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A B S T R A C T   

Objective: To reduce liver and lung dose during right breast irradiation while maintaining optimal dose to the 
target volume. This dose reduction has the potential to decrease acute side effects and long-term toxicity. 
Materials and Methods: 16 patients treated with radiation therapy for localized carcinoma of the right breast were 
included retrospectively. For the planning CT, each patient was immobilised on an indexed board with the arms 
placed above the head. CT scans were acquired in free-breathing (FB) as well as with deep inspiration breath hold 
(DIBH). Both scans were acquired with the same length. Planning target volumes (PTV’s) were created with a 5 
mm margin from the respective clinical target volumes (CTV’s) on both CT datasets. The liver was outlined as 
scanned. Dose metrics evaluated were as follows: differences in PTV coverage, dose to the liver (max, mean, 
V90%, V50%, V30%), dose to lung (mean, V20Gy, relative electron density) and dose to heart (Dmax). The p- 
values were calculated using Wilcoxon signed-rank tests. A p-value was significant when <0.05. 
Results: Differences in PTV coverage between plans using FB and DIBH were less than 2 %. Maximum liver dose 
was significantly less using DIBH: 17.5 Gy versus FB: 40.3 Gy (p < 0.001). The volume of the liver receiving 10 % 
of the dose was significantly less using DIBH with 1.88 cm3 versus 72.2 cm3 under FB (p < 0.001). The absolute 
volume receiving 20 Gy in the right lung was larger using DIBH: 291 cm3 versus 230 cm3 under FB (p < 0.001) 
and the relative volume of lung receiving dose greater than 20 Gy was smaller with DIBH: 11.5 % versus 14 % in 
FB (p = 0.007). The relative electron density of lung was significantly less with DIBH: 0.59 versus 0.62 with FB, 
(p < 0.001). This suggests that the lung receives less dose due to its lower density when using DIBH. 
Conclusion: Radiation of the right breast using DIBH spares liver and lung tissue significantly and thus carries the 
potential of best practice for right sided breast cancer.   

Introduction 

Radiation therapy is a proven treatment method to reduce locore
gional recurrence and improve survival rates in patients with breast 
cancer [1,2]. For patients diagnosed with early-stage breast cancer, 
adjuvant irradiation of the whole breast is the standard of care. How
ever, this type of treatment can result in side effects linked to irradiation 
of organs at risk (OARs) [3–10]. Risks such as cardiac mortality and 
coronary events from dose to the heart, as well as lung cancer and ra
diation pneumonitis resulting from dose to lung, must be considered 

when delivering whole breast radiation treatment [4–11]. 
Calculation of dose in low-density tissue, such as the lung, can be a 

challenge for treatment planning system algorithms [12,13]. Un
certainties in the actual dose to the lung rise with the implementation of 
deep-inspiration-breath-hold (DIBH) radiotherapy including; accurate 
segmentation of lung volume and the irradiated mass of lung tissue. 
Various techniques are being used to reduce dose to these OARs without 
compromising coverage of target volumes. These methods primarily 
focus on sparing healthy heart and lung tissue. DIBH is one technique 
that is widely used today in left-sided breast irradiation [14–28]. Many 
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studies have been conducted to prove the benefit of using DIBH to 
reduce dose to heart and heart structures, such as the left anterior 
descending coronary artery (LAD). Mean Dose (Dmean) reductions of 
31–63 % to the heart were achieved when using DIBH versus traditional 
FB techniques [18–22,24,26–28]. Although absolute lung volume in
creases within a certain dose level (Vx) during DIBH, lung tissue is 
spared as the relative irradiated lung volume decreases. The Dmean to 
the ipsilateral lung was also seen to be reduced by 7–15 % 
[21,22,24,25,27]. 

While there is plenty of evidence on the benefits of implementing 
DIBH for left-sided breast treatment, little exists on the advantages for 
right-breast irradiation. The available studies look primarily into heart 
and lung sparing for patients receiving regional nodal irradiation (RNI) 
[14,15]. Though the liver is a prominent OAR in right-sided treatment, 
few studies have investigated the benefits of liver sparing [15,16]. 
Immunotherapeutic drugs can affect the function of various organs, 
including liver. With the growing use of immune therapy in cancer 
treatment, it becomes even more important to decrease doses and 
possible toxicity to OARs during radiotherapy, including the liver [29]. 

This study investigates potential benefits of using DIBH versus FB for 
right-sided whole breast radiation therapy in regard to sparing dose to 
liver, lung and heart. Dose metrics for these OARs, as well as target 
volumes, are reported. 

Materials and methods 

Patient population and study design 

A general hospital-based informed consent was obtained for all 
patients. 

Sixteen patients receiving radiation therapy for localized carcinoma 
of the right breast were included retrospectively (radiation to loco- 
regional lymphatic regions was excluded). The median age was 60 
years (range, 39–83 years; mean: 59 years). All patients were treated 
using the DIBH technique. 

For the planning computer tomography (CT), each patient was 
immobilised on an indexed board with the arms placed above the head. 
Patients unable to hold their breath for a minimum of 20 s were excluded 
from the DIBH technique and study. Breathing was tracked using the 
Real-time Position ManagementTM (RPM) system (Varian Medical Sys
tems, Palo Alto, CA) with patients receiving live, visual feedback. 

Two CT scans were acquired for each patient on a GE Optima CT580 
wide bore CT scanner with a slice separation of 2.5 mm. One scan was 
done in free-breathing (FB) and one in DIBH. Both scans were acquired 
with the same length and same position, from the bottom of the chin to 
approximately the level of L3-spinebody. The Eclipse™ (Varian) plan
ning system was used for volume delineation and treatment planning. 

Target volume and organs-at-risk 

Target volumes were delineated by one radiation oncologist and 
independently peer reviewed by a second radiation oncologist prior to 
treatment planning. The breast CTV was defined as the visible breast 
tissue on the CT images. The planning target volume (PTV) was a 5 mm 
isotropic expansion of the CTV which was subsequently cropped 3–5 
mm from the skin surface. Contours for both lungs were generated using 
an automated segmentation tool and adjusted manually where neces
sary. Normal structures of patient body, contralateral breast, liver, 
heart, left lung and right lung were contoured manually. 

Dose metrics for the PTV, liver, lungs, and heart were collected and 
compared. The main endpoints evaluated were: differences in PTV 
coverage, maximum point dose to liver, volumes of liver covered by the 
90 %-, 50 %-, 10 %-isodose and the volume of liver covered by the 30 
Gy-isodose. In addition, the maximum point dose to the heart, mean 
dose to lungs, the volume of lung covered by the 20 Gy-isodose (V20Gy) 
as well as the relative change in Hounsfield numbers and relative 

electron density for the right lung were recorded. 
Data was collected for the amount of irradiated lung volume and its 

density with and without a DIBH technique. In order to provide more 
quantitative data on damage to lung tissue as a result of irradiation, 
Starkschall et al. [30] recommended incorporating a dose-mass histo
gram (DMH). As many treatment planning systems do not typically 
compute DMHs, mean density of the lung in question was calculated 
from the volume and the mean value of Hounsfield numbers of the 
voxels encompassed by the structure outline. 

Treatment planning 

Treatment planning was carried out in Eclipse™ v15.6 (Varian 
Medical Systems). The prescription dose was 40.05 Gy in 15 fractions or 
42.72 Gy in 16 fractions depending on whether a boost was planned or 
not. Treatment plans were generated using a 6 MV photon beam energy 
tangential beam arrangement with a sliding window IMRT technique. 
Dose coverage was according to ICRU [31] and plans were normalized to 
have the prescribed dose to the mean of the PTV volume. The dose 
volume objective for the lungs was defined as the volume receiving 20 
Gy (V20Gy) to be less than 20 %. Mean dose to the heart was restricted to 
less than 2 Gy, with the maximum dose being kept as low as possible. For 
the contralateral breast, mean dose was less than 2 Gy. All tolerances 
followed QUANTEC guidelines [19]. Each plan was generated by the 
same dosimetrist to ensure consistency across all plans. Dose calcula
tions were performed with the Eclipse™ Anisotropic Analytical Algo
rithm (Version 15.6.04). 

Statistics 

For all endpoints; FB, DIBH, the relative difference between DIBH 
and FB in % (calculated as 100*(DIBH-FB)/FB)) and the absolute dif
ference between DIBH and FB (calculated as DIBH-FB) were summarized 
using median and range. FB and DIBH were compared using Wilcoxon 
signed-rank tests. No correction for multiple testing was applied, thus all 
analyses are considered exploratory and hypothesis generating. All an
alyses were performed using SAS 9.4 (SAS Institute, Cary, NC, USA) and 
R 4.0.3 (The R Foundation; https://www.r-project.org). 

Results 

PTV 

Dose-volume metrics for target volumes (PTV) are summarised in 
Table 1. There was no difference in plan quality between DIBH and FB 
plans for all groups in terms of target coverage. All plans, under both 
breathing conditions, met the target coverage criteria. We found that 
there was a less than 0.4 % difference in PTV coverage when considering 

Table 1 
Dose-volume metrics for target volumes for FB and DIBH plans.  

PTV Variable FB DIBH Rel. Diff. 
(DIBH-FB) 
(%) 

Abs. Diff 
(DIBH-FB) 

p- 
value 

V95% 
Coverage 
(%) 

95.8 
(75.9, 
97.3) 

95.5 
(78, 
96.7) 

− 0.36 
(− 2.06, 
3.6) 

− 0.35 
(− 2, 3.3)  

0.453 

V90% 
Coverage 
(%) 

97.1 
(82.8, 
98.05) 

96.8 
(84.9, 
98) 

− 0.31 
(− 1.89, 
2.5) 

− 0.3 
(− 1.85, 2.1)  

0.285 

Abbreviations: FB: free breathing; DIBH: deep inspiration breath hold; V: volume 
of 
In all the tables median and range are reported for FB, DIBH, the relative dif
ference between DIBH and FB in % (calculated as 100*(DIBH-FB)/FB) and the 
absolute difference between DIBH and FB (calculated as DIBH-FB). The p-values 
were calculated using Wilcoxon signed-rank tests. 
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the V95% and the V90%. No compromise on target volume coverage had 
to be made. 

Lung dose 

There was a significant increase in total lung volume for DIBH 
compared to FB, from 1376.2 cm3 (1008.8–2032.6 cm3) for FB to 
2472.0 cm3 (1725.2–2977.0 cm3) for DIBH (P < 0.001), as well as in any 
total or ipsilateral lung dose-volume metric between FB and DIBH 
(Table 2). While the absolute volume of lung within the 20 Gy isodose 
line increased (with DIBH: 291 cm3 versus FB: 230 cm3), the percentage 
of lung irradiated decreased, with an average decrease of the V20Gy (%) 
by 2.5 % (from 14 % to 11.5 %; p = 0.007). The right lung exposure 
significantly reduced with the application of DIBH in terms of mean dose 
and dense lung tissue irradiated. The mean Hounsfield numbers, thus 
the mean relative electron density of lung volume V20Gy, was signifi
cantly reduced with DIBH (Table 2, Fig. 1). The relative electron density 
of the ipsilateral lung had a significant reduction in the DIBH group by 
− 7.52 % (p = 0.007) (Table 2). 

Liver dose 

We identified statistically significant reductions in the irradiated 
liver volume when comparing DIBH with FB. Table 3 gives the relative 
and absolute difference in the liver Dmax (Gy), the liver V50% (cm3) and 
the mean dose in the liver (Gy). Physical distance between PTV and liver 
is visualized in Fig. 2. Mean liver dose was significantly lower with DIBH 
(FB: 2.1 Gy (0.6–6.3 Gy); DIBH: 0.8 Gy (0.1–2.6 Gy); p = 0.0009. 
Maximum dose to the liver was significantly less using DIBH: 17.5 Gy 
versus FB 40.3 Gy (p < 0.001). The relative difference for Dmax in the 
liver decreased by 48 % when using DIBH instead of FB. The liver is not 
only being spared from higher doses, the V10% for the liver was also 
significantly decreased from 72 to 1.9 cm3 (p < 0.001). Overall, using 
DIBH is beneficial for the liver in both high and low dose regions when 
treating the whole right breast. 

Cardiac dose 

The mean and maximum heart doses were comparable between FB 
and DIBH plans, but there was still a statistically significant difference in 
the Dmax of the heart in favor of DIBH (Table 4). 

Discussion 

This study supports the use of DIBH for right-sided patients with 
breast cancer without regional nodal irradiation, especially regarding 
the liver constraints which were significantly lower for all endpoints. 
Similarly, there was a significant difference in any total or ipsilateral 
lung dose-volume metric between FB and DIBH. When comparing our 
results to those found in previous studies, it is important to keep in mind 
the contrast between breast only and breast plus regional nodal irradi
ation. Many studies included the latter in their results, however our 
study focused solely on localized right breast cancer (RBC). Conway 
et al. did not investigate localized breast irradiation, Essers et al. found 
no significant decrease in mean lung dose [14,15]. Pandeli et al. 
observed that ipsilateral lung dose metrics decreased in terms of mean 
dose and percentage of lung receiving 20 Gy for whole breast only 
treatment [32]. Though these results are similar to our data, we 
observed an increase of 76.75 cm3 in absolute volume of ipsilateral lung 
within the 20 Gy isodose region when using DIBH. At first glance, this 
may be interpreted as an increase in expected irradiated lung tissue, 
however, the percentage of involved lung must also be considered. 
While the total volume of lung increases, the percentage of ipsilateral 
lung tissue receiving 20 Gy decreases from 14.0 % to 11.5 % (p: 0.007) 
in FB and DIBH, respectively. 

Also investigated was how the relative electron density of lung var
ied between FB and DIBH. DIBH reduces ipsilateral lung dose by 
expansion so that less tissue remains in the irradiated region. We 
observed a meaningful decrease in relative electron density in the 
V20Gy for ipsilateral lung. Oechsner et al. examined the differences 
between dose-volume histogram (DVH) and dose-mass histogram 

Table 2 
Dose-volume metrics for OAR lung.  

Side Lung Variable FB DIBH Rel. Diff. 
(DIBH-FB) (%) 

Abs. Diff 
(DIBH-FB) 

p-value 

Right Volume 
(cm3) 

1376.2 
(1008.8, 2032.6) 

2472.0 
(1725.2, 2977) 

76.1 
(40.9, 117.5) 

1094.1 
(716.4, 1320.7)  

<0.001 

Average 
HU 

− 727.8 
(− 949, − 678.5) 

− 823.3 
(− 844.3, − 782.2) 

13.5 
(− 13.7, 18.7) 

− 97.1 
(− 129.8, 130.2)  

0.005 

Relative electron density 0.65 
(0.54, 0.67) 

0.6 
(0.59, 0.62) 

− 7.52 
(− 9.83, 12.1) 

− 0.05 
(− 0.06, 0.06)  

0.007 

V20Gy 
(cm3) 

230.5 
(101.7, 329.5) 

291.4 
(191.4, 433.2) 

34.6 
(6.6, 103.9) 

76.8 
(11.9, 158.7)  

<0.001 

V20Gy – 
Average HU 

− 782 
(− 826.3, − 746.4) 

− 846.6 
(− 858.8, − 810.3) 

7.4 
(3.9, 11) 

− 59 
(− 83.5, –32.4)  

<0.001 

V20Gy - relative electron density 0.62 
(0.6, 0.64) 

0.59 
(0.58, 0.61) 

− 4.87 
(− 6.7, − 2.8) 

− 0.03 
(− 0.04, − 0.02)  

<0.001 

Mean dose 
(Gy) 

6.66 
(5.3, 9.2) 

6.08 
(4.8, 8.3) 

− 14.72 
(–32.1, 4.9) 

− 0.99 
(− 2.9, 0.3)  

<0.001 

V20Gy 
(%) 

14.02 
(8.6, 19.6) 

11.5 
(8.58, 17.7) 

− 15.8 
(− 37.42, 12.4) 

− 1.95 
(− 7.2, 1.9)  

0.007 

Left Dmax (Gy) 0.63 
(0.21, 3.21) 

1.3 
(0.04, 4.48) 

98.34 
(− 89.74, 514.29) 

0.73 
(− 0.35, 1.36)  

<0.001 

Abbreviations: FB: free breathing; DIBH: deep inspiration breath hold; Rt: right; Lt: left; HU: Hounsfield Units; HN: Hounsfield numbers: Gy: Gray; V: volume of. 

Fig. 1. Significant reduction in lung density for DIBH.  
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(DMH) in respect to ipsilateral lung expansion during DIBH for left sided 
breast irradiation [33]. Their data suggest a potential mass related dose 
reduction to the left lung during DIBH. To quantify organ dose the DMH 
concept was reported to be superior to the calculation of DVHs [34]. As 

our commercial treatment planning system does not provide calculation 
of DMH, only relative electron densities for lung volumes, conclusion 
was reached as to whether a lower density tissue resulted in less dose. 

Relative lung volume is predictive for irradiated lung tissue, but 
quantification requires the calculation of irradiated lung mass. Since 
lung density is not homogeneously distributed, with greatest density in 
the base which decreases toward the apex [8], there is a gradient in lung 
mass which has to be evaluated in future studies. 

The relative reduction in ipsilateral lung V20Gy with DIBH in our 
study (− 15.8 %; 14.02 % vs 11.5 %) was greater than previously re
ported for right sided patients with breast cancer receiving “breast only 
radiotherapy”. For right sided breast treatment including RNI, the re
sults from Conway et al. [15] and Essers et al. [14] showed a reduction 
in ipsilateral lung dose (V20Gy) of 7.8 % and 7.5 %, respectively. While 
our study reports an increase in absolute ipsilateral lung V20Gy, the 
absolute percentage of lung receiving 20 Gy decreased by 2.5 % with 
DIBH. Such differences in results are likely related to the irradiated 
geometry, the choice of treatment planning technique and the dose- 
volume metrics evaluated. For local breast radiotherapy, Essers et al. 
used a wide tangential treatment approach and reported small re
ductions in lung dose. This correlates with our results, as the absolute 
difference for ipsilateral lung V20Gy was 1.95 %, which is slight but 
significant [15]. With our tangential IMRT treatment approach, we 
achieve similar low-dose exposure as compared to conventional 
tangential breast irradiations techniques. 

It is reported that DIBH for patients with RBC shows a benefit for 

Table 3 
Dose-volume metrics for OAR liver.  

Liver 
variable 

FB DIBH Rel. Diff. 
(DIBH-FB) 
(%) 

Abs. Diff 
(DIBH-FB) 

p-value 

Volume 
(cm3) 

1275.5 
(1006.4, 
2182.9) 

1279.4 
(986.9, 
2837.4) 

12.6 
(− 4.6, 
89.56) 

145.3 
(− 58.6, 
1340.6)  

0.007 

Dmax (Gy) 40.3 
(4.58, 48.6) 

17.54 
(1.9, 47.4) 

− 48.0 
(− 95.9, 
− 0.1) 

− 19.3 
(− 43.9, 
− 0.03)  

<0.001 

Mean dose 
(Gy) 

2.1 
(0.6, 6.3) 

0.8 
(0.1, 2.6) 

− 74.9 
(− 95.2, 
150.6) 

− 1.6 
(− 4.9, 2)  

0.009 

V90% 
Isodose 
(%) 

0.7 
(0, 3.4) 

0 
(0, 1.5) 

− 100 
(− 100, 0) 

− 0.7 
(− 3.2, 0)  

0.001 

V10% 
Isodose 
(%) 

6.9 
(0, 42.0) 

0.25 
(0, 7.5) 

− 94.8 
(− 100, 0) 

− 5.8 
(− 42.0, 0)  

0.001 

V90% 
Isodose 
(cm3) 

8.1 
(0, 43.6) 

0 
(0, 15.4) 

− 100 
(− 100, 0) 

− 8.1 
(− 43.6, 0)  

0.001 

V50% 
Isodose 
(cm3) 

36.8 
(0, 118.7) 

0 
(0, 41) 

− 99.9 
(− 100, 0) 

− 29.4 
(− 106.7, 0)  

0.001 

V10% 
Isodose 
(cm3) 

72.2 
(0.01, 
202.5) 

1.9 
(0, 79.1) 

− 96.2 
(− 100, 
− 40.9) 

− 54.7 
(− 163.3, 0)  

<0.001 

V30Gy 
Isodose 
(cm3) 

18.6 
(0, 94.5) 

0 
(0, 14.5) 

− 100 
(− 100, 0) 

− 16.6 
(− 92.5, 0)  

0.001 

V30Gy 
Isodose 
(%) 

1.3 
(0, 7) 

0 
(0, 1.1) 

− 100 
(− 100, 5) 

− 1.2 
(− 6.8, 0.3)  

0.001 

Abbreviations: FB: free breathing; DIBH: deep inspiration breath hold; Gy: Gray: 
V: volume of. 

Fig. 2. Physical distance between PTV and liver is clearly visualized, naturally dependent on patient anatomy.  

Table 4 
Dose-volume metrics for OAR heart.  

Heart 
variable 

FB DIBH Rel. Diff. 
(DIBH-FB) 
(%) 

Abs. Diff 
(DIBH-FB) 

p- 
value 

Dmax (Gy) 3.8 
(2.2, 
11.1) 

3.1 
(2.5, 
6.7) 

− 8.8 
(− 39.1, 18.7) 

− 0.4 
(− 4.3, 
0.5)  

0.023 

Abbreviations: FB: free breathing; DIBH: deep inspiration breath hold; Gy: Gray. 
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liver and heart dose [35,36]. They found that liver doses, although 
under accepted tolerances, did decrease with the addition of DIBH. 
While our study focused on patients undergoing treatment to intact 
breast, the results showed a similar decrease with maximum liver dose 
(Dmax) dropping by an average of 19.25 Gy from FB to DIBH. In fact, our 
study as well as that by Gunel Haji, et al., showed an improvement in 
every dose value that was evaluated [36]. This suggests that maximum 
dose and low dose levels can be decreased for RBC patients with or 
without intact breasts. 

There are few studies that focus on the quantitative impact of 
reducing liver dose. Our study did not set acute toxicity as a specific 
endpoint; therefore, side effects such as nausea were not explicitly 
documented. On the contrary, Hormati et al. investigated a potential 
link between liver fibrosis after breast irradiation [37]. They concluded 
no significant impact of doses up to 40 Gy, using electrography as a 
measurement tool. What must also be considered is potential damage to 
the liver that may come from other sources. We believe that liver doses 
should be kept as low as possible to compensate for potential damage 
that may come from future irradiation, certain chemotherapy treat
ments, or even future hepatic tumours. Modern treatment techniques 
like VMAT would result in a wide low dose bath for a large part of the 
liver. Therefore, tangential IMRT would be more beneficial for the liver 
by preventing scattering. 

With these unforeseeable future complications, it is important that 
we minimise dose to all organs at risk using the ALARA principle (as low 
as reasonably achievable), even when doses are otherwise below 
tolerance. 

Although previous studies suggest there is a minimal difference in 
dose to the heart between FB and DIBH groups, it is still widely believed 
that any form of dose reduction should be applied in order to obtain 
long-term benefits [19]. While our study did not specifically investigate 
dose to LAD, we did see a clinically significant reduction in Dmax to the 
heart. 

Another topic to be considered when introducing a new treatment 
technique is a cost-benefit analysis. We did not evaluate the cost effec
tiveness of this approach for patients undergoing radiotherapy to the 
right breast. However, there is at least one study which has shown that it 
is cost effective for left-sided treatment using “Field-in-Field” IMRT- 
irradiation-techniques [38]. Further studies need to be conducted in 
order to provide evidence that this method for RBC is also cost effective. 

Conclusions 

Radiation of the right breast using DIBH significantly spares liver and 
lung tissue and should therefore be considered as a potential new best 
practice for radiotherapy of right sided breast cancer. Based on these 
results we have implemented DIBH for right sided breast cancer as 
standard practice in our institute. Further we believe that patients who 
need irradiation to locoregional lymphatic regions would also benefit 
from DIBH. This should be investigated in future studies. 
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[25] Hedin E, Bäck A, Chakarova R. Impact of lung density on the lung dose estimation 
for radiotherapy of breast cancer. Phys Imaging Radiat Oncol 2017;3:5–10. 
https://doi.org/10.1016/j.phro.2017.07.001. 

[26] Rosenzweig KE, Hanley J, Mah D, et al. The deep inspiration breath-hold technique 
in the treatment of inoperable non-small-cell lung cancer. Int J Radiat Oncol Biol 
Phys 2000;48(1):81–7. https://doi.org/10.1016/s0360-3016(00)00583-6. 

[27] Osman SOS, Hol S, Poortmans PM, Essers M. Volumetric modulated arc therapy 
and breath-hold in image-guided locoregional left-sided breast irradiation. 
Radiother Oncol 2014;112(1):17–22. https://doi.org/10.1016/j. 
radonc.2014.04.004. 

[28] Grantzau T, Overgaard J. Risk of second non-breast cancer after radiotherapy for 
breast cancer: A systematic review and meta-analysis of 762,468 patients. 
Radiother Oncol 2015;114(1):56–65. https://doi.org/10.1016/j. 
radonc.2014.10.004. 

[29] Hofmann L, Forschner A, Loquai C, et al. Cutaneous, gastrointestinal, hepatic, 
endocrine, and renal side-effects of anti-PD-1 therapy. Eur J Cancer 2016;60: 
190–209. https://doi.org/10.1016/j.ejca.2016.02.025. 

[30] Starkschall G, Butler L. The dose mass histogram: a tool for evaluating thoracic 
treatment plans. Med Phys 2001;28:1228–9. 

[31] International Commission on Radiation Units and Measurements. Prescribing, 
Recording, and Reporting Photon Beam Therapy. International Commission on 
Radiation Units and Measurements; 1999. 

[32] Pandeli C, Smyth LML, David S, See AW. Dose reduction to organs at risk with 
deep-inspiration breath-hold during right breast radiotherapy: A treatment 
planning study. Radiat Oncol 2019;14(1). https://doi.org/10.1186/s13014-019- 
1430-x. 

[33] Oechsner M, Düsberg M, Borm KJ, Combs SE, Wilkens JJ, Duma MN. Deep 
inspiration breath-hold for left-sided breast irradiation: Analysis of dose-mass 
histograms and the impact of lung expansion. Radiat Oncol 2019;14(1). https:// 
doi.org/10.1186/s13014-019-1293-1. 
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