
RESEARCH ARTICLE

Evaluation of machine learning models for

automatic detection of DNA double strand

breaks after irradiation using a γH2AX foci

assay

Tim HohmannID
1*, Jacqueline Kessler2, Dirk Vordermark2, Faramarz Dehghani1

1 Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Germany, 2 Department

of Radiotherapy, Martin Luther University Halle-Wittenberg, Germany

* tim.hohmann@medizin.uni-halle.de

Abstract

Ionizing radiation induces amongst other the most critical type of DNA damage: double-

strand breaks (DSBs). Efficient repair of such damage is crucial for cell survival and geno-

mic stability. The analysis of DSB associated foci assays is often performed manually or

with automatic systems. Manual evaluation is time consuming and subjective, while most

automatic approaches are prone to changes in experimental conditions or to image arte-

facts. Here, we examined multiple machine learning models, namely a multi-layer percep-

tron classifier (MLP), linear support vector machine classifier (SVM), complement naive

bayes classifier (cNB) and random forest classifier (RF), to correctly classify γH2AX foci in

manually labeled images containing multiple types of artefacts. All models yielded reason-

able agreements to the manual rating on the training images (Matthews correlation coeffi-

cient >0.4). Afterwards, the best performing models were applied on images obtained under

different experimental conditions. Thereby, the MLP model produced the best results with

an F1 Score >0.9. As a consequence, we have demonstrated that the used approach is suf-

ficient to mimic manual counting and is robust against image artefacts and changes in

experimental conditions.

Introduction

The effect of irradiation on bio-chemical properties of cells or their survival can be evaluated

by detection of the induced DNA damage either in the form of single strand breaks, double

strand breaks or others. Double strand breaks are considered to be the most toxic form of

DNA damage [1] as these lesions are significantly more complex in nature and time-consum-

ing to repair [2,3]. A common way to visualize DNA damage or more precisely double strand

breaks is via labeling of γH2AX the phosphorylated form of the H2AX histone protein variant.

H2AX was shown to be part of the DNA damage signaling, located closely to DNA double-

strand breaks [4,5]. γH2AX is therefore a sensitive marker for DNA damage, as the number of

γH2AX foci is proportional to the dose of irradiation [6–9].
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Quantifying the number of γH2AX foci is frequently conducted manually [9–12], but

manual counting is laborious and the inter-rater reliability seems to be low [13–15]. Automatic

and semi-automatic evaluations of γH2AX assays have the potential to overcome these issues.

In the past, multiple approaches of varying complexity have been proposed [14–31]. These

algorithms mostly use diverse types of image filters to highlight foci and consequently

facilitate segmentation. Some also introduce object splitting to reduce effects of foci overlap

[14,22,23,28,29]. The results of these approaches vary strongly in dependence on the chosen

parameters and definition of a positive signal. Consequently, these algorithms often fall short

reproducing manual counting for different raters. To the authors knowledge there are yet only

two studies demonstrating the capabilities of machine learning to automatically adapt to man-

ual counting for higher doses [13,31]. Herbert et al. used images with varying foci intensity

and size, but used a high-quality imaging setup generating images with little noise and little to

no artefacts. Furthermore, only one experimental condition has been used and changes in

staining quality have not been evaluated [13]. The second study to use machine learning was

designed for the analysis of low dose irradiation, discarding images of low staining quality

[31]. Experimental conditions and image quality are known to impact foci density and results

of automatic foci detection [9]. As many images are obtained via standard epi-fluorescence

microscopy, image quality is expected to be significantly lower than in the other studies using

machine learning approaches. Here, we systematically test multiple machine learning

approaches, namely a multi-layer perceptron classifier (MLP), linear support vector machine

classifier (SVM), complement naive bayes classifier (cNB), random forest classifier (RF) and

their combinations, regarding their capability to mimic manual identification of foci areas and

their count in images of low quality, containing high amounts of noise and image artefacts.

We observed in our study that the MLP classifier and voting models containing the MLP clas-

sifier yield best results that can be generalized to different experimental conditions and image

resolutions.

Materials and methods

Cell culture

For experiments the three glioma cell lines U-251 MG, LN-229 and U-343 MG were used. U-

251 MG and LN-229 are glioblastoma cell lines (grade IV), while U-343 MG originates from

an anaplastic astrocytoma (grade III). All cell lines were cultured in RPMI 1640 medium

(Lonza, Walkersville, USA), containing 10% (v/v) fetal bovine serum (Thermo Scientific,

Dreieich, DE), 1% (v/v) sodium pyruvate (Thermo Scientific, Dreieich, DE), 185 u/ml penicil-

lin and 185 μg/ml streptomycin (Biochrome, Berlin, DE). For cell culture cells were grown at

37˚C with 21% (v/v) O2 and 5% CO2 (v/v) in a humidified atmosphere.

Human glioma cells U-251MG and LN-229 both originate from grade IV glioblastoma,

while U-343MG originates from grade III glioma. Cell line authentication was achieved by

genetic profiling using polymorphic Short Tandem Repeat (STR) loci. Briefly, the DNA of the

cell lines was isolated by GeneJET Genomic DNA Purification Kit (Thermo Scientific) accord-

ing to the manufacturer’s instructions. Standardized STR analyses of selected STR loci (TH01,

TPOX, vWA, CSF1PO, D16S539, D7S820, D13S317 and D5S818, D3S1358, D1S1656,

D6S1043, D18S51, D2S1338, D21S11, D8S1179, D12S391, D19S433, FGA, Penta D, Penta E)

plus Amelogenin for gender identification of human glioma cell lines were performed at the

Institute of Forensic Medicine Martin-Luther-Universität Halle Wittenberg, Laboratory of

Forensic Molecular Genetics (Franzosenweg 1, 06112 Halle (Saale), Germany).

The cell cultures were tested for mycoplasma contamination at regular intervals (at least

every two weeks) using the Venor1GeM Classic Mycoplasma PCR Detection Kit (Minerva
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Biolabs, Berlin, DE). For this purpose 500 μL cell culture supernatant with up to 106 cells were

transferred into a microcentrifuge tube, incubated for 10 min at 95˚C and centrifuged for 5 s

at 13.000 rpm. The resulting supernatant (2 μL) was used to prepare the PCR reaction mixture

with a polymerase with a concentration of 5 U/μL according to the manufacturer’s protocol.

U-251 MG and U-343 MG cells were irradiated with 2 Gy or 4 Gy 24 h before the fixation,

while LN229 cells were irradiated with 2 Gy and fixed 1 h afterwards. All experiments were

performed with cells in logarithmic growth phase.

γH2AX assay

The γH2AX labelling was performed as described before [14,32]. Briefly, cells were seeded in

8-well chambers (Thermo Scientific, Dreieich, DE) for 24 h, irradiated and fixed with 4% para-

formaldehyde after another 24 h or 1 h respectively. Cells were permeabilized with 0.5% Triton

X-100 (Carl Roth, Karlsruhe, DE) /PBS (Lonza, Walkersville, USA) for 10 min and treated

with 1% bovine serum albumin (Promega, Fitchburg, USA) for 1 h. Afterwards, the H2AX

antibody (Cell Signaling, Danvers, MA, USA) and Anti-rabbit-Alexa 488 labeled secondary

antibody (Alexa 488, Thermo Scientific, Dreieich, DE) were applied for 1 h. Nuclei were coun-

terstained with DAPI (Carl Roth, Karlsruhe, DE).

Images were taken using an Axiovert 200M (Carl Zeiss, Jena, Germany) equipped with a

63x or 40x objective, resulting in images with a resolution of 1388x1038 px, corresponding to

162.6x121.6 μm or 103.2x77.2 μm, respectively.

Detection of cell nuclei

For detection and separation of single nuclei a median filter and a contrast limited adaptive

histogram equalization algorithm were applied. Afterwards, the Otsu method was used for

image binarization. Overlapping nuclei were split using the watershed algorithm. The obtained

nuclei were used to define regions of interest. All source codes are available as supplemental

materials (S1 Source Code).

Detection of foci. All source codes used are available, together with a documentation file

in the supplement (S1 Source Code) and on GitHub.

Model application using the final pre-trained model presented here: https://github.com/

Herodot1/FociDetect

Model training: https://github.com/Herodot1/FociDetect_Training

Machine learning models. For foci detection 4 different models were used: a multi-layer

perceptron classifier (MLP), linear support vector machine classifier (SVM), complement

naive bayes classifier (cNB) and random forest classifier (RF). Furthermore, these classifiers

were combined in all possible combinations using a voting classifier. To further improve the

classification of each single model we used ada-boost (15 estimators) with the SVM, RF and

cNB classifier. A bagging estimator (10 estimators) was used to reduce computational com-

plexity of the SVM classification. All models and classifiers described here were obtained from

the scikit-learn package v0.20.3 for python. All source codes are available as supplemental

materials (S1 Source Code).

Generation of a feature space. As γH2AX foci differ not only from background in terms

of intensity but also local gradients and potentially other properties, multiple image filters and

sizes were used, mostly from the sci-kit image package v0.15 for python (exception: anisotropy

filter) to generate features. The following filters were applied: Scharr filter, frangi filters (scaling

range 0 to 5, stepwidth of 0.3) and gabor filters (frequencies = [0.08,0.10,0.13,0.16,0.2]). Addi-

tionally, the following filters with filter sizes of 2,3,4,5,8,10,15,20,25,30 and 35 pixels were used:

auto level, auto level using the intensity percentile of 0.2 to 0.9, local histogram equalization,
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local minimum-maximum gradient, local minimum-maximum gradient using the percentile

of 0.1 to 0.9, maximum, minimum, average, average using the percentile of 0.2 to 0.8, bilateral

mean with intensity difference of ±15, median, modal, entropy and top-hat. Furthermore, an

anisotropy filter with the same filter sizes as before was used [33,34].

After feature generation a principal component analysis was performed over all features

and training images. Principal components cumulatively explaining 95% of the variance of the

data were used to generate the final feature space, used for training the models and application

of models to test-data.

Model training. All models were trained using 9 images of U-343 MG and U-251 MG

cells irradiated with 2 or 4 Gy, and imaged using an epi-fluorescence microscope equipped

with a 63x objective. The used images were the same as in a previous study of our group [14]

and contained 180 cell nuclei. Each image was manually classified and pixels belonging to foci

were marked for training of the models. Models were trained on 8 out of 9 images and vali-

dated on the remaining one.

For evaluation of the quality of each model we used the following metrics: F1 score and

Matthews correlation coefficient [35,36]. These scores were calculated using a pixel wise evalu-

ation. Notably, we did not use accuracy as a measure, as more than 90% of the training pixels

were true negatives, making accuracy an insufficient metric.

Model testing. To evaluate the capabilities of the models with best scores to adapt to dif-

ferent conditions, we used images from LN-229 cells irradiated with 2 Gy, fixed 1 h after irra-

diation and imaged using an epi-fluorescence microscope equipped with a 40x objective,

modulating 3 principal aspects of the experiment: spatial resolution, cell type and foci density

via fixation time. Analysis of these images, containing 113 nuclei was carried out as described

before, except that the images were rescaled to match the pixel size of the training images.

Objects with an area smaller than 16 px were removed. For evaluation of the model quality we

compared the manual foci count with the number of objects obtained for the used models.

Hough-transformation was applied to adjust for object overlap in the automatic detection, to

split objects and identify their centers. If the center of an automatically found focus was within

the distance of 5 px (�0.6 foci diameters) or less of the center of a manually found focus it was

considered true positive, otherwise false positive. Similarly, false negative signals were

detected. The false negative rate (FNR), positive predictive value (PPV), sensitivity and F1

score were calculated for model evaluation.

To verify the validity and robustness of the here used procedure we analyzed an image set

containing 21 nuclei published by Herbert et al. [13]. In their publication the colleagues used

budding yeast cells, labeling foci with Zip3-GFP and Msh4-GFP and images were generated

using a Deltavision IX70 confocal microscope [13]. Consequently, the system is only remotely

similar to the ones used so far. To allow evaluation, we first rescaled the images so that foci

sizes are comparable to the ones used for training here. Afterwards, the same procedure as for

the LN-229 cells irradiated with 2 Gy and fixed 1h after irradiation was performed.

Statistics

For creating box-plots the central mark was defined as the median, the boxes showed the 25th

and 75th percentile, whiskers indicated the most extreme points not considered outliers

(median ± 2.7 σ, default settings in MatLab 2013a) and outliers were marked as red “+”

symbols.

The 95% confidence intervals were displayed as error bars in any bar plot. Confidence

intervals were constructed empirically via basic bootstrapping, regarding the detection results

(true positives, false positives, false negatives) for each nucleus as an independent event.

Detection of DNA double strand breaks
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Bootstrapping was performed 1000 times per experimental group. Statistical significance was

assumed, when 95% confidence intervals did not overlap. For bootstrapping and construction

of confidence intervals MatLab 2013a (The MathWorks, Natick, USA) was used.

Results

Determination of image quality

The quality of the used images was assessed before training the models. We defined 5 catego-

ries of image qualities: 1) good: referring to nuclei without artefacts or any disturbances 2)

noisy: represents nuclei with high background or low signal to noise ratio of the foci signal, 3)

artefacts: define images containing labeling artefacts, 4) halos: point to images showing halos

around foci and 5) apoptotic nuclei. Examples for each type of nucleus are shown in Fig 1.

Assigning all 180 nuclei in the training images to these categories yielded that roughly 62%

of all nuclei were of good quality, while 24% were considered noisy, 11% showed halos and 2%

contained artefacts or were apoptotic (Table 1). Taken together, the analyzed images represent

an adequate mixture of images to train the used statistical models on data obtained from sub-

par images.

Training of statistical models

For model training we used all filters described in the methods section together with the origi-

nal image, creating a 173-dimensional feature space. To reduce the dimensionality of the fea-

ture space a principal component analysis (PCA) was performed and only the “most

important” principal components explaining 95% of the total variance were employed for

model training and validation. This approach reduced the dimensionality of the feature space

from 173 to 15. Afterwards, all models and their combinations were trained on 8 of the 9 train-

ing images in all combinations and validated on the remaining image (Fig 2A–2C). Generally,

all models performed well on nuclei with a good signal to noise ratio, without further artefacts,

halos etc., as observed by visual inspection (Fig 2A, upper row). For images with lower signal

to noise ratio SVM and cNB showed overfitting, while the remaining models matched manual

segmentation well (Fig 2A lower row). Quantitative analysis of agreement validated the visual

impression. SVM, cNB and SVM+cNB led to a reduced F1 score and MCC and the voting

models cNB+SVM+RF/MLP displayed an increased spread, compared to the remaining mod-

els (Fig 2B, Table 2). Consequently, it can be concluded that cNB and SVM performed the

least well, while RF and MLP performed best as single models. Likewise, voting models con-

taining cNB and/or SVM and one other model tended to perform less well (Fig 2B). For fur-

ther validation on different experimental data, we therefore used the MLP, RF, MLP+RF, MLP

+RF+SVM and cNB+MLP+RF+SVM models.

Validation of trained models using different experimental conditions

To evaluate whether the trained models can be extended to different experimental conditions,

LN-229 cells irradiated with 2 Gy and fixed 1h after irradiation were used as they showed the

highest foci number per cell creating a different foci pattern inside the nuclei. Additionally,

these cells were labeled independently of the training images and were imaged with a 40x

objective. These variations were done in order to demonstrate the robustness of the used

machine learning models. Foci were labeled manually by the same researcher that classified

the training images for comparison with the automatic results. Here, we only measured agree-

ment in terms of identified foci. Objects identified using the automatic approach were first fil-

tered with a size filter to remove single objects smaller than 16 px and Hough transformation

Detection of DNA double strand breaks
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was applied to identify foci centers. In a similar manner as for the training images we noticed a

very good agreement of all remaining models with the manual analysis for nuclei with a good

signal to noise ratio (Fig 3A, upper row), while deviations were found for subpar nuclei (Fig

3A, lower row). Quantitative analysis revealed a very good F1 score (>0.87) and sensitivity

(>0.8) for all models. Notably, for the RF and MLP+RF model significantly reduced values

were observed compared to the remaining models, as assessed by 95% confidence intervals

(Table 3). Furthermore, the FNR (<0.20) and PPV (>0.87) of the RF and MLP+RF models

were significantly increased (Table 3). This indicates that the increased PPV of the RF and RF

+MLP models arises from a decreased overall number of detected foci coming at the expanse

of reduced overall number of correctly identified foci (Table 4). Nevertheless, even these two

models showed decent results, while the MLP, MLP+RF+SVM and cNB+MLP+RF+SVM

models are virtually indistinguishable. Taken together our data indicates two main aspects: 1)

the used approach can be generalized to different, but similar, experimental conditions than

those used for training data. 2) The MLP, MLP+RF+SVM and cNB+MLP+RF+SVM were best

suited for generalization. For further reduction of dimensionality of the feature space the MLP

model was consequently used only, as this is the computationally least expensive one.

Reduction of parameter space

After proof of concept, the dimensionality of the input parameter space was reduced to facili-

tate computation. As the next step, the absolute values of the coefficients of the first two princi-

pal components were analyzed (see S1 Fig). The PCA components displayed a weak size

dependent coefficient for the autolevel, autolevel percentile, tophat, entropy and anisotropy fil-

ters, indicating that results obtained by different sized filters are not entirely correlated (as

expected) and compose significant information for classification. Furthermore, several differ-

ent filters of the same size showed very similar coefficients, independent of their size, like auto-

level and autolevel percentile filter, gradient and gradient percentile filter, mean, mean

percentile, mean bilateral and median filter. These two observations indicate two possibilities:

certain filters might be redundant or have very little impact and filter size is important to cap-

ture features, but potentially not all sizes. To test these hypothesizes we first reduced the num-

ber of filter sizes and frequencies to [2,3] and [0.08,0.1] or [2,10] and [0.08,0.1] or [2,10,30]

and [0.08,0.16,0.2], respectively. This way, it was assured that the impact of different filter sizes

was assessed. Afterwards, models were trained on the initially used training images using the

reduced filter sizes. This analysis revealed that the use of small filters only results in a markedly

worse classification (Fig 4). This aspect was partly compensated after the use of an additional

medium sized filter (Fig 4). The application of a further large sized filter led to virtually identi-

cal classification results as the original MLP model with all filter sizes (Fig 4). Next, we

removed the autolevel percentile, gradient percentile, mean percentile, mean bilateral and

median filter, as these parameters provided potentially only very little additional information.

Elimination of these filters did not impact the classification results significantly when

Fig 1. Assessment of image qualities. Diverse types of image qualities are displayed, showing the nuclear (DAPI) and γH2AX (Foci) staining, as well as the

final manual markings of the respective image. Five types of anomalies are presented: high background levels or a low signal to noise ratio, labeling artefacts,

halos around foci and apoptotic cells.

https://doi.org/10.1371/journal.pone.0229620.g001

Table 1. Number of nuclei and their image quality.

Quality Good Noisy Artefacts Halos Apoptotic

Nuclei 111 (61.7 %) 44 (24.4 %) 3 (1.7 %) 19 (10.5 %) 3 (1.7 %)

https://doi.org/10.1371/journal.pone.0229620.t001
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Fig 2. Summary of the training and validation results of all machine learning models. A) Visual comparison of different machine learning models with manual

classification. All depicted models yielded reasonable results for nuclei with high signal to noise ratio, but increased noise levels lead to over fitting of the SVM and cNB

model. B) and C) F1 score and Matthews correlation coefficient of all models. The SVM, cNB and most models combined with those yielded worse classification results

compared to the remaining models. Box plots: the central mark corresponds to the median, the boxes show the 25th and 75th percentile, whiskery indicate the most

extreme points not considered outliers.

https://doi.org/10.1371/journal.pone.0229620.g002

Table 2. Pixelwise evaluation of model performance.

Model True Negative False Negative True Positive False Positive

SVM 3475866 3680 154816 172406

MLP 3621996 36440 122056 26276

cNB 3532468 46102 112394 115804

RF 3625892 37815 120681 22380

MLP+SVM 3622023 37566 120930 26249

RF+SVM 3625967 37761 120735 22305

cNB+SVM 3577436 46534 111962 70836

MLP+RF 3630833 42863 115633 17439

cNB+MLP 3633011 59455 99041 15261

cNB+RF 3634212 60311 98185 14060

MLP+RF+SVM 3620910 33093 125403 27362

cNB+MLP+SVM 3564959 26191 132305 83313

cNB+RF+SVM 3567063 24060 134436 81209

cNB+MLP+RF 3624782 38493 120003 23490

cNB+MLP+RF+SVM 3625631 38500 119996 22641

https://doi.org/10.1371/journal.pone.0229620.t002
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compared to the original MLP filter. Consequently, we demonstrated that for classification of

foci multiple filter sizes indeed lead to a gain of information, while several of the used filters do

not add significant amounts of information. This approach allowed reducing the dimensional-

ity of the initial parameter space from 173 to 36 or from 15 to 9 after PCA.

Fig 3. Summary of the classification results for images obtained under different experimental conditions. A) Visual comparison of different machine learning

models with manual classification. All depicted models yielded reasonable results for nuclei with high signal to noise ratio, but increased noise levels lead an increase in

the false negative rate of the RF and MLP+RF model. Red arrows show false negative foci, while white circles depict false positives. B)—E) F1 score, PPV, Sensitivity and

FNR of all models. The RF and MLP+RF model displayed a reduced F1 score and sensitivity, but an increased PPV and FNR compared to the other models. The

remaining models were indistinguishable from each other. Error bars depict 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0229620.g003
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Validation of the reduced model on an independent data set

In order to validate the applicability of the reduced model and demonstrate its robustness, we

analyzed an independent earlier published image set [13], manually and afterwards with the

MLP model with the reduced filter numbers and sizes. We found our approach to imitate

manual counting very well, with a sensitivity of 0.9, a positive predictive value of 0.96, a false

negative rate of 0.098 and a F1 score of 0.93. Empirical confidence intervals are displayed in

Table 5 and a typical analysis result shown in S2 Fig. Interestingly, the F1 score obtained here

is virtually identical to the best results obtained by Herbert et al. (0.925) [13].

Discussion

The present study was performed to develop a method for automatic detection of γH2AX foci,

using standard fluorescence microscopy, resulting in images of strongly varying quality. To

assess the goodness of our approach we compared manual classification with the results of var-

ious machine learning models. Generally, a very good agreement was found between manual

and automatic classification, verifying the applicability of our approach. Additionally, the used

models were surprisingly robust against artefacts and changes in experimental conditions,

potentially allowing a generalization of the best performing MLP model, after initial training.

Comparison to other Detection Algorithms

Although various other automated foci counting models exist, many of them are limited in

their applicability, when it comes to deal with variations in image quality or mimicking

Table 3. Analysis of model performance.

MLP Sensitivity PPV FNR F1

Mean 0.959 0.873 0.041 0.914

95 % CI 0.947–0.969 0.848–0.896 0.031–0.053 0.900–0.928

RF Sensitivity PPV FNR F1

Mean 0.813 0.957 0.187 0.879

95 % CI 0.774–0.848 0.947–0.965 0.151–0.226 0.855–0.899

MLP+RF Sensitivity PPV FNR F1

Mean 0.810 0.959 0.190 0.878

95 % CI 0.773–0.848 0.948–0.970 0.152–0.227 0.854–0.900

MLP+RF+ SVM Sensitivity PPV FNR F1

Mean 0.951 0.887 0.049 0.918

95 % CI 0.938–0.964 0.861–0.910 0.036–0.061 0.901–0.932

cNB+MLP+ RF+SVM Sensitivity PPV FNR F1

Mean 0.932 0.907 0.068 0.920

95 % CI 0.917–0.946 0.885–0.927 0.054–0.083 0.906–0.932

https://doi.org/10.1371/journal.pone.0229620.t003

Table 4. Object wise evaluation of model performance.

Model False Negative True Positive False Positive

MLP 109 2551 372

RF 497 2163 98

MLP+RF 506 2154 91

MLP+RF+SVM 130 2530 321

cNB+MKP+RF+SVM 180 2480 253

https://doi.org/10.1371/journal.pone.0229620.t004
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different manual raters [9,13,14]. These limitations arise in part by the way these algorithms

are constructed. Many approaches use a single noise filter and a subsequent global threshold

definition [16,19–21,25,26] or an additional object splitting step [22,23] to identify all remain-

ing objects as foci. Others use local thresholds after image processing [17,24] or fully auto-

mated approaches that rely on noise filters, gradient operators, Hough transformation or

wavelet transforms [14,27–29]. Most of these approaches share a certain fixed but low number

of parameters that have to be manually tuned to optimize the results. This is necessary to allow

an easy usage of each of these constructs. Otherwise, introducing more parameters would ren-

der parameter optimization very laborious. Nevertheless, the small parameter space potentially

does not capture all information necessary to optimally fit the user idea of foci detection, as

foci detection might need a higher dimensional parameter space, especially in cases of subpar

image quality. This concept is in good agreement with our results, showing that different filters

and filter sizes indeed capture more and diverse information, leading to a better classification.

To the authors knowledge, there are two approaches that introduced machine learning for foci

detection [13,31]. The study of Herbert et al. obtained training data from confocal images that

did not contain any artefacts in the foci space [13]. Consequently, the images used were of

much higher quality. Interestingly, the reported F1 scores were similar to the ones reported

here for the same dataset, when evaluating foci numbers. This indicates that our approach is

highly robust, as the used model was not trained on any of those images and the experimental

settings (species, labeling, imaging device) were largely different. The study of Lengert et al.

designed an algorithm for the analysis of cells exposed to very low doses of irradiation with a

low foci number [31]. In their experiments cells were stained with both γH2AX and 53BP1 to

label DSBs, and used both labels to generate a feature space, as true positive DSB signals had to

occur in both channels. Consequently, images with noisy or weak foci staining in one channel

were discarded [31]. This means that high quality images were needed, in contrast to our

approach that handles different staining qualities. Nevertheless, the approach of Lengert et al.

and ours cannot easily be compared, as they were designed for different purposes.

Fig 4. Summary of the results for the dimensionality reduction approach. A) and B) Box plots of the results for the F1 Score and MCC. Using only small or small and

medium filter sizes lowers the goodness of classification. Eliminating potentially redundant filter types does not strongly impact classification results. Box plots: the

central mark corresponds to the median, the boxes show the 25th and 75th percentile, whiskery indicate the most extreme points not considered outliers.

https://doi.org/10.1371/journal.pone.0229620.g004

Table 5. Analysis of model performance.

Sensitivity PPV FNR F1

Mean 0.902 0.958 0.098 0.923

95 % CI 0.883–0.920 0.949–0.968 0.079–0.117 0.919–0.940

https://doi.org/10.1371/journal.pone.0229620.t005
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Taken together the final MLP approach, using only three filter sizes and the reduced num-

ber of filters, presented in our study can be considered to be more adaptive to experimenter

specific definitions of positive signals compared to non-machine learning models. This is illus-

trated when comparing the results obtained here with the ones obtained in a previous study of

our lab [14]. By using the same images and application of multiple foci detection approaches

we demonstrated the weakness of those approaches to deal with varying image qualities [14].

Compared to other studies using machine learning we demonstrated that our final MLP

model seems to be more robust to varying image qualities and experimental variations.

Limitations

Despite the seemingly broad applicability of the presented procedure, its usage is restricted in

some cases. The classification of pixels only gives the decision whether a certain pixel belongs

to a focus or not. Problems associated with foci overlap due to clustering remain unsolved. In

these cases additional object splitting needs to be performed. Here, we used a Hough transfor-

mation for object splitting based on the assumption of a roughly circular geometry of foci.

Nevertheless, circular geometry might not be given for cells imaged shortly after irradiation.

Consequently, the presented algorithm should not be applied without an adequate strategy for

object splitting if high foci densities are expected. Furthermore, in our training scenarios apo-

ptotic cells with nuclei displaying large overexposed structures in the foci channel and overex-

posed artefacts were sometimes misclassified. This indicates that a few bright, large structures

in the foci channel that are not true positive signals might lead to misclassification of over-illu-

minated bright, clustered foci. Consequently, overexposure of true positive signals should be

avoided during image acquisition. Notably, the approach presented here was applied to low

quality images. Using images of higher quality by using confocal or super resolution imaging

or discarding images of low quality will greatly enhance classification results and potentially

needs a much lower dimensional feature space.

Conclusion

In this study, the performance of multiple classical machine learning approaches was tested on

a high dimensional feature space to correctly identify γH2AX foci in fluorescently labeled

images. We found all models to give at least reasonable classification results and the MLP

model to perform best. We thereby provided a framework for foci detection that is robust

against different types of artefacts, as well as experimental changes and improves the earlier

results of other automatic foci analysis software.

Supporting information

S1 Source code. Source code for model training and application and documentation.

(RAR)

S1 Fig. Graphical representation of the first two principal components of the initial

173-dimensional feature space. It can be seen that certain filters, such as e.g. autolevel, local

histogram or the anisotropy filter show distinct size dependence. Furthermore, some filters,

like autolevel and autolevel percentile filters seem to be very strongly correlated and thus

potentially redundant.

(PNG)

S2 Fig. Application of the reduced MLP model to external dataset. Analysis of the original

images published by Herbert et al. [13]. Manual classification of foci and with the reduced
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MLP model revealed similar results.

(TIF)
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21. MacPhail SH, Banáth JP, Yu TY, Chu EHM, Lambur H, Olive PL. Expression of phosphorylated histone

H2AX in cultured cell lines following exposure to X-rays. Int J Radiat Biol. 2003; 79(5):351–8. https://doi.

org/10.1080/0955300032000093128 PMID: 12943243
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