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Abstract

Motivation: An important goal of concentration–response studies in toxicology is to determine an ‘alert’ concentra-
tion where a critical level of the response variable is exceeded. In a classical observation-based approach, only
measured concentrations are considered as potential alert concentrations. Alternatively, a parametric curve is fitted
to the data that describes the relationship between concentration and response. For a prespecified effect level, both
an absolute estimate of the alert concentration and an estimate of the lowest concentration where the effect level is
exceeded significantly are of interest.

Results: In a simulation study for gene expression data, we compared the observation-based and the model-based
approach for both absolute and significant exceedance of the prespecified effect level. Results show that, compared
to the observation-based approach, the model-based approach overestimates the true alert concentration less often
and more frequently leads to a valid estimate, especially for genes with large variance.

Availability and implementation: The code used for the simulation studies is available via the GitHub repository:
https://github.com/FKappenberg/Paper-IdentificationAlertConcentrations.

Contact: kappenberg@statistik.tu-dortmund.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Concentration–response studies are applied across a wide range of
fields, including pharmacology, pharmacokinetics, toxicology and
clinical research. In toxicology, such studies are conducted to inves-
tigate and quantify exposure-related effects. An important goal is to
determine an ’alert’ concentration where a critical level of the rele-
vant response, referred to here as a ‘threshold’, is exceeded. In gene
expression studies, typically only the nominal concentrations tested
are considered as potential alert concentrations. However, by fitting
a parametric model to the data, concentration–response curves with
a monotonic relationship between concentration and response are
better suited to more precisely estimate alert concentrations, since
also non-tested concentrations are potential estimates. In the follow-
ing, we use the term ‘measured concentrations’ for the concentration

applied to cells, in contrast to ‘estimated alert concentrations’,
derived from different approaches.

Different alert concentrations can be considered: The effective
concentration EC50 refers to the concentration that induces 50% of
the maximal effect. The estimate is defined in terms of lower and
upper asymptote of the fitted curve and therefore heavily depends
on these values. A similar alternative is the benchmark dose (BMD)
methodology, which identifies the lowest concentration with a no-
ticeable effect compared to the normal response (Jensen et al.,
2019). It has also been proposed to estimate the Absolute Lowest
Effective Concentration (ALEC), the concentration where a fixed
and prespecified critical effect level is attained (Jiang, 2013).

A common model class for modelling concentration–response
data, or more specifically concentration–gene expression data, are
log-logistic models with up to four parameters. Extensions are
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generalized log-logistic models or hormesis models. Further model
classes include log-normal and Weibull models (Ritz et al., 2019,
pp. 178–188). One of the most common models is the four-
parametric log-logistic (4pLL) model (e.g. Ritz, 2010), with four
parameters corresponding to the upper and lower asymptote, inflec-
tion point and slope of the curve. Based on the 4pLL model, we pro-
pose a statistical test to determine the lowest concentration where
the response significantly exceeds the response for the control, mod-
elled by the left-sided asymptote of the 4pLL model, by a given
threshold. We denote this concentration with LEC (Lowest Effective
Concentration).

Model-based alert concentrations considered here are continu-
ous alternatives to the discrete observation-based alert concentra-
tions ALOEC (Absolute Lowest Observed Effective Concentration)
and LOEC (Lowest Observed Effective Concentration). The
ALOEC is the lowest measured concentration where the mean dif-
ference between all replicates of the concentration and of the control
exceeds a given threshold, while the LOEC corresponds to the low-
est measured concentration where the difference significantly
exceeds the threshold (e.g. Delignette-Muller et al., 2011). The sig-
nificance can be assessed for example with a standard two-sample t-
test.

In this article, we first we present the 4pLL model and calcula-
tion of the ALEC with a corresponding confidence interval. We then
introduce the LEC as an extension of the ALEC, taking significance
into account. We propose a 4pLL-based test for significant differ-
ence in the expression of two concentrations and present a real case
study where derivation of the LEC is of interest.

All four alert concentrations, obtained from the two
observation-based methods (ALOEC and LOEC) derived from the
classical approach and from the two model-based methods (ALEC
and LEC), were compared in a simulation study. In this study, three
different true underlying concentration–gene expression profiles
were considered, with different standard deviations of the replicates
for the measured concentrations, respectively. The alert concentra-
tions were calculated and interpreted with respect to the number of
valid estimates, under- and overestimation of the true alert concen-
tration, and the coverage probability of the confidence interval of
the ALEC. Finally, the methods were applied to the real data from a
study in which the expression values for 54675 probe sets for 7 dif-
ferent concentrations of the compound valproic acid plus a control
were measured.

2 Material and methods

2.1 Statistical methods
Based on the assumption that the relationship between concentra-
tion and response can be described by a sigmoidal curve, a four-
parameter log-logistic model (4pLL) can be fitted to the data (e.g.
Ritz, 2010). For a concentration x, x � 0 and a parameter vector
/ ¼ ð/ðbÞ;/ðcÞ;/ðdÞ;/ðeÞÞ> with /ðeÞ > 0, the model is defined as

f ðx;/Þ ¼ /ðcÞ þ /ðdÞ � /ðcÞ

1þ exp f/ðbÞ½logðxÞ � logð/ðeÞÞ�g
: (1)

A frequently used re-parameterisation, which provides more ac-
curate estimates for small datasets, is given by /ðeÞ

�
¼ logð/ðeÞÞ

(Ritz, 2010).
The function f describes the response (here the logarithmic ex-

pression values) as a function of the concentration x. The parame-
ters /ðcÞ and /ðdÞ specify the lower and upper limit of f, respectively.
The parameter /ðbÞ is proportional to the slope of the curve at /ðeÞ,
the half-maximal effective concentration. This concentration is typ-
ically called EC50, the concentration that induces 50% of the max-
imal effect. Different parameterizations of the EC50 exist, we use the
logarithmized estimator /ðeÞ

�
.

An alternative to EC50 is the ALEC, which is also a measure of
the toxicity of a test compound (Jiang, 2013). For a parametric re-
gression model function y ¼ f ðx;/Þ the ALEC estimates the lowest

effective concentration for a pre-specified critical effect level k and is
defined as the inverse function of f applied to k:

f ðALEC;/Þ ¼ k ) ALEC ¼ f�1ðk;/Þ:

From formula (1), the ALEC can be calculated as a function
hðk;/Þ:

ALEC ¼ hðk;/Þ ¼ /ðeÞ
/ðdÞ � k

k� /ðcÞ

 !1=/ðbÞ

: (2)

The ALEC can only be estimated for an effect level k which lies
within the range of the lower and upper limit /ðcÞ and /ðdÞ of the
concentration–response curve.

Due to the non-linearity of the function in (1), f is approximated
with the least squares method using the Gauss-Newton algorithm.
Since an iterative method is used for the estimation of the parameter
vector /, there is no guarantee to reach the global minimum. The es-
timation of the four parameters depends on the choice of the start
values (Ritz et al., 2015).

Uncertainties of the ALEC can be quantified by confidence inter-
vals. Jiang (2013) showed that using the delta method (van der
Vaart, 1998, p. 25) for approximating the variance of hð/Þ from
term (2) results in the following ð1� aÞ confidence interval for the
ALEC:

exp
�

logð ^ALECÞ6tð1�a=2Þ;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
^var½logð ^ALECÞ�

q �
where t�;ð1�a=2Þ is the ð1� a=2Þ quantile of a t-distribution with � ¼
n� 4 degrees of freedom for n observations, see Jiang (2013) for an
exact derivation of the confidence interval.

In addition to the ALEC, an alert concentration is of interest
where the effect significantly exceeds a prespecified critical effect
level k. The effect of interest is the fold change (FC) i.e. the mean dif-
ference in logarithmic gene expression values. This concentration is
called the LEC and is calculated based on a newly derived test
statistic.

We first present a general form of this test, in which the differ-
ence between the response values of two concentrations is tested.
Then we consider the case of interest, in which the statistical signifi-
cance of the difference between the response value for a specific con-
centration and for the left asymptote, increased by the effect level k,
is assessed.

In order to test whether the modelled expression values for two
concentrations x1 > 0 and x2 > 0 differ significantly, we derived a
test statistic from the 4pLL model function in (1) for testing the hy-
pothesis H0 : f ðx1;/Þ ¼ f ðx2;/Þ. The test statistic is given by

t4pLL :¼ t4pLLðx1; x2; /̂Þ ¼
f̂ ðx1; /̂Þ � f̂ ðx2; /̂Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V̂ar½f̂ ðx1; /̂Þ � f̂ ðx2; /̂Þ�
q :

The estimated variance of the difference f̂ ðx1; /̂Þ � f̂ ðx2; /̂Þ is

derived using the delta method. Since f̂ ðx1; /̂Þ and f̂ ðx2; /̂Þ are high-

ly correlated, the covariance term in V̂ar½f̂ ðx1; /̂Þ � f̂ ðx2; /̂Þ�
remains in the calculation. We can estimate Var½f̂ ðx1; /̂Þ � f̂ ðx2; /̂Þ�
using the approximation

Var½f ðx1;/Þ � f ðx2;/Þ�
¼ Var½f ðx1;/Þ� þ Var½f ðx2;/Þ� � 2Cov½f ðx1;/Þ; f ðx2;/Þ�
�rf ðx1;/ÞTRrf ðx1;/Þ þ rf ðx2;/ÞTRrf ðx2;/Þ
� 2rf ðx1;/ÞTRrf ðx2;/Þ:

R corresponds to the covariance matrix of the four parameters and
rf ðx;/Þ to the gradient of f with respect to the parameter vector /,

rf ðx;/Þ ¼ @f ðx;/Þ
@/ðbÞ

; @f ðx;/Þ
@/ðcÞ

; @f ðx;/Þ
@/ðdÞ

; @f ðx;/Þ
@/ðeÞ

� �T
: (3)

Under the null hypothesis, asymptotically t4pLL � Nð0; 1Þ. The
null hypothesis is therefore rejected at level a, if the observed value
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of t4pLL exceeds z1�a=2 or is smaller than za=2, with zq denoting the
q% quantile of the standard normal distribution.

The application of this test to determine the LEC as alert concen-
tration leads to the formulation of the null hypotheses

H0 : f ðx;/Þ � f ð0;/Þ � k for an increasing curve; (4)

H0 : f ðx;/Þ � f ð0;/Þ � �k for a decreasing curve; (5)

where k is the prespecified effect level of interest.
In cases where the direction of the curve is known beforehand,

e.g. from the biological background, only the corresponding null hy-
pothesis needs to be tested. The test statistic for an increasing curve
is given by

t4pLL; inc :¼ t4pLL; incðx; /̂; kÞ ¼
f̂ ðx; /̂Þ �

�
f̂ ð0; /̂Þ þ k

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂ar½f̂ ðx; /̂Þ � f̂ ð0; /̂Þ�

q :

The corresponding P-value is calculated as 1� Uðt4pLL; incÞ,
where U denotes the distribution function of the standard normal
distribution. Analogously, the test statistic for a decreasing curve is
given by

t4pLL; dec :¼ t4pLL; decðx; /̂; kÞ ¼
f̂ ðx; /̂Þ �

�
f̂ ð0; /̂Þ � k

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂ar½f̂ ðx; /̂Þ � f̂ ð0; /̂Þ�

q
and the corresponding P-value is calculated as Uðt 4pLL; decÞ.

In general, it is not known in advance whether a curve is increas-
ing or decreasing. In this case, a two-sided P-value is calculated as

2 	min
�

1� Uðt4pLL; incÞ;Uðt4pLL; decÞ
�
: (6)

For estimating the LEC, a search within the tested concentration
range is performed (in our data example 0–1000mM). First, it is
tested whether the response for the highest concentration signifi-
cantly exceeds the prespecified effect level k in comparison to the
control [i.e. a P-value as in (6) is calculated for the highest concen-
tration and compared to the prespecified significance level a]. If not,
no LEC can be determined. Otherwise, the LEC is determined via a
bisection method: The starting limits of the first interval are the low-
est and highest concentration considered. A P-value as in (6) is cal-
culated for the mean concentration of the interval. If the P-value is
smaller than a, the parameter space is restricted to the lower half of
the considered interval, and to the upper half of the interval if it is
larger. The algorithm stops if the length of the remaining interval is
smaller than a small prespecified threshold value e.

This approach is an alternative to the classical standard ap-
proach, where each measured concentration is tested separately to
determine whether the critical level k is exceeded significantly. In
this case, the LOEC, determined with hypothesis testing, refers to
the lowest concentration where the difference between treatment
and control (the effect) significantly exceeds a given fold change.
Similarly, the ALOEC is defined as the concentration where the
average value of the fold change exceeds the critical effect level,
without significance testing. Note that the letter ‘O’ in the names
ALOEC and LOEC indicates that for these methods, only observed
concentration values are potential candidates for alert levels, where-
as ALEC and LEC allow arbitrary positive values as alert level.

A popular method in the field of toxicology for comparing sev-
eral treatments with a control is the Dunnett-test (Dunnett, 1955).
This test is a multiple-comparison procedure that tests for significant
differences between responses to several treatments, e.g. increasing
concentrations of a compound, and to a control. Multiplicity adjust-
ment is executed by using a multivariate test statistic that incorpo-
rates the correlations between the treatment situations. Although
this procedure would technically be preferred to the t-test, in this
work we mainly report the results from widely used standard two-
sample t-tests and we refer to Supplementary for results obtained
with the Dunnett-test.

Table 1 summarizes the four estimators that were compared in
this article, both in an exemplary simulation study and on real data.

2.2 Exemplary case study
A case study was conducted to investigate the development of
human embryonic stem cells (hESC) to neuroectoderm (Krug et al.,
2013). Cells were treated in vitro with valproic acid (VPA) at seven
different concentrations (25, 150, 350, 450, 550, 800 and
1000mM). Each concentration was assessed in three replicate
experiments. The cells were exposed to the compound over the en-
tire differentiation process. In addition, six replicates for untreated
measurements were available. The study was carried out within the
framework of the European Commission-funded research consor-
tium (ESNATS) which targeted the prediction of toxicity of drug
candidates for the use of embryonic stem cell-based novel alternative
tests.

2.3 Simulation study
The simulation study was performed with three different scenarios
for the true concentration–gene expression relationship, seeFigure 1.
The critical effect level k was chosen to represent a FC of 1.5. The
value of 1.5 was chosen from a biological motivation, taking the
typical range of gene expression values for the given type of data
into account. Since the data in the simulation study was intended to
resemble the exemplary case study with log 2-transformed values, a
FC of 1.5 corresponds to the critical effect level
k ¼ log 2ð1:5Þ � 0:585. The scenarios were chosen as follows, cov-
ering a broad range of concentration–response curves observed in
real-data situations:

• In Scenario I, the true parameters of the curve were set to /ðbÞ ¼
�6; /ðcÞ ¼ 0; /ðdÞ ¼ 0:58 and /ðeÞ ¼ 450 such that the curve

never exceeds the threshold k ¼ 0:585. In this case the true

ALEC cannot be calculated. This Scenario corresponds to the

null situation.

Table 1. Methods for estimating alert concentrations from concen-

tration–gene expression data

Observation-based Model-based

t-test 4pLL

FC ALOEC ALEC

FC & P-value LOEC LEC

Note: Rows indicate the cut-off criteria and columns the methods for esti-

mating fold changes. An alert means that either a given fold change value is

exceeded (FC) or that additionally the corresponding P-value is below a cut-

point (FC & P-value). The P-value results either from the t-test or from the

4pLL modelling approach.

ALEC = 500 ALEC = 400

Scenario I Scenario II Scenario III
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Fig. 1. Visualization of the three scenarios of concentration–response profiles con-

sidered in the simulation study. The y-axis shows the logarithmic expression values.

The prespecified effect level k ¼ log 2ð1:5Þ is visualized by a red line. For Scenarios

II and III the true ALEC value can be calculated and is indicated by a blue vertical

line. For Scenario I, the upper asymptote of the curve attains the value log 2ð1:5Þ
and therefore no ALEC value can be calculated
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• In Scenario II, the true parameters were /ðbÞ ¼ �3; /ðcÞ ¼
0; /ðdÞ ¼ 4 and /ðeÞ ¼ 900, and the curve clearly exceeds the

given threshold, with true ALEC¼ 500. The curve is however

not saturated in the range of considered concentrations, which is

a challenge for modelling.
• Scenario III represents a situation with an almost saturated sig-

moidal curve, with parameters /ðbÞ ¼ �3; /ðcÞ ¼ 0; /ðdÞ ¼ 1:16

and /ðeÞ ¼ 400, and with true ALEC¼ 400. This Scenario repre-

sents the best situation for modelling, as the effect attains values

corresponding to the upper asymptote within the range of con-

sidered concentrations and the curve clearly exceeds the

threshold.

The setup of the simulation study was inspired by the exemplary
case study, with three replicates per concentration (in total n¼24) and
the same concentration values as in the VPA study (0, 25, 150, 350,
450, 550, 800, 1000mM), where a concentration of 0 refers to the con-
trol. The true parameters were used to calculate the true ALEC values
and to generate simulated data. For each concentration, gene expres-
sion data from a normal distribution with mean f ðx;/Þ were gener-
ated, where f corresponds to the true 4pLL model function and x to the
respective concentration. The analysis of the real data example revealed
a correlation between the range and the standard deviation (w.r.t.
concentration-wise replicates) of the gene expression values. A linear re-
gression (with intercept) was fitted to this relationship. For each gene,
the range was calculated as the difference between the mean of the re-
sponse values for the highest concentration and for the control. The
three scenarios considered correspond to ranges of 0.58 (Scenario I),
2.31 (Scenario II) and 1.16 (Scenario III). Corresponding estimated
standard deviations (SD) were 0.189, 0.261 and 0.231. In addition to
these ‘medium’ values of SD, using the factors 0.5 and 2, ‘small’ values
(0.095, 0.131, 0.107) and ‘large’ values (0.379, 0.522, 0.427) were
considered. These values were still observed remarkably often when
considering the relationship between SD and range in real data. In the
following, small, medium and large SD are abbreviated with ‘small
SD’, ‘medium SD’ and ‘large SD’.

For each scenario, the simulation procedure was repeated 1000
times to obtain simulated courses of 1000 genes. We estimated
ALEC and ALOEC, as well as LEC and LOEC values. The LEC esti-
mates were calculated using our proposed iterative algorithm, and
the LOEC estimators resulted from the t-test approach.

2.4 Statistical analyses
The following analyses were performed using the statistical program-
ming language R, version 4.0.0 (R Core Team, 2020). For the nor-
malization of the entire set of 27 Affymetrix gene expression arrays,
the extrapolation strategy (RMAþ) (Harbon et al., 2007) algorithm
was used. RMAþ applies the steps background correction, log 2

transformation, quantile normalization and a linear model fit to the
normalized data in order to obtain a value for each probe set on each
array. As reference, the normalization parameters obtained in earlier
analyses were used (Krug et al., 2013). After normalization, at each
concentration the difference between averaged gene expression and
averaged control values was calculated. The significance of this differ-
ence was assessed with a two-sample-t-test. The 4pLL model was fit-
ted using the R package drc (Ritz et al., 2015).

3 Results

The observation-based and the model-based estimates were com-
pared. A main interest focused on the hypothesis-driven procedures
yielding the LEC and the LOEC. The simulation study compared
both estimators (FC and FC & P-value) with respect to their accur-
acy for the two methods (observation-based and model-based). The
same analysis was performed on the data of the exemplary case
study. Here, the analysis was restricted to those genes that showed a
significant change in gene expression for at least one of the

measured concentrations. We applied an analysis of variance to ex-
clude probe sets with no effect at all and only kept probe sets with
an unadjusted P-value smaller than 0.001, resulting in 9460 out of
the initial 54675 probe sets.

3.1 Simulation results
Only results for the medium SD and large SD have been reported
here, results for small SD are summarized in Supplementary Figure
S1. Results for the LOEC obtained using a two-sample t-test have
been summarized. Analogous figures for the LOEC obtained using
the Dunnett-procedure are shown in Supplementary Figures S2–S4.

Some simulated genes had to be excluded from the analysis,
when the numerical estimation of the covariance matrix of the
parameters, R, resulted in implausible negative diagonal entries. As
the diagonal entries correspond to the respective variances of the
parameters, a negative result is an indicator of numerical difficulties
when estimating R, and these results impair the calculation of the
4pLL test. The numbers of excluded genes for each situation were
14, 4 and 2 for medium SD, and 112, 8 and 16 for large SD
(Scenarios I, II and III, respectively). In the observation-based ap-
proach, only expression profiles with unambiguous direction were
considered, profiles with values above the upper threshold
( log 2ð1:5Þ) at one concentration and below the lower threshold
(� log 2ð1:5Þ) at another concentration were excluded, for the calcu-
lation of both LOEC and ALOEC.

The main results of the simulation study are summarized in
Figures 2 (medium SD) and 3 (large SD). Key figures for modelling-
based alert concentrations are shown in Table 2.

The total number of alerts differed from the total number of con-
sidered genes (1000) for several reasons. Firstly, the algorithm for
model fitting may not have converged; the upper asymptote may not
have exceeded the threshold k, and, lastly, the respective (A)LEC es-
timate may have been larger than the highest measured concentra-
tion. For the (A)LOEC, no alert could be determined when the mean
difference to the mean of the control value (significantly) exceeded
the pre-defined threshold k for none of the concentrations.

For Scenario I, the effect level of 0.585 is not reached for the true
curve. Thus, every identified alert concentration was a false positive.
For Scenarios II and III, an estimated alert concentration was called
false positive if it was below the true ALEC value (500 and 400, re-
spectively). The total numbers of false positive alerts for the differ-
ent methods are summarized in Table 3.

The main results from the simulation study for each scenario are
summarized separately below.

Scenario I: In Scenario I, with the true curve below the threshold
no alerts were expected; however, both methods resulted in some
false positives. The t-test approach with estimate ^ALOEC resulted
in over 600 false positives for both medium SD and large SD, and
the 4pLL method with estimates ^ALEC in 100 fewer false positives.
Median values for the false positive ^ALEC values were 652 (medium
SD) and 554 (large SD), while most ^ALOEC values were 550 and
800. For the more stringent criteria with significance testing, the
methods resulted in only 33–44 false positive alerts in all cases.

Scenario II: For medium SD, in almost all cases a valid alert con-
centration (below 1000) was obtained. For ^ALEC, the median value
of the 996 estimations was very close to the true value of 500, while
for ^LEC, the median was a little higher. Both from the histograms in
Figure 2 and from the standard deviations summarized in Table 2, a
narrow distribution of the ^ðAÞLEC values around their median val-
ues was observed. The ^ALOEC was mostly between 350 and 800
and in more than 500 cases 550. The ^LOEC values were larger, with
a clear peak at 800, sometimes 550 or 1000, and rarely 450. For
both ^ALOEC and ^LðOÞEC, the t-test approach yielded fewer false
positive alerts than the 4pLL approach. These observations are sum-
marized in the distribution functions in Figure 2, with similar start-
ing points and initial slopes for ^ALOEC and ^ALEC, although

^ALOEC reached its maximal value at smaller alert concentrations.
For large SD, the model-based approaches resulted in more than

980 valid estimations (Fig. 3, second column, middle row), while the
observation-based approaches resulted in only 832 (t-test) or 783
(4pLL). The median value of the ^ALEC was again only slightly
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higher (511) than the true value (500), whereas the median of the
^LEC was much higher (674). As indicated by the larger standard

deviations for ^ALEC and ^LEC in comparison to the ‘medium’ situ-
ation, the histograms for ^ALEC and ^LEC were wider. For the

^ALOEC, approximately 150 simulation runs yielded an estimate of
25 or 150, the rest of the observations were divided between the
concentrations 350, 450, 550 and 800, with a peak at 550. By con-
trast, for ^LOEC, almost all estimated values were 800 or 1000. The
number of false positive alerts for ^ALðOÞEC was similar using t-test
and 4pLL, while for ^LðOÞEC, only very few false positive alerts
were obtained.

The distribution functions for the ^ALðOÞEC intersect: Due to
several very low alerts for the ^ALOEC, the corresponding

distribution function started to increase for lower concentrations,
but with a smaller slope. Distribution functions for ^ALEC and ^LEC
were comparable in terms of their slope and differed mostly with re-
spect to the starting point of increase. End points of the observation-
based distribution functions were lower than when the model-based
approach was used due to the smaller number of valid estimates of
the respective alert concentration.

Scenario III: In comparison with Scenario II, the true underlying
curve of Scenario III exhibits a smaller range and a lower inflection
point and therefore is already almost saturated for the highest
concentration.

For medium SD and the FC as alert criterion, almost no invalid
estimates were obtained. Using the more stringent criterion based on
FC and P-value, 976 valid estimates were obtained using the 4pLL
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Fig. 2. Results of the simulation study for medium SD. The three columns represent from left to right Scenarios I, II and III. Each column is further subdivided into two col-

umns. In the first of these columns, the AL(O)EC is displayed, i.e. the concentration obtained only by the FC criterion, and in the second column, the L(O)EC is displayed, i.e.

the concentration for FC & P-value criterion. The top row corresponds to the observation-based methods (ALOEC and LOEC), the middle row to the model-based methods

(ALEC and LEC) and the bottom row shows empirical distribution functions for both methods. For Scenarios II and III, the value of the true underlying ALEC is indicated by

a red line. The number in each of the cells indicates the number of valid estimates in the range of concentrations considered, while the number in the respective columns’ title

corresponds to the total number of genes considered

Table 2. Summary statistics for the distributions of the ALEC and

the LEC for Scenario I–III for the situations with medium SD and

with large SD

n Med SD

Medium Large Medium Large Medium Large

Scenario I 532 575 651.6 553.5 131.0 207.8

ALEC Scenario II 996 989 500.7 510.9 45.9 95.7

Scenario III 998 970 396.0 373.0 61.1 136.1

Scenario I 33 44 768.3 687.3 98.0 194.2

LEC Scenario II 996 988 585.5 674.1 46.8 92.8

Scenario III 976 607 507.4 543.6 73.3 147.0

Note: The following parameters are presented: The total number of alerts

(n), the median (Med) and the standard deviation (SD). The top three rows

correspond to the ALEC values and the bottom three rows to the LEC values.

Table 3. Total numbers of false positive alerts, i.e. estimates below

the true ALEC value, in Scenario I all identified alerts. Rows indi-

cate the cut-off criteria

Scenario I Scenario II Scenario III

t-test 4pLL t-test 4pLL t-test 4pLL

AL(O)EC Medium SD 627 532 251 491 262 536

Large SD 679 575 419 444 430 587

L(O)EC Medium SD 33 33 5 35 0 42

Large SD 38 44 8 36 12 50

Note: An alert was identified when the given fold change value of 1.5 was

reached exactly ( ^ALEC, row 1) or exceeded by the average value ( ^ALOEC,

row 2), or exceeded significantly (p � 0:05Þ (rows 3 and 4).
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method and only 637 using the t-test. For the ^ALEC, the median
was again very close to the true value of 400, whereas the median of
all ^LEC values was again clearly larger. For the ALOEC, estimates
were divided between the values 350, 450, 550 and 800, with a
peak at 450, the best possible estimate for the observation-based
method in this scenario. Estimates of the LOEC were between 450
and 1000, with a peak for 800. The number of false positive alerts
for the ^ALðOÞEC was twice as large using the 4pLL method com-
pared to the t-test method. For ^LðOÞEC, no false positive alerts
occurred using the t-test method and only 42 using the 4pLL
method. The distribution functions of ^ALOEC and ^ALEC were very
similar, while the distribution function of ^LEC started to increase
earlier and exhibited a larger slope and a higher endpoint than the
distribution function of ^LOEC.

For large SD, for the FC criterion almost all estimates of the alert
concentrations yielded valid results. This was in contrast to the

^LOEC and the ^LEC, with only 238 and 608 valid estimates, respect-
ively. The ^ALEC slightly underestimated the true ALEC of 400,
while the ^LEC yielded a larger median value. The ^LOEC would not
be considered to be a suitable estimator in this case as the few valid
estimates all had a peak at 800 and thus clearly overestimate the
true ALEC. On the other hand, for the ^ALOEC, as in Scenario II,
also small estimates of 25 and 150 were obtained (in over 100 cases)
as well as many other values, with a peak at 350, corresponding to
underestimation. The number of false positive alerts was very high
for both ^ALOEC and ^ALEC. The most striking difference in the dis-
tribution functions is the different endpoint for ^LðOÞEC, while the
distribution functions for ^ALðOÞEC are very similar.

The 95% confidence intervals (CI) for the ALEC estimators were
calculated. Based on these, coverage probabilities (CPs) were esti-
mated as percentages of cases with true ALEC value inside the CI.
Since no true ALEC value is available for Scenario I, CPs were calcu-
lated for Scenarios II and III only. Only CIs with a length smaller
than 1000 were considered. For medium SD, in Scenario II the CP
was 0.83 (996 considered CIs) and in Scenario III 0.84 (998 consid-
ered CIs). For large SD, in Scenario II the CP was 0.86 (979

considered CIs) and in Scenario III 0.79 (920 considered CIs). Hence
CPs are generally relatively low.

3.2 Exemplary case study
For the VPA study, only the results of the more stringent criteria of
FC >1.5 and P-value � 0:05 are shown. For simplicity, probe sets
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Fig. 3. Results of the simulation study for large SD, with the same structure as in Figure 2 for medium SD
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are referred to as genes. Again, some genes had to be excluded be-
cause of negative diagonal entries in the estimated covariance matrix
R of the parameters in the 4pLL model. In this case 286 genes were
excluded, keeping 9174 of the 9460 genes preselected with analysis
of variance. Only 4128 and 4928 genes provided an estimate for the
LOEC and LEC below 1000mM respectively.

The boxplots in Figure 4 show values of the ^LEC alert concen-
tration, stratified by the corresponding ^LOEC values that are also
indicated by red dots. Additionally, Supplementary Figures S5 and
S6 show boxplots for the same set of genes, but divided into the
genes with an increasing and with a decreasing gene expression pat-
tern. The direction is determined based on the fitted 4pLL model.

For almost all observed concentrations, the respective boxes are
below the indicated points, i.e. in more than 75% of the cases the
model-based approach yielded lower concentrations than the
observation-based method. Note that the 4pLL model can be misspeci-
fied, and if the parametric assumptions do not hold, its estimates may
be biased. In this sense, the results should be interpreted with caution.
According to the t-test method, most alerts were identified at the con-
centrations 800 and 1000mM, while our new 4pLL approach identified
mostly smaller concentrations with quartiles 433mM and 746mM.

4 Discussion and conclusion

A frequent goal in concentration–response studies is to determine an
’alert’ concentration where a critical effect level is exceeded. It is im-
portant to distinguish between a pure estimate of this ’alert’ concen-
tration and a concentration where the effect level is even statistically
significantly exceeded. The standard approach is to analyse each
measured concentration separately (t-test method). An alternative is
to fit a sigmoidal curve, considering statistical variation in the corre-
sponding parameter estimates (4pLL method).

We compared both methods in terms of the accuracy of the esti-
mates. We performed a simulation study with three independent
scenarios, covering different situations, and also evaluated the
results on a real data example. In all cases, our proposed model-
based approach (ALEC and LEC) performed better than the classical
t-test approaches (ALOEC and LOEC). In Scenario I, where the crit-
ical fold change is not reached, fewer false positive signals were
identified. In Scenarios II and III, where the expression pattern fol-
lowed a pronounced sigmoidal shape clearly crossing the threshold,
the estimates of the model-based approach were closer to the true
alert concentrations than those of the observation-based
approaches. The same trend was observed in the real data example.
Compared to the observation-based approaches, the model-based
approaches yield alerts at lower concentrations. The model-based
approach benefits from its independence of measured concentration
levels by allowing arbitrary positive values as alert concentrations.

An advantage of the model-based approach is that the ALEC
and LEC values can also be estimated reliably in the case of incom-
plete concentration–response data. The right-sided asymptote can
still be extrapolated by fitting a curve, but slightly biased estima-
tions of this asymptote may occur. Those have less impact on ALEC
and LEC, as the given effect level is predefined, than they have on
alternatives like the EC50 that heavily depends on values of the
asymptote. Another property of the model-based approach is that
the entire information about the concentration–response relation-
ship is incorporated in the estimation for a specific concentration.
This can be a problem in unsaturated scenarios, where the variance
of the parameter estimates becomes very large.

While all analyses were conducted under the assumption of
homogeneity, the application of the methods is also possible in the
case of heteroscedasticity or non-normal residuals (Calderazzo
et al., 2019). Heteroscedasticity and skewed distributions can also
be addressed using robust standard errors as in the case of robust
linear regression (Venables and Ripley, 2002).

In general, the use of the model-based approach is only recom-
mended if the parametric assumptions of the model hold. In this
case, the structure in the data can be captured by the parametric
model and the highest possible efficiency can be obtained. In order

to obtain reasonable estimates, it is recommended to test explicitly
for deviations from sigmoidal curve progressions (Schoyer, 1984).
Our method can be extended and applied to other parametric mod-
els, such as the log-normal or Weibull model.

Alternatively, non-parametric methods can also be used includ-
ing Kernel regression (Müller and Schmitt, 1988; Staniswalis and
Cooper, 1988) or local linear regression (Kelly and Rice, 1990;
Zhang et al., 2013), as well as mixture models, with weighted aver-
ages of parametric and non-parametric fits. Such approaches have
already been taken by Yuan and Yin (2011), Nottingham and Birch
(2000), Olkin and Spiegelman (1987), Mays et al. (2000) and Pickle
et al. (2008), among others.
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