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Abstract: Background: Ovarian cancer is the most lethal gynecologic malignancy. There is a lack of
comprehensive investigation of disease initiation and progression, including gene expression changes
during early metastatic colonization. Methods: RNA-sequencing (RNA-seq) was done with matched
primary tumors and fallopian tubes (n = 8 pairs) as well as matched metastatic and primary tumors
(n = 11 pairs) from ovarian cancer patients. Since these are end point analyses, it was combined with
RNA-seq using high-grade serous ovarian cancer cells seeded on an organotypic three-dimensional
(3D) culture model of the omentum, mimicking early metastasis. This comprehensive approach
revealed key changes in gene expression occurring in ovarian cancer initiation and metastasis,
including early metastatic colonization. Results: 2987 genes were significantly deregulated in
primary tumors compared to fallopian tubes, 845 genes were differentially expressed in metastasis
compared to primary tumors and 304 genes were common to both. An assessment of patient
metastasis and 3D omental culture model of early metastatic colonization revealed 144 common
genes that were altered during early colonization and remain deregulated even in the fully developed
metastasis. Deregulation of the matrisome was a key process in early and late metastasis. Conclusion:
These findings will help in understanding the key pathways involved in ovarian cancer progression
and eventually targeting those pathways for therapeutic interventions.

Keywords: ovarian cancer; fallopian tube; primary tumor; metastasis; gene expression; sequencing;
tumor microenvironment; matrisome

1. Introduction

Ovarian cancer (OC) is the deadliest gynecologic malignancy and a highly heterogenous
disease [1–3]. High-grade serous OC (HGSOC) is the most prevalent and aggressive histologic
subtype, constituting about 70% of all cases [4]. The other subtypes include endometroid, mucinous
and clear cell OC. It was the first cancer to be extensively characterized by The Cancer Genome Atlas
(TCGA) study [2], which found tumor protein p53 (TP53) mutations in almost all HGSOC tumors
(96%). Among the other mutations, BRCA1 DNA repair associated (BRCA1) and BRCA2 DNA repair
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associated (BRCA2) were found to be mutated in about 22% of samples, while seven other genes
were mutated in 2–6% of tumors [2]. Another defining characteristic was the frequent copy number
variations observed in HGSOC tumors. Based on the mRNA expression profiles, OC tumors were
subclassified into differentiated, immunoreactive, mesenchymal or proliferative groups. Bowtell et
al. had similarly identified six molecular subtypes of OC, which they termed C1–C6 [5]. They found
that most high-grade tumors clustered into C1 (high stromal response), C2 (high immune signature),
C4 (low stromal response) and C5 (mesenchymal, low immune signature). Together, these two studies
provided a molecular overview of the aberrations at the genomic level as well as at the level of gene
expression. Such molecular profiling provided a better perspective and opened up opportunities for
personalized medicine. Integrated analyses of microarray based gene expression data sets have also
resulted in the identification of prognostic signatures for OC [6]. However, these studies were limited
to characterizing the primary tumors and did not directly reveal much about the progression and
metastasis of OC.

For a more comprehensive understanding of the disease, one has to start from its tissue of origin.
For many years, HGSOC was thought to originate from the ovarian surface epithelium. However,
strong evidence for fallopian tube (FT) fimbria as the tissue of origin was uncovered when careful
study of BRCA mutation carriers and later, HGSOC patients, revealed serous tubal intraepithelial
carcinoma (STIC) in their FT fimbria as precursor lesions [7–9]. More precisely, a multi-platform
genomic study revealed that even in those HGSOC cases, where STICs were not evident in the advanced
stage, the potential site of origin remained the distal FT [10]. Even low-grade serous carcinoma of
the ovary has now been reported to probably originate from the FT [11]. In recent years, significant
progress has been made in our understanding of the genomic landscape of OC carcinogenesis through
these sequencing studies. To a lesser extent, groups have also compared metastasis to primary
tumors [12,13]. While the study by Grellety et al. was limited to comparing a panel of 429 genes
in primary and metastatic tumors, Marchion et al. did a microarray analysis of ovarian surface
epithelial cells, pelvic tumors and extrapelvic tumors. Another study based on RNA-seq of primary
and metastatic tumors from omentum and bowel focused on phylogenetic analysis to determine the
sequence of progression [14]. A study comparing matched primary tumors and omental metastasis
for DNA copy number and mRNA expression changes identified the development of an aggressive
phenotype with metastasis [15]. A recent report profiling gene expression before and after neoadjuvant
chemotherapy showed marked changes in gene expression, including increased drug transport and
peroxisomal pathways [16]. However, very few studies have done a comprehensive profiling of OC
progression by comparing fallopian tube with primary tumor and metastasis, to identify the key
pathways deregulated during carcinogenesis and subsequent progression. For example, a study based
on exome sequencing of matched fallopian tube, ovarian tumor and metastasis from an OC patient
revealed that transcoelomic metastasis did not result in much accumulation of genetic alterations [17].
In addition, a whole-exome sequencing of matched STICs, invasive fallopian tube carcinoma, ovarian
tumors and omental metastasis identified diverse metastatic paths in OC, including STICs formed as
a result of metastasis [18].

Due to these facts, a similar comprehensive approach comparing the transcriptome of fallopian
tube with primary tumors and metastasis would be beneficial in revealing the oncogenic pathways
altered, independent of genetic alterations. Since it has been demonstrated that accumulation of
genetic changes is limited during metastasis [17], an RNA-seq based approach will be relevant to
understand microenvironment induced gene expression changes. During metastasis, the OC cells
encounter a new microenvironment that results in induction of adaptive changes [19]. Signals from
the microenvironment have been shown to induce transcription factor and microRNA expression
changes, which drive metastatic colonization, by changing the expression of their targets [20,21].
Similarly, interactions with the metastatic microenvironment can induce epigenetic changes such
as DNA methylation through the induction of DNA methyl transferase [21]. While using RNA-seq
for performing end point analysis of patient tumors is a relevant approach, it still does not provide
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any information of the intermediate steps and their regulation during metastasis. Since metastasis is
a multi-step process, such information about the individual steps will be helpful in understanding and
targeting the process that is mainly responsible for poor patient outcomes [22]. In vitro models, that can
mimic certain steps of OC metastasis have been increasingly employed to understand the underlying
mechanisms regulating these steps [23–25]. We have used such an organotypic three-dimensional (3D)
culture model of the omentum—a common site of OC metastasis—to study the early regulation of
metastatic colonization [20,21]. This model provides an insight into early metastatic colonization—the
rate limiting step in metastasis [26]. In the present study, we have used a comprehensive approach of
combining the endpoint RNA-seq analysis of OC patients’ normal fallopian tubes, primary ovarian
tumors and metastatic tumors with that of the transcriptomic changes occurring during early metastatic
colonization, using the organotypic omentum culture model. This study not only reveals the key
pathways deregulated during carcinogenesis and metastasis, but also provides a better understanding
of the adaptive process induced during metastatic colonization. Such an approach revealed evidences
that changes in the matrisome and related pathways are a defining feature of OC progression.

2. Results

2.1. Study Design

RNA isolated from eight pairs of matched normal FT and primary tumors from OC patients were
sequenced to identify the transcriptome changes during carcinogenesis. Similarly, RNA isolated from
eleven pairs of matched primary and metastatic tumors were sequenced. Patient characteristics are
included in Supplementary Table S1. This was combined with sequencing of RNA from three different
HGSOC cells (Kuramochi, OVCAR4 and OVCAR8) seeded on the organotypic 3D culture model of the
omentum [20,21] compared to controls, to identify the gene expression changes occurring during early
metastatic colonization. Extensive analysis of the RNA-seq data, including differential expression,
gene set enrichment, pathway analysis and interaction networks, was performed to identify the
genes and pathways altered during carcinogenesis compared to metastasis as well as early metastatic
colonization (3D omentum culture model) versus advanced metastasis (patient tumors).

2.2. Gene Expression Changes in Normal FT versus Primary Tumors and Primary Tumors versus Metastasis

A total of 2987 genes were differentially expressed in the primary tumor samples versus FT with
a significance level of false discovery rate (FDR) < 5% and absolute fold change ≥ 2 (Figure 1A, Top;
Supplementary Figure S1A), whereas 845 genes were differentially expressed in metastasis versus
primary tumor samples with a significance level of FDR < 5% and absolute fold change ≥ 2 (Figure 1A,
Bottom; Supplementary Figure S1B). Butterfly plots demonstrating the positive and negative correlation
of the genes in these two datasets are provided in Supplementary Figure S2. In order to identify the key
deregulated genes, the top 50 upregulated and downregulated genes (fold change) were determined
for primary tumor versus FT and for metastasis versus primary tumors. Heat maps were generated for
these top 50 upregulated and downregulated genes (Figure 1B).

Gene set enrichment analysis (GSEA) was done for the hallmark gene sets to identify the
deregulated pathways during OC progression. 15 gene sets were positively correlated with primary
tumors versus FT at FDR < 25% while four gene sets were negatively correlated at FDR < 25%.
The most significantly correlated gene sets in primary tumors versus FT were E2f transcription factor
(E2F) targets (enrichment score (ES) = 0.804), G2M Checkpoint (ES = 0.776) and MYC targets V1
(ES = 0.692) (Figure 1C). Taken together, these results clearly indicate that during the process of
carcinogenesis, the tumor acquires a proliferative phenotype where cell cycle regulation is affected
along with the activation of oncogenic pathways. Gene sets involving myogenesis (ES = −0.756),
epithelial–mesenchymal transition (EMT) (ES =−0.652) and ultraviolet (UV) response (ES =−0.611) were
the most significantly negatively correlated in primary tumors versus FT (Figure 1D). EMT transition
(ES = 0.741), myogenesis (ES = 0.655) and coagulation (ES = 0.613) are enriched in the metastasis
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(Figure 1E), highlighting the importance of invasiveness and contractility during the process of
metastasis. The E2F targets are important for carcinogenesis but are downregulated during metastasis
(ES =−0.586) (Figure 1F). Interestingly, G2M checkpoint (ES = −0.566) and MYC targets V1 (ES = −0.516)
are inversely correlated to metastasis (Figure 1F) showing that the primary tumors are more reliant on
the proliferative phenotype.

Cancers 2019, 11, x FOR PEER REVIEW 4 of 23 

 

carcinogenesis, the tumor acquires a proliferative phenotype where cell cycle regulation is affected 
along with the activation of oncogenic pathways. Gene sets involving myogenesis (ES = −0.756), 
epithelial–mesenchymal transition (EMT) (ES = −0.652) and ultraviolet (UV) response (ES = −0.611) 
were the most significantly negatively correlated in primary tumors versus FT (Figure 1D). EMT 
transition (ES = 0.741), myogenesis (ES = 0.655) and coagulation (ES = 0.613) are enriched in the 
metastasis (Figure 1E), highlighting the importance of invasiveness and contractility during the 
process of metastasis. The E2F targets are important for carcinogenesis but are downregulated during 
metastasis (ES = −0.586) (Figure 1F). Interestingly, G2M checkpoint (ES = −0.566) and MYC targets V1 
(ES = −0.516) are inversely correlated to metastasis (Figure 1F) showing that the primary tumors are 
more reliant on the proliferative phenotype. 

 
Figure 1. Gene expression analysis of ovarian carcinogenesis and progression. (A). Top: Volcano plot 
representing differentially expressed (DE) genes for primary tumors versus fallopian tube. Bottom: Figure 1. Gene expression analysis of ovarian carcinogenesis and progression. (A) Top: Volcano

plot representing differentially expressed (DE) genes for primary tumors versus fallopian tube.
Bottom: Volcano plot representing differentially expressed genes for metastasis versus primary tumors.
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negative and positive values of X-axis in the top figure represent downregulated and upregulated genes,
respectively, in Primary tumors relative to FT. The bottom figure represents the same in metastatic
tumors relative to primary tumors. (B) Heat map representing top 50 upregulated and downregulated
genes (fold change, at least 5% FDR) in primary tumors versus fallopian tube (Left) and in metastasis
versus primary tumors (Right). Elevated gene expressions are depicted by increasingly deeper shades
of red, while the diminished levels of expression are indicated by deeper shades of green. (C) Gene set
enrichment analysis (GSEA) in primary tumors versus fallopian tube (positively correlated). (D) Primary
tumors versus fallopian tube (negatively correlated). (E) GSEA in metastasis versus primary tumors
(positively correlated). (F) Metastasis versus primary tumors (negatively correlated).
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Other significant Hallmark gene sets positively correlating with primary tumors versus FT were
mTOR complex 1 (MTORC1) signaling, MYC targets V2, DNA repair and oxidative phosphorylation
(Supplementary Figure S3A). Additionally, apical junction, tumor necrosis factor a (TNFA) signaling
via nuclear factor kappa B (NFKB), adipogenesis and angiogenesis (Supplementary Figure S3B)
were negatively correlated. The metastasis versus primary tumors revealed additional gene sets
that positively correlated with metastasis including apical junction, allograft rejection, interleukin
2 (IL2)—signal transducer and activator of transcription 5 (STAT5) signaling and adipogenesis
(Supplementary Figure S3C). Similarly, those that were negatively correlated were MTORC1 signaling,
protein secretion, androgen response and MYC targets (Supplementary Figure S3D).

The primary tumor versus FT and metastasis versus primary tumor data for the top deregulated
genes (Figure 1B) were further analyzed for pathways deregulated using Metascape [27] and presented
as ontology clusters in Figure 2A,B, respectively. Muscle system process, core matrisome, blood vessel
morphogenesis and extracellular matrix (ECM) organization were the most significant pathways in
the primary tumors versus FT (Figure 3A). Core matrisome, ECM organization, cilium movement
and matrisome associated were the most significant pathways in metastasis versus primary tumors
(Figure 3B). Pathways involving matrisome, ECM organization, cellular signaling, development and
morphogenesis were common in both of the data sets. In addition, an Ingenuity Pathway Analysis (IPA)
was also conducted taking into consideration all the genes differentially expressed at 5% FDR with at
least two-fold change in Primary tumors versus FT (Table 1 (panel A); Supplementary Figure S4A).
The top canonical pathways included hepatic fibrosis/hepatic stellate cell activation, cAMP mediated
signaling, G-protein coupled receptor signaling, calcium signaling and amyotrophic lateral sclerosis
signaling. The top disease functions identified were cancer, cellular development, organismal injury
and abnormalities (Table 1 (panel B)). The predicted upstream regulators included transforming
growth factor beta 1 (TGFB1) (inhibited), vascular endothelial growth factor (VEGF), β-estradiol and
erb-b2 receptor tyrosine kinase 2 (ERBB2) (activated) (Table 1 (panel C)). Similarly, IPA analysis for all
differentially expressed genes in metastasis versus primary tumors revealed hepatic fibrosis/hepatic
stellate cell activation, osteoarthritis pathway, agranulocyte adhesion, and diapedesis and inhibition
of matrix metalloproteases as the top canonical pathways (Table 1 (panel D); Supplementary Figure
S4B). The top diseases and functions revealed by the analysis were digestive system development and
function, embryonic development, and organismal development, which indicated that the process of
metastasis mimicked regulatory mechanisms involved in development (Table 1 (panel E)). The key
upstream regulators identified were myocardin (MYOCD) (activated), bone morphogenetic protein
4 (BMP4), RUNX family transcription factor 2 (RUNX2) and bone morphogenetic protein 2 (BMP2)
(Table 1 (panel F)).

Table 1. Ingenuity pathway analysis (IPA) of differentially regulated genes in ovarian cancer. (panel
A) Top 20 canonical pathways, (panel B) Top disease functions and (panel C) predicted upstream
regulators in primary tumors versus FT. (panel D) Top 20 canonical pathways, (panel E) top disease
functions and (panel F) predicted upstream regulators in metastasis versus primary tumors.

A Ingenuity Canonical Pathways:
FT vs. Primary Tumors −log(p-Value) D Ingenuity Canonical Pathways:

Metastasis vs. Primary Tumors −log(p-Value)

1 Hepatic Fibrosis / Hepatic
Stellate Cell Activation 10.2 1 Hepatic Fibrosis / Hepatic

Stellate Cell Activation 6.58

2 cAMP-mediated signaling 10.1 2 Osteoarthritis Pathway 5.15

3 G-Protein Coupled Receptor
Signaling 8.16 3 Agranulocyte Adhesion and

Diapedesis 4.12

4 Calcium Signaling 6.94 4 Inhibition of Matrix
Metalloproteases 2.98

5 Amyotrophic Lateral Sclerosis
Signaling 6.08 5 Bladder Cancer Signaling 2.86

6 eNOS Signaling 5.8 6 Atherosclerosis Signaling 2.27
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Table 1. Cont.

A Ingenuity Canonical Pathways:
FT vs. Primary Tumors −log(p-Value) D Ingenuity Canonical Pathways:

Metastasis vs. Primary Tumors −log(p-Value)

7 MSP-RON Signaling Pathway 5.77 7 Granulocyte Adhesion and
Diapedesis 2.07

8 Cellular Effects of Sildenafil
(Viagra) 5.34 8 Neuroprotective Role of THOP1

in Alzheimer’s Disease 1.99

9 Intrinsic Prothrombin Activation
Pathway 5.31 9 Eicosanoid Signaling 1.8

10 Breast Cancer Regulation by
Stathmin1 5.27 10 ILK Signaling 1.76

B Top Diseases and Functions: FT vs. Primary
Tumors E Top Diseases and Functions: Metastasis vs.

Primary Tumors

1 Cancer, Cellular Development, Organismal Injury
and Abnormalities 1

Digestive System Development and Function,
Embryonic Development, Organismal

Development

2 Nervous System Development and Function, Cell
Death and Survival, Tissue Morphology 2

Cell-mediated Immune Response, Cellular
Movement, Hematological System Development

and Function

3 Cell Morphology, Cellular Assembly and
Organization, Cellular Function and Maintenance 3 Cardiovascular Disease, Hereditary Disorder,

Organismal Injury and Abnormalities

4 Cell Signaling, Neurological Disease, Organismal
Injury and Abnormalities 4 Cardiac Arrythmia, Cardiovascular Disease,

Hereditary Disorder

5
Cellular Development, Cellular Growth and

Proliferation, Hematological System Development
and Function

5
Skeletal and Muscular System Development and
Function, Gastrointestinal Disease, Organismal

Injury and Abnormalities

6 Cancer, Organismal Injury and Abnormalities,
Carbohydrate Metabolism 6 Cardiovascular Disease, Cell-To-Cell Signaling

and Interaction, Drug Metabolism

7 Cell Signaling, Carbohydrate Metabolism, Small
Molecule Biochemistry 7

Digestive System Development and Function,
Connective Tissue Development and Function,

Connective Tissue Disorders

8 Molecular Transport, Connective Tissue Disorders,
Developmental Disorder 8 Developmental Disorder, Hereditary Disorder,

Ophthalmic Disease

9
Skeletal and Muscular System Development and

Function, Skeletal and Muscular Disorders,
Hereditary Disorder

9
Dermatological Diseases and Conditions,

Inflammatory Disease, Organismal Injury and
Abnormalities

10
Cell-To-Cell Signaling and Interaction, Cellular
Assembly and Organization, Nervous System

Development and Function
10 Endocrine System Disorders, Organ Morphology,

Organismal Injury and Abnormalities

C Upstream
Regulator

Molecule
Type

p-Value of
Overlap F Upstream

Regulator
Molecule

Type
p-Value of
Overlap

1 TGFB1 growth factor 1.06 × 10−38 1 MYOCD transcription
regulator 1.08 × 10−13

2 Vegf Group 1.48 × 10−33 2 BMP4 growth factor 2.57 × 10−10

3 beta-estradiol
chemical—

endogenous
mammalian

3.47 × 10−29 3 RUNX2 transcription
regulator 6.84 × 10−10

4 ERBB2 Kinase 2.48 × 10−28 4 BMP2 growth factor 1.43 × 10−8

5 dexamethasone chemical drug 3.2 × 10−26 5

miR-199a-5p
(and other
miRNAs
w/seed

CCAGUGU)

mature
microrna 2.25 × 10−8

6 HGF growth factor 7.39 × 10−25 6 U0126 chemical—kinase
inhibitor 2.42 × 10−8

7 FGF2 growth factor 6.31 × 10−24 7 TGFB3 growth factor 2.73 × 10−8
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Table 1. Cont.

A Ingenuity Canonical Pathways:
FT vs. Primary Tumors −log(p-Value) D Ingenuity Canonical Pathways:

Metastasis vs. Primary Tumors −log(p-Value)

8 progesterone
chemical—

endogenous
mammalian

1.43 × 10−23 8 TGFB1 growth factor 3.72 × 10−8

9 TNF cytokine 3.83 × 10−22 9 GNA13 enzyme 1.29 × 10−7

10 IL6 cytokine 1.87 × 10−21 10 HAND2 transcription
regulator 2.1 × 10−7
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Figure 2. Pathway analysis of deregulated genes. (A) Pathway analysis for all deregulated genes in
primary tumors versus fallopian tube. The interaction modules are clustered on the basis of functional
similarities. (B) Pathway analysis for all deregulated genes in metastasis versus primary tumors with
interaction modules clustered based on functional similarities. The node color intensity corresponds to
the gene enrichment for a particular pathway and the node size correlates with statistical significance.
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Figure 3. Deregulated pathways. (A) Most significantly deregulated pathways in primary tumors
versus fallopian tube or (B) in metastasis versus primary tumors plotted against −log10 (p-values).

2.3. Overlapping Genes in Primary Tumors versus FT and Metastasis versus Primary Tumors

As the disease progresses from the formation of the primary tumor to the dissemination and
development of the metastasis, it is expected to be associated with alterations in gene expression.
Our analysis of sequencing data from patient specimens showed that the formation of primary tumors
resulted in deregulation of 2987 mRNAs (Supplementary Table S2). The process of metastasis was
accompanied by changes in 845 genes (Supplementary Table S3). We next proceeded to visualize the
overlap in these two data sets. Figure 4A shows a volcano plot of the 2987 genes deregulated in the
Primary tumors versus FT, where the genes that were also found to be differentially expressed in the
metastasis versus primary tumors are highlighted as orange triangles. Similarly, the volcano plot of
the 845 deregulated genes in metastasis versus primary tumors in Figure 4B highlights the genes that
were also differentially expressed in Primary tumors versus FT as purple triangles. We then proceeded
to visualize the extent of differential expression and the direction of change of the overlapping genes in
both the datasets (Figure 4C). The size of the dots in the volcano plot of the differentially expressed
common genes in the metastasis versus primary tumors indicates the extent of differential expression
of those genes in Primary tumors versus FT. Similarly, they are also color coded to indicate their
upregulation or downregulation in FT versus primary (Figure 4C). Of the 2987 and 845 differentially
expressed mRNAs in Primary tumors versus FT and metastasis versus primary tumors, respectively,
304 mRNAs were overlapping (Figure 4D, Supplementary Tables S4 and S5). Interestingly, an analysis of
these overlapping genes revealed differences in the direction of change in the two data sets (Figure 4E,F).
While a majority of these genes were upregulated in metastasis versus primary tumors, most of them
were downregulated in the primary tumors versus FT. This indicated that there were major differences
in the processes involved in the initial carcinogenesis and the subsequent dissemination of the disease.
The eight upregulated and 12 downregulated genes common to both the comparisons are listed
in Table 2 (panels A and B). 231 genes were upregulated in metastasis versus primary tumors but
downregulated in primary tumors versus FT. 53 genes were downregulated in metastasis versus
primary tumors but upregulated in primary tumor versus FT. The top 10 oppositely regulated genes
that are upregulated or downregulated in metastasis versus primary are listed in Table 2 (panels C and
D), respectively.
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The common upregulated genes in metastasis and primary tumor include epiphycan (EPYC),
collagen type X alpha chain 1 (COL10A1), fibronectin type III domain containing 1 (FNDC1) and
podocan-like protein I (PODNL1), which are mainly extracellular matrix related genes. These findings
further signify the importance of the tumor microenvironment in the progression of OC. The common
downregulated genes in metastasis and primary tumor include anterior gradient protein 3 homolog
(AGR3) and Sentan cilia apical structure protein (SNTN). Of the 2683 genes that were unique to
primary versus FT and 541 genes unique to metastasis versus primary, the top 10 upregulated and
downregulated ones are listed in Supplementary Table S6 (panels A–D). Thereafter, we proceeded to
confirm the RNA-seq results by qRT-PCR (quantitative real-time polymerase chain reaction), for the
top genes in each group of Table 2 in matched ovarian cancer patient primary tumors and metastasis
(Figure 5). The top three genes were chosen on the basis of the p-value and the published literature
on their role in cancer. We also checked for their effect on ovarian cancer patient prognosis using
KM Plotter (Figure 6). Patients were split by median expression of the gene and no exclusion criteria
were applied (Supplementary Table S7). EPYC, COL10A1 and PLPP4, which were upregulated in both
metastasis versus primary and primary versus FT were all confirmed by qRT-PCR. All three genes led
to poor patient prognosis when overexpressed (Figure 5A).

Table 2. Common genes in metastasis versus primary tumors and primary tumors versus FT.

(A). Common Upregulated Genes in Ovarian
Cancer Metastasis versus Primary and Primary

versus FT

(B). Common Downregulated Genes in Ovarian
Cancer Metastasis versus Primary and Primary

versus FT

Gene Name log2 Fold Change p-Value Gene Name log2 Fold Change p-Value

EPYC 4.84 2.78 × 10−28 AGR3 −2.09 2.25 × 10−10

COL10A1 1.98 5.19 × 10−7 SNTN −3.09 4.80 × 10−5

PLPP4 2.06 5.95 × 10−5 ANKUB1 −3.41 1.64 × 10−5

RP11-13P5.2 2.44 2.46 × 10−5 COL28A1 −1.29 0.000236
PODNL1 1.44 0.002166 DCDC2B −3.01 0.001219

CILP2 1.54 0.000325 ADGB −2.75 0.000667
FNDC1 2.32 3.26 × 10−5 CFAP52 −1.88 1.19 × 10−5

SLC35D3 2.09 0.000901 RP11-356K23.1 −2.77 0.001993
WDR38 −1.49 8.60 × 10−5

CFAP221 −1.19 0.000604
NWD1 −1.72 0.000766

FAM166B −1.07 0.001892

(C). Top 10 Opposite: Upregulated Genes in
Metastasis versus Primary and Downregulated in

Primary versus FT

(D). Top 10 Opposite: Downregulated Genes in
Metastasis versus Primary and Upregulated in

Primary versus FT

Gene Name log2 Fold Change p-Value Gene Name log2 Fold Change p-Value

MEIS3 2.04 1.29 × 10−14 ATP6V1C2 −1.73 6.83 × 10−7

ITGA11 2.19 1.58 × 10−7 STAR −1.67 4.38 × 10−8

RP1-79C4.4 1.10 2.54 × 10−8 NR0B1 −1.84 5.01 × 10−4

LYL1 1.42 9.63 × 10−7 KCNG3 −1.58 9.16 × 10−4

ASPA 1.49 3.70 × 10−5 PRSS16 −1.14 3.02 × 10−5

AOC3 1.49 9.69 × 10−6 FAM167A −1.45 6.31 × 10−5

GIMAP8 1.41 4.79 × 10−8 C3orf67 −1.30 1.00 × 10−4

LRRN4CL 1.23 5.73 × 10−5 JPH1 −1.62 1.85 × 10−4

IGHV1-24 1.99 5.70 × 10−4 HOOK1 −1.56 1.93 × 10−5

CCL14 2.85 7.45 × 10−6 ESM1 −1.78 5.89 × 10−5
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Figure 4. Gene expression analysis in ovarian cancer. (A) Volcano plot representing differentially
expressed (DE) genes for primary tumors versus fallopian tube (red dots), where the differentially
expressed genes common to both primary tumors versus fallopian tube and metastasis versus primary
tumors are highlighted (orange triangles). The −log10 (p-values) plotted against log2 fold change values
for all the significantly differentially expressed genes at 5% FDR with at least two-fold change between
primary tumors versus FT (B) Volcano plot representing differentially expressed genes for metastasis
versus primary tumors (blue dots), where the differentially expressed genes common to both primary
tumors versus fallopian tube and metastasis versus primary tumors are highlighted (purple triangles).
The −log10 (p-values) plotted against log2 fold change values for all the significantly differentially
expressed genes at 5% FDR with at least two-fold change between metastasis versus primary tumors.
(C) Volcano plot for metastasis versus primary tumors showing only the differentially expressed
genes common in both metastasis versus primary tumors and primary tumors versus fallopian tube.
Circle size is correlated to the fold change in expression in primary tumors versus fallopian tube.
Circles are color coded to depict upregulation (red) or downregulation (blue) in primary tumors
versus fallopian tube. (D) Venn diagram representing the overlap between primary tumors versus
fallopian tube and metastasis versus primary tumors. (E) Table representing common upregulated
and downregulated genes in ovarian cancer metastasis versus primary tumors and primary tumors
(P) versus FT. (F) Combined heat map showing the hierarchical clustering based on log2 fold change
values of common significantly differentially expressed genes in primary tumors versus fallopian tube
and metastasis versus primary tumors.
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Among the genes downregulated in both the datasets, AGR3 and STN were confirmed to be
downregulated in metastasis by qRT-PCR, but collagen type XXVIII alpha 1 chain (COL28A1) did
not validate this (Figure 5B). Similarly, decreased expression of AGR3 and STN resulted in poor
patient prognosis, while COL28A1 had the opposite effect (Figure 6B). Steroidogenic acute regulatory
protein (STAR), nuclear receptor subfamily 0 group B member 1 (NR0B1) and serine protease 16
(PRSS16) are downregulated in metastasis versus primary but upregulated in primary versus FT.
However, only STAR could be confirmed to be downregulated in metastasis by qRT-PCR (Figure 5C).
A decrease in STAR expression resulted in worse prognosis in patients, whereas NR0B1 and PRSS16
had moderate effects (Figure 6C). Meis homeobox 3 (MEIS3), integrin subunit alpha 11 (ITGA11) and
LYL1 basic helix-loop-helix family member (LYL1) are increased in metastasis and decreased in primary
tumors versus FT. All of them were confirmed to be increased in metastasis by qRT-PCR (Figure 5D).
Among them, increased ITGA11 caused the worst prognosis (Figure 6D).
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Figure 5. qRT-PCR (quantitative real-time polymerase chain reaction) validation. RNA isolated from
matched primary and metastatic ovarian cancer patient tumors were used to perform qRT-PCR for the
top deregulated genes in both primary and metastasis. Data represented in the form of before and
after plots. (A) Genes upregulated in both primary and metastasis. (B) Genes downregulated in both
primary and metastasis. (C) Genes downregulated in metastasis but upregulated in primary. (D) Genes
upregulated in metastasis but downregulated in primary. * p < 0.05 (paired t-test).
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Figure 6. Kaplan-Meier plot for progression free survival analysis for top deregulated genes in both
primary tumors and metastasis. (A) Genes upregulated in both primary and metastasis. (B) Genes
downregulated in both primary and metastasis. (C) Genes downregulated in metastasis but upregulated
in primary. (D) Genes upregulated in metastasis but downregulated in primary.

2.4. Transcriptome Changes During Early Metastatic Colonization

The comparison of metastatic tumors with primary tumors of OC patients provides an end-point
analysis of the differential gene expression occurring during metastasis. However, metastasis is
a multi-step process and the knowledge of the regulation of the individual steps remains limited.
The important, rate-limiting step of metastasis is the step of metastatic colonization [28]. At this
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step, the cancer cells reach the site of metastasis and then have to successfully adapt to the new
microenvironment that they encounter [20–22]. Such adaptive processes involve productive interactions
with the microenvironment and result in changes in gene expression, a process that is very poorly
understood. Therefore, in vitro organotypic models, which mimic the microenvironment of the
metastatic site, have been used to gain a better understanding of metastatic colonization [20,25,29,30].
Thus, we complimented our end point analysis of patient tumors with the gene expression analysis of
HGSOC cells seeded on an organotypic 3D culture model of the human omentum (Figure 7A) [20,21].
Green fluorescent protein (GFP) labeled HGSOC cells Kuramochi, OVACR4 and OVCAR8 were seeded
on the organotypic 3D omentum culture model to mimic the early steps of metastatic colonization.
This effectively replicates the initial interactions of the OC cells with the metastatic microenvironment
and the resulting gene expression changes in the OC cells were analyzed by RNA-seq (Figure 7A,
Supplementary Figure S5). The 1182 differentially expressed genes represent the early changes induced
by the new microenvironment of the metastatic site (Supplementary Table S8). The top deregulated
genes, collagen type I alpha 2 chain (COL1A2), periostin (POSTN) and decorin (DCN) were then
validated by qRT-PCR in all HGSOC cells (Figure 7B). POSTN did not amplify in OVCAR4 control,
but had an average Cq of 26.8 for OVCAR4 on 3D omentum culture, indicating a marked increase in
expression. To identify the pathways involved in early metastatic colonization, a pathway analysis
was performed using Metascape [27] for the differentially expressed genes in the HGSOC cells seeded
on the organotypic 3D omentum culture model (Figure 7C,E). The most significant pathways included
ECM organization, integrin1 pathway, degradation of ECM, cell-cell adhesion via plasma membrane,
collagen fibril organization and positive regulation of cellular component movement. Taken together,
these indicate that the initial events during metastatic colonization involve interactions of the OC
cells with the metastatic microenvironment, remodeling of the ECM and an invasive phenotype.
Other pathways, such as the response to wounding, Ras, tumor necrosis factor (TNF) and platelet
derived growth factor (PDGF) signaling, indicate early signs of reprogramming of the microenvironment
and proliferative growth in close coordination with the microenvironment. The ontology clusters in
Figure 7C help visualize the inter-relation between these pathways. While some of these pathways
have a significant amount of cross-talk, others appear to constitute independent hubs.

Some of these changes may be transient, while others may be sustained and essential for
the metastatic tumor development. Therefore, this dataset was compared with the differentially
expressed genes in the end-point analysis of metastasis versus primary tumors to identify those genes
essential for both early colonization, as well as for the advanced metastasis (Figure 7D). The 144
genes common to both the data sets represent those that are deregulated early during metastatic
colonization, by the interactions with the metastatic microenvironment, and remain deregulated until
the end point in the fully developed metastasis (Supplementary Table S9). These genes represent the
essential drivers of the process of metastatic colonization and may serve as clinically relevant targets.
The pathway analysis was also conducted for the 144 common differentially expressed genes in the
metastasis versus primary tumors and HGSOC cells on 3D omentum culture (Figure 7F). The most
significant pathways identified were matrisome, core matrisome, ECM glycoproteins, extracellular
matrix organization, matrisome associated, focal adhesion and integrin1 pathway. Apart from integrin
signaling, PDGF signaling was also among the signaling pathways identified. Therefore, remodeling of
the ECM, interactions with the microenvironment and alteration of the matrisome are the key features
of the metastatic tumor development. These pathways also indicate the importance of the tumor
microenvironment in the metastatic progression, and this needs to be considered for the development
of new therapeutic strategies.
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Figure 7. Early and advanced metastatic colonization. (A) Schematic of omental three-dimensional (3D)
organotypic culture model. Normal omental fibroblasts were mixed with Collagen I, seeded in a culture
dish and allowed to attach and polymerize, resembling the basement membrane of the omentum.
Omental mesothelial cells were overlaid on it as a confluent monolayer to mimic the mesothelium
and the culture was allowed to secrete extracellular matrices (ECMs) and factors for 24 h to form
a complex microenvironment. Thereafter, green fluorescent protein (GFP)-labeled high-grade serous
ovarian cancer (HGSOC) cells (Kuramochi/OVCAR4/OVCAR8) were seeded on the 3D omentum
culture, allowed to grow for 2 days and then isolated by fluorescence activated cell sorting and used
for RNA-seq. Three independent experiments were done for each cell. (B) The top three differentially
expressed genes were validated by qRT-PCR all three cells. * p < 0.01, error bars indicate standard
deviation for three replicates. (C) Network analysis of pathways deregulated in 3D culture versus
cell culture where node color intensity corresponds to the gene enrichment for a particular pathway
and the node size correlates with statistical significance. The interaction modules are clustered on the
basis of functional similarities. (D) Venn diagram showing the common deregulated genes in all the 3
HGSOC cells on 3D omentum culture versus control and metastasis versus primary tumors. (E) Top
20 deregulated pathways in all the three HGSOC cells seeded on 3D omentum culture versus control
plotted against −log10 (p-values). (F) Top 20 common deregulated pathways in all the 3 HGSOC cells
seeded on 3D omentum culture versus control and metastasis versus primary tumors plotted against
−log10 (p-values).



Cancers 2019, 11, 1513 15 of 22

3. Discussion

In the current study, we did a comprehensive RNA-seq analysis of normal fallopian tubes, primary
tumors and metastasis from OC patients, in combination with an organotypic 3D omental culture
model for early metastatic colonization. While much information is available on the gene expression
profiling of OC primary tumors compared to normal tissue, the information available about metastasis
is still limited [31]. Therefore, a comprehensive study of carcinogenesis and progression together,
to identify the common and unique signatures, is essential. Moreover, not much is known about
the pathways deregulated during early metastatic colonization, the rate-limiting step of metastasis.
Here, we combined end point analysis of primary versus metastatic tumors from patients with a 3D
culture model of early metastatic colonization, to identify the common pathways deregulated during
early colonization that remain relevant in advanced metastasis. Our results indicated that the core
matrisome, extracellular matrix components, focal adhesion pathways, integrin mediated pathways
and collagen formation pathways were clearly essential for this process.

It has been well documented that the genes coding for ECM components undergo deregulation in
tumor progression [32–35]. Moreover, altered ECMs can drive tumor progression [36,37]. Tumorigenic
properties of cancer cells such as migration and proliferation are largely influenced by the ECM
composition and ultrastructure. Differential regulation of ECM components has been observed
in the early and late metastasis stages, which further signifies the contribution of ECM in tumor
progression [38]. Tumor extracellular matrix is contributed by both tumor cells and the stromal
cells [38]. It has been demonstrated in OC that the dysregulation of ECM components and stiffness
impacts the OC progression [39].

Collagen acts as a scaffold in tumor ECM and the synthesis and degradation of collagen largely
impacts the metastatic attributes of cancer cells. Collagen is found in abundance in the ECM [40,41].
The deposition of collagen I, II and III is increased during cancer invasion and migration [42,43].
Rapid changes involving collagen deposition have also been observed in breast cancer. Collagen type
I, II and IV have been utilized as potential biomarkers in colorectal cancer since degraded collagen
fragments are released in the circulation [44]. Collagen VI has been found to be overexpressed in
OC [45], while Collagen XI is greatly increased in the OC metastasis [46–48]. A comprehensive analysis
of OC omental metastasis, including gene expression, matrisome, extracellular matrix organization,
biomechanical properties, cytokine/chemokine levels and cellular profiles revealed matrisome changes
are a defining feature and could be correlated with prognosis [49]. These findings also showed the close
correlation between RNA-seq data with matrisome focused proteomics increase in ECM glycoproteins,
such as fibronectin and fibrinogen, along with proteoglycans and secreted factors defined metastatic
progression [49]. Our results indicate that core matrisome changes and ECM reorganization are key
features of initial carcinogenesis and subsequent metastasis, including early metastasis (Figures 2
and 5). The remodeling of the tumor microenvironment was found to be an essential feature, consistent
throughout the process of tumor initiation and progression.

Focal adhesions mediate the contact between cell and extracellular matrix, helping anchor the cell
to the substratum and promote motility, playing a major role in metastasis [50–53]. Factors mediating
or affecting the focal adhesions are usually upregulated in the tumors and this is also reflected in our
sequencing data (Figure 7F). The anchorage to ECMs is mediated by specific heterodimeric membrane
glycoproteins—integrins, which interact with various ECM components such as fibronectin, collagen,
vitronectin and laminin. Thus, elevated levels of specific integrins and their associated proteins are
observed in the metastasis [54–56]. Tumor progression is also partly mediated by the vascular integrins,
which are expressed in tumor vasculature [57,58].

Primary tumors differentially expressed 2987 genes as compared to the normal fallopian tubes.
However, the process of metastasis resulted in changes in the expression of only 845 genes. Of these,
304 genes overlapped with those deregulated in primary tumors versus fallopian tubes. An interesting
observation in our study was that these 304 common deregulated genes in primary tumors versus
normal fallopian tube and metastasis versus primary tumors were not necessarily altered in the same
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direction (Figure 4). This implied that certain changes necessary for the initial tumorigenesis were not
essential for subsequent metastasis. Therefore, the process of cancer dissemination not only needed
a new set of genes but the expression of certain genes that were overexpressed/repressed in the primary
tumors had to be reversed. We went on to validate the top genes deregulated in similar and/or opposite
directions by qRT-PCR in matched patient primary tumors and metastasis. Among the 12 genes tested,
nine of them were validated by qRT-PCR (Figure 5). Among them, increased expression of EPYC,
COL10A1, PLPP4, MEIS3 and ITGA11 appeared clinically relevant as markers of poor prognosis
(Hazard ratio 1.49, 1.49, 2.41, 1.47 and 1.68, respectively; Figure 6). On the other hand, increased
expression of AGR3 was a positive prognosis marker (Figure 6B). Of note, the datasets used for patient
prognosis are mostly derived from primary tumor samples.

A key factor to consider is the different microenvironments of the primary tumor and the site
of metastasis. Since gene expression changes can be regulated by the signals emanating from the
microenvironment, this could be an important reason for the differences in metastasis. Such changes
may not be reflected by genetic mutations in the cancer cells. The metastasizing cancer cells have
to adapt to the new microenvironment and this is stimulated by the productive cross-talk with the
microenvironment [28,59]. Our previous studies have shown that regulators of gene expression,
such as microRNAs and transcription factors, are induced or repressed as a result of such reciprocal
signaling [20,21]. Similarly, the cancer cells are also capable to induce mesothelial to mesenchymal
transition in the mesothelial cells covering the omentum [24,60]. Our findings with the 3D omental
culture model and comparison of patient primary and metastasis tumor samples, revealed that
many of such initial adaptive changes continue to remain relevant in the advanced metastasis.
These changes include multiple pathways involved in the interactions between the tumor cells
with their microenvironment (Figure 7F). These results support the recent observations made upon
deconstructing omental metastasis [49], while demonstrating that many of these processes start really
early during the process of metastatic colonization. These pathways are, therefore, needed for early
colonization and remain essential for the subsequent progression into the advanced metastasis.

4. Materials and Methods

4.1. Reagents

Dulbecco’s Modified Eagle Medium (DMEM), minimal essential medium vitamins, minimal
essential medium nonessential amino acids, Trypsin and Penicillin–Streptomycin were obtained from
Media Tech (Manassas, VA, USA).

4.2. Patient Samples

Matched pairs of fresh frozen primary tumors and normal fallopian tubes from eight OC patients
were obtained from the Indiana University Simon Cancer Center Tissue Bank. Similarly, matched pairs
of fresh frozen primary tumors and metastasis from 11 OC patients were also obtained from the Indiana
University Simon Cancer Center Tissue Bank. RNA was isolated from these tissues using miRNeasy
kit (Qiagen, Germantown, MD; Cat# 217004) following the manufacturer’s protocol and submitted to
the Center for Genomics and Bioinformatics core facility, Indiana University, Bloomington for library
preparation and sequencing. The study was approved by the Institutional Regulatory Board of Indiana
University (protocol numbers 1106005767 and 1606070934). Patient written consent was obtained and
tissues were collected by Indiana University Simon Cancer Center Tissue Bank. Only deidentified
patient specimens were provided by the tissue bank.

4.3. Cell Lines

Human HGSOC cell lines OVCAR8 were acquired from Ernst Lengyel at the University of Chicago
and OVCAR4 was from Joanna Burdette, University of Illinois at Chicago. Kuramochi was procured
from Japanese Collection of Research Bioresources. The cell lines used were genetically validated
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and tested to be mycoplasma free using respective services from Idexx BioResearch (Columbia, MO).
The genetic validation was done using the CellCheck 16 (16 Marker STR Profile and Inter-species
Contamination Test) and mycoplasma testing was done using Stat-Myco.

4.4. D Omental Culture and RNA Isolation

Total RNA was isolated from a panel of HGSOC cell lines (Kuramochi, OVCAR4 and OVCAR8)
grown in 3D omental cultures as described previously [20]. Three independent experiments per
HGSOC cell line were conducted. Briefly, human primary mesothelial cells (HPMCs) and normal
omental fibroblasts (NOFs) were isolated from omentum of women donors undergoing surgery at
Indiana University Health Bloomington Hospital. The NOFs and HPMCs were grown as primary
cultures for 2–3 passages and used for the experiments. The NOFs (3.6 × 105 cells) were mixed with
91 µg Collagen I (BD Biosciences, San Jose, CA;Cat# 354236) and seeded in a 10 cm dish and allowed
to attach for 4 h. Thereafter, 3.6 × 106 HPMCs were overlaid on them to form a confluent monolayer.
This 3D omentum culture mimicking the surface layers of the omentum was allowed to grow for
24 h so that the cells could secrete ECMs and other factors to form a complex microenvironment.
GFP labelled OC cells were then seeded on the 3D omentum culture to mimic the initial steps of
colonization and allowed to grow for 48 h. The cancer cells were then isolated by fluorescence activated
cell sorting and compared to control cancer cells directly seeded on 10 cm tissue culture dishes and
sham sorted. Total RNA was isolated using miRNeasy kit (Qiagen, Germantown, MD; Cat# 217004)
and submitted for RNA-seq. Only those genes that were significantly differentially expressed (< 5%
FDR and absolute fold change ≥ 2) in all three HGSOC cells were considered for further analysis.
We chose to use Kuramochi, OVCAR4 and OVCAR8 as they have been reported as ‘likely/possibly’
HGSOC cell lines [61]. Moreover, among the HGSOC cell lines, we have found them to be more suitable
for functional assays and OVCAR8 also grows effectively in mouse xenografts [62,63]. Therefore,
the same cells would be suitable for extending these studies in the future.

4.5. RNA Sequencing

Library preparation and next generation RNA sequencing was carried out at the Center for
Genomics and Bioinformatics core facility, Indiana University, Bloomington. The library preparation
was done using TruSeq Stranded mRNA HT Sample Prep kit (Illumina, San Diego, CA; cat#RS-122-2103)
according to the manufacturer’s protocol and 8-nucleotide barcodes were added for multiplexing.
The barcoded libraries were cleaned by bead cut with AMPure XP beads (Beckman Coulter, Atlanta,
GA; cat#A63882), verified using Qubit3 fluorometer (ThermoFisher Scientific, Waltham, MA) and
2200 TapeStation bioanalyzer (Agilent Technologies, Santa Clara, CA), and then pooled. The pool was
sequenced on NextSeq 500 (Illumina) with NextSeq75 High Output v2 kit (Illumina, cat#FC-404-2005).

4.6. Analysis of Sequencing Data

Reads were adapter trimmed and quality filtered using Trimmomatic ver. 0.33 [64], with the cutoff

threshold for average base quality score set at 20 over a sliding window of three bases. Reads shorter
than 20 bases post-trimming were excluded. Cleaned reads mapped to human genome GRCh38 with
gencode v25 annotation using Tophat2 ver 2.1.0 [65]. The number of reads mapped to annotated
genes was counted using htseq-counts ver. 0.5.4p1 [66]. Significantly differentially expressed genes
at 5% FDR with at least two-fold change were called using DESeq2 ver. 1.12.3 [67]. Categories
based on overlaps among significantly differentially expressed genes between the two experiments
(primary tumors versus FT and metastasis versus primary tumors) were analyzed using IPA (QIAGEN
Inc., https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis) and Metascape
(metascape.org). Metascape is a web-based tool that has been under development since 2014 [27].
It enables multiple computational analysis of large scale data integrating gene annotation, membership
analysis and has multi-gene-list meta-analysis capabilities. It allows the leveraging of 40 independent
databases for studying functional enrichment, interactomes and gene annotation. Using Metascape,

https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
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we ranked the deregulated pathways on the basis of –log10 (p-values). Interaction modules were also
clustered on the basis of functional similarity by Metascape.

Gene set enrichment analysis was conducted using GSEA Desktop ver. 3.0, build 0160 [68].
Hallmark gene sets from Molecular Signatures Database ver. MSigDB 6.1 were used. GSEArot
algorithm [69] was used to compute significance of enrichment for each of the hallmark gene sets,
taking into consideration that the primary tumors and the FT as well as the metastatic and primary
tumors were matched specimens from individual patients.

Heat maps were generated using the heatmap.2 function from R programming tools (gplots).
All RNA-seq data have been made available to the public (GEO accession numbers GSE137237,

GSE137238, GSE137239).

5. Conclusions

Taken together, our RNA-seq data has generated a wealth of information in the form of crucial
pathways and targets which can be further explored to unravel the molecular mechanisms regulating
the OC metastasis. Overall, the results of this study emphasize the need to further explore the
tumor microenvironment and extracellular matrix components in the progression of OC metastasis.
OC patients typically present with the whole spectrum of metastasis ranging from early lesions to
advanced metastasis. Targeting key components of the pathways identified in Figure 7F, or their
regulators, could be an effective approach to treat the whole spectrum of metastasis.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/10/1513/s1,
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Gene set enrichment analysis (GSEA) for the Hallmark gene set in ovarian cancer, Figure S4: Ingenuity pathway
analysis (IPA) of differentially regulated genes in ovarian cancer, Figure S5: Heat map representing differentially
expressed genes in all 3 HGSOC cells (Kuramochi/OVCAR4/OVCAR8) seeded on the 3D omentum culture versus
control. Table S1: Ovarian cancer patient characteristics and specimen information. Table S2: Differentially
expresses genes in primary tumors versus FT. Table S3: Differentially expresses genes in metastasis versus primary
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