have been shown to exert
inflammation ameliorating effects in with antibiotics pre-treated
patients suffering from Clostridium difficile toxin associated
diarrhea, for instance, does not support this hypothesis (Selinger
et al., 2013). The mechanisms underlying health-beneficial
probiotic bacterial actions are manifold. Firstly, probiotics have
been shown to inhibit growth, metabolism and adhesion of
enteropathogenic bacteria (Bernet-Camard et al., 1997; Hudault
et al., 1997; Gopal et al., 2001). Furthermore, in competition
for nutrients and niches they prevent the host from stable
pathogenic colonization (Wagner et al., 2009). Moreover,
VSL#3 bacteria have been shown to restore epithelial barrier
functions and to stimulate intestinal epithelial TNF production
under inflammatory conditions (Pagnini et al., 2009). It is thus
rather plausible that, while not inducing inflammatory immune
responses in healthy mice (as shown here), VSL#3 may still
sufficiently induce pro-inflammatory immune responses against
invading pathogens.

In summary, in the present study we provide evidence,
that beyond the already proposed immunomodulatory effects
of VSL#3 on intraepithelial innate immunity (Pagnini et al.,
2009), respective probiotic bacterial species modulate innate
and adaptive immune cell populations not only at mucosal
sites, but also in the peripheral (i.e., MLN) and central (i.e.,
spleen) immune system. Moreover, when compared to complex
SPF microbiota, VSL#3 is capable of equally restoring distinct
immune cell populations following microbiota depletion and
strongly regulating anti-inflammatory immune responses.

We conclude that the probiotic compound VSL#3 may be
regarded as an effective therapeutic tool to restore immune
functions following antibiotic therapy. However, future research
is needed to elucidate the distinct molecular mechanisms
underlying the interactions between host microbiota, its
modulations by antibiotic and/or probiotics and immunity.
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Figure S1 | Representative photomicrographs of apoptotic and

proliferating epithelial cells as well as of adaptive immune cell subsets in

small and large intestines in situ following broad-spectrum antibiotic

treatment (ABx) and recolonization with VSL#3 or fecal microbiota

transplantation (FMT; 100× magnification, scale bar 100 µm).

Figure S2 | Adaptive immune cell subsets in small and large intestines

in situ following quintuple antibiotic therapy. The average numbers of

T lymphocytes (positive for CD3, A,D), B lymphocytes (positive for B220, B,E),

and regulatory T cells (positive for FOXP3, C,F) in the small intestinal (upper panel,

A–C) and colonic (lower panel, D–F) tissue of mice following long-term

broad-spectrum antibiotic therapy (ABx, white circles) and at d28 after antibiotic

withdrawal (ABx %, black circles) in at least six representative high power fields

(HPF, 400× magnification) per animal were determined. Medians and significance

levels (p-values) determined with Mann Whitney U-test are indicated. Data shown

were pooled from two independent experiments.

Figure S3 | Gating strategies of extracellular stainings on one

representative splenic sample after gating for lymphocytes and including

only single cells. (A) Exclusion of dead cells via LIVE/DEAD Fixable Aqua Dead

Cell Stain kit (L/D) in the forward scatter (FSC) (B) CD4+ and CD8+ cells gated on

living cells, (C) B cells and activated DC gated on CD4-CD8- cells, (D) Treg and

(E) CD4+ memory/effector cells gated on CD4+ cells, (F) CD8+ memory/effector

cells gated on CD8+ cells. Gating strategies of intracellular stainings on one

representative ileal sample after gating for lymphocytes and including only single

cells are illustrated. (G) Identification of CD4+ living cells by exclusion of dead

cells via LIVE/DEAD Fixable Aqua Dead Cell Stain kit (L/D) (H) IFN-γ and IL-10

gating (I) IL-17 and IL-22 gating.

Figure S4 | Representative FACS analysis dotplots of intracellular

stainings of pro- and anti-inflammatory cytokines in intestinal and

systemic compartments in naive conventional mice (N), by antibiotic

treatment generated secondary abiotic mice (ABx), and mice subjected to

VSL#3 recolonization or fecal microbiota transplantation (FMT).
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