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ABSTRACT We report here the genome sequences of six newly isolated bacterio-
phages infecting Arthrobacter sp. ATCC 21022. All six have myoviral morphologies
and have double-stranded DNA genomes with circularly permuted ends. The six
phages are closely related with average nucleotide identities of 73.4 to 93.0% across
genomes lengths of 49,797 to 51,347 bp.

Here, we report complete genome sequences of six bacteriophages infecting
Arthrobacter sp. ATCC 21022 (1), isolated as part of the Science Education Alliance-

Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) program
(2). Many Arthrobacter spp. are soil bacteria and can break down complex hydrocar-
bons, which can be useful in bioremediation (3–5). Phages Beans, Franzy, Jordan,
Piccoletto, Shade, and Timinator were obtained from soil samples collected from River
Falls, WI; Pittsburgh, PA; Radnor, PA; Cloudcroft, NM; King of Prussia, PA; and Frisco, TX,
respectively. All were isolated by enrichment cultures and appear to be lytic phages,
forming small, clear plaques. By electron microscopy analysis, all belong to the Myo-
viridae family, with contractile tails approximately 100 nm long and isometric heads
approximately 50 nm in diameter.

The genomes were sequenced using the Illumina shotgun sequencing method at
either the University of Pittsburgh or at North Carolina State University Genomic
Sciences Laboratory. The sequences were assembled using Newbler, generating single
major contigs with coverage from 117-fold to 3,520-fold. The observed genome sizes
range from 49,797 bp (Beans) to 51,347 (Jordan), with G�C contents ranging from
60.9% (Timinator) to 63.6% (Beans and Piccoletto). All of the phages have circularly
permuted ends, and coordinate position one was assigned to the first nucleotide of the
predicted gene immediately upstream of the terminase large subunit gene, which is a
strong candidate for encoding a terminase small subunit containing a helix-turn-helix
DNA binding domain.

Genomes were annotated using DNA Master (http://cobamide2.bio.pitt.edu), and
coding sequences were predicted using GeneMark (6) and Glimmer (7); no tRNA genes
were identified using Aragorn (8) and tRNAscan-SE (9). Functional assignments were
made using BLASTp (10) and HHpred (11, 12) against the publicly available GenBank,
Protein Data Bank, and Pfam databases. The genomes share significant nucleotide
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similarity, with average nucleotide identities of 73.4 to 93.0%, and all six phages are
grouped into Cluster AO, along with the previously described phages BarretLemon,
Brent, Jawnski, Martha, Sonny, and TaeYoung (13).

The genomes contain 73 to 79 protein-coding genes, of which approximately 30%
have predicted functions. The virion structural genes are organized canonically, and
include tail sheath and baseplate proteins as expected for myoviral phages. The
genomes contain a single endolysin-coding gene with peptidase-, amidase-, and
peptidoglycan-binding domains similar to mycobacteriophage lysin A proteins (14), but
do not have lysin B genes. As predicted, no integrase, immunity repressors, or other
genes associated with lysogeny were identified. All of the genomes code for recom-
bination systems, including an exonuclease and a RecT-like recombinase, as well as
RusA-like Holliday junction resolvases, that could be involved in concatemerization and
genome circularization (15–18). Genes encoding AlpA-like DNA binding proteins, and
DNA polymerase III beta subunits are also present.

Accession number(s). Complete genome sequences are available in GenBank
under the accession numbers MF324907 (Beans), MF377442 (Franzy), MF189176 (Jordan),
MF189177 (Piccoletto), MF189178 (Shade), and MF377441 (Timinator).
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