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Abstract

In the last 25 years, numerous tissue engineered heart valve (TEHV) strategies have been

studied in large animal models. To evaluate, qualify and summarize all available publica-

tions, we conducted a systematic review and meta-analysis. We identified 80 reports that

studied TEHVs of synthetic or natural scaffolds in pulmonary position (n = 693 animals). We

identified substantial heterogeneity in study designs, methods and outcomes. Most impor-

tantly, the quality assessment showed poor reporting in randomization and blinding strate-

gies. Meta-analysis showed no differences in mortality and rate of valve regurgitation

between different scaffolds or strategies. However, it revealed a higher transvalvular pres-

sure gradient in synthetic scaffolds (11.6 mmHg; 95% CI, [7.31–15.89]) compared to natural

scaffolds (4,67 mmHg; 95% CI, [3,94–5.39]; p = 0.003). These results should be interpreted

with caution due to lack of a standardized control group, substantial study heterogeneity,

and relatively low number of comparable studies in subgroup analyses. Based on this

review, the most adequate scaffold model is still undefined. This review endorses that, to

move the TEHV field forward and enable reliable comparisons, it is essential to define stan-

dardized methods and ways of reporting. This would greatly enhance the value of individual

large animal studies.

Introduction

Worldwide, biomedical engineers and physicians work in close collaboration to develop and

improve tissue engineered heart valve (TEHV) prostheses. Their joined goal is to create a via-

ble heart valve, overcoming the disadvantages of currently available heart valve prostheses

such as limited durability [1–3], the need for anticoagulation [4] and the inability to grow with

the patient [5]. Successful TEHVs should be dynamic structures, ultimately composed of spe-

cialized viable cells. In addition, TEHVs need an extracellular matrix (ECM) that can remodel

in response to changes in local mechanical forces and maintain favorable strength, flexibility,
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and durability; beginning at the instant of implantation and continuing indefinitely thereafter

[6,7]. The basis of a TEHV is the scaffold. The scaffold provides a (temporarily) template and

ideally functions as an instructive roadmap for cells to differentiate and support active tissue

remodeling [8]. Scaffold materials are traditional categorized in synthetic (e.g., biodegradable

polymers) or natural (e.g., animal donor) derived biomaterials. Each type has inherent benefits

and challenges [9–12]. Over the last two decades, an extensive library of scaffold materials, dif-

ferent cell sources and cultivating processes have been explored and studied in large animal

models. The first in vivo functional evaluation of a concept is often tested in the pulmonary

valve position, because of the low-pressure circulation and easy access [13,14]. Subsequently,

the high-pressure (aortic or mitral) position is tested, which is riskier and technically more

challenging.

Synthetic scaffolds favor in terms of availability and control of fabrication. It is hypothe-

sized that synthetic scaffolds must undergo full bio-resorption to create the patient’s own cell-

based heart valve and prevent a possible chronic immune response on scaffold remnants in
vivo [15]. Thus, a synthetic scaffold should be biodegradable, in which the degradation of the

scaffold synchronizes with the production of ECM in such way that the valve remains func-

tional. Moreover, the scaffold biomechanics need to resemble native leaflets regarding stiffness

[16,17] and flexibility. Natural scaffolds are decellularized valves or tissues derived from donor

species. In contrast to the currently available bioprostheses, which are also derived from ani-

mal donors, natural scaffolds for TE purpose do not undergo a process of collagen crosslink-

ing. Bioprostheses are chemically (e.g. glutaraldehyde) crosslinked to provide strength and

diminish recipient rejection [18]. However, crosslinking results in non-viable tissues, in which

cells are not able to migrate into the fixed matrix, making tissue renewal and growth impossi-

ble. In the non-crosslinked matrix of natural TE scaffolds, cells can migrate into the ECM and

the matrix potentially retains natural components that provide cues for cell migration and dif-

ferentiation, resulting in constructive remodeling [19]. Moreover, the natural donor derived

scaffolds should potentially preserve their ECM architecture and consequently their bio-

mechanical character. Still, it is a challenge to retain these properties after the decellularization

process [20–22]. Both synthetic and natural scaffolds can be pre-seeded with cells or bioactive

agents or can be cell free at time of implantation. Until now, it is not clear if pre-seeding of

scaffolds contributes to the outcomes [23,24].

It is a challenge to get (and keep) an overview of all the combinations in the applied strate-

gies, the advantages and disadvantages, and the results of TEHVs functionality. An overview

of all publications would provide a helpful tool for scientists to fill-in gaps of knowledge, find a

way through literature and enable proper comparison of their study outcomes with the appro-

priate studies and, most importantly, to find the scaffold with the most potential for our

patients. Systematic reviews including meta-analysis of animal studies are less common than

those of clinical studies, though not less important; they enable scrutiny of the validity of the

preclinical evidence, they raise awareness of poor study design and ultimately encourage

improvements in scientific rigor and reporting, and they provide transparency [25].

The objective of this review was to evaluate, qualify and summarize all available publica-

tions of TEHVs that were tested in the pulmonary position in large animal models. We per-

formed a systematic review, an assessment of the quality of reporting essential items, and a

meta-analysis on mortality and valve functionality.

Methods

This systematic review was registered in an international database (PROSPERO register

CRD42018092766) and reported according to the PRISMA guidelines [26]
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Search strategy and selection of articles

OVID Medline and the Embase databases were searched to identify all original articles concern-

ing pulmonary valve scaffold implantations in large animals for tissue engineering purpose

(Syntax see S1 Table). The final search was conducted on October 25th 2020. We used keywords

for large animal models (porcine, ovine, canine, primates, caprine), pulmonary valve (PV)

replacements and tissue engineering (TE), without time or language restriction. Results of the

search were uploaded in the Early Review Organizing Software (EROS; Institute of Clinical

Effectiveness and Health Policy, Buenos Aires, Argentina). EROS was used to randomly allocate

the references of the database to two independent reviewers (MU, RvV, and/or IdB), who

screened references for inclusion based on title and abstract according to the inclusion criteria.

We excluded (systematic) reviews and editorials & conference abstracts. Natural derived cell

free scaffolds that were chemically fixed (e.g., glutaraldehyde) prior to implantation were

excluded. Full-text copies of all publications eligible for inclusion were subsequently assessed by

two independent reviewers (MU, RvV, and/or IdB). In case of disagreements, the first author

(MU) and a third reviewer (RvV or IdB) jointly decided whether exception was justified.

Remaining articles eligible for full text reading were cross-checked for other relevant studies.

Data extraction

Data was extracted independently by two reviewers (IdB, MU, and/or RvV). After data extrac-

tion, each reviewer verified the other reviewer’s data entries and data entries were also verified

by a third reviewer (MU, DvdV).

First, we extracted the following data on study characteristics: general characteristics of the

study, animal Characteristics, follow-up time, surgical approach, anticoagulation treatment

after surgery, and scaffold biomaterial. Second, we extracted data regarding TE strategies: de-

cellularization (agent), sterilization method, pre-seeding (e.g., bioactive agent or cell source)

prior to implantation and cell culturing location, and other non-foreseen experimental specific

items. Finally, we extracted data on the outcome mortality/morbidity and valve function.

Cause of mortality after valve intervention was categorized as structural valve deterioration

(SVD), non-structural valve deterioration (NSVD) (e.g., operation related) or endocarditis [6].

If indicated, we extracted the timepoint of death.

Quality of reporting assessment

Due to the nonrandomized and non (uniformly) controlled nature of most preclinical studies, no

standard risk of bias analysis could be performed, as validated tools are unavailable for these types

of studies. Instead, to identify risk of bias in the area of design and reporting for TEHV studies

specific, we used a custom-made questionnaire [27] (S2 Table). The questionnaire includes five

topics: animal characteristics, study design, adverse events, procedure and tissue engineering

items. These five items were scored in 22 questions with ‘yes’ or ‘no/unclear’. Subsequently, the

reporting quality of a question was calculated as the number of studies scoring positive divided by

the total number of studies. This was classified as good (> 75% of the studies), average (50–75%)

or poor (< 50%). All available information per article was reviewed, including supplementary

materials, references to previous work and appendices. Two investigators per study (MU, AV,

IdB, and/or AD) independently assessed the reporting quality of the included references.

Meta-analysis

Mortality and valve functionality, more specific pulmonary valve regurgitation (PR) and the

mean transvalvular pressure gradient (mPG), were assessed in the meta-analysis. The effect
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estimates of single groups were presented and pooled (because no control group data regard-

ing native or sham operated animals was available).

To asses mortality, the number (n) of animals that died or were terminated before the

planned date were extracted and reported as fraction (%) of the total number of animals of the

allocated experimental group. For valve functionality, data was extracted as raw data or group

averages in case standard deviation (SD) or standard error (SE) and number of animals per

group (n) were reported or could be recalculated. If one article studied the effects of two or

more scaffold variants, methods or follow-up time, these groups were analyzed as independent

comparisons. In cases data could not be extracted from the text but was only presented graphi-

cally, we used a universal on-screen digitizer (Fiji; ImageJ version 2.0.0) to quantify the data.

When several time points (repeated measurements) in one subject (animal) were investigated

for valve function, the time point at end of follow-up was extracted. In case this last time point

only contained a single animal (n = 1), the data from animals in the previous timepoint was

used. In case all subgroups within one study consisted of only one animal (n = 1) and sub-

groups were sufficiently comparable, these animals were combined as if they comprised one

group. Subsequently, statistical analyses were performed in Comprehensive Meta Analyses

software (CMA version 2.0). Forest plots were used to display the mean effect sizes. Data are

expressed as effect size (ES) with 95% confidence intervals. In case there were more than two

independent experiments, the event rates or means were pooled using a random effects model

which takes into account the precision of individual studies and the variation between studies

and weights each study accordingly. In case the median and range was reported, the mean and

standard deviation was calculated [28]. To determine the study heterogeneity I2 was used. Sub-

groups were predefined according to scaffold material and cellular state at time of implanta-

tion (cellular or acellular). The results of subgroup analyses were only interpreted when

subgroups contained at least data from 3 independent studies or 5 experiments per subgroup.

For subgroup analyses, we adjusted our significance level according to the conservative Bon-

ferroni method to account for multiple analyses (p� number of comparisons).

To assess the possibility of bias resulting from the time point of the echocardiographic mea-

surement, the conducted follow-up time of each comparison (included in the meta-analyses)

was plotted in a box-plot and visually evaluated on asymmetry by two reviewers (CH and

MU).

Sensitivity analyses was conducted for the echocardiographic method (TTE, TEE, intracar-

diac and epicardial) and non-parametric or parametric reported data in the continues data.

Results

Literature search and screening

The database searches yielded 762 titles. After removing duplicates, 561 papers entered the

title abstract screening phase. During title and abstract screening, 461 papers did not meet our

predefined inclusion criteria, resulting in 100 papers for full text screening. Screening of the

reference list of these papers did not result in any new references. Finally, 80 papers [3,15,29–

107] were included in this review. The study selection process is illustrated in Fig 1.

Study characteristics

The 80 included papers studied 693 animals that received a TEHV in pulmonary position. The

papers were published between 1995 and 2020. We saw an increase of publications on syn-

thetic scaffold implantations over these 25 years (Fig 2A). The animal strains used in the stud-

ies were: sheep (n = 557/693; 80%), pigs (38/693; 5%), primates (20/693; 3%), dogs (58/693;

8%) or goats (20/693; 3%). Animal sex was reported in 33 papers (41%), including 274 animals.
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If sex was reported, 93% (249/268) of animals were female and 7% (19/180) male. The follow-

up time of the studies ranged from acute (hours) to 24 months. Studies of synthetic valves

were evaluated after a mean follow-up of 3.4 months (modus 1 month, range 1 hour– 24.0

months). Natural derived scaffolds were evaluated after a mean follow-up of 5.0 months

(modus 6 months, range 0.1–22.5 months). Postoperative use of anticoagulation therapy was

described in 24 studies (30%), of which 13 studies (16%) explicitly mentioned not to use antic-

oagulation. Details of the anticoagulation treatment can be found in S3 Table. An overview of

the characteristics of the included publications on synthetic and natural scaffolds can be found

in the supplement (S4A and S4B Table) and results are illustrated in Fig 3B–3D.

Scaffold characteristics and tissue engineering strategies

A variety of TEHV strategies was reported. Synthetic (not created by/in nature) and natural

(native tissue/donor derived) scaffolds were used in 32% (223/693) respectively 68% (470/693)

of animals. Of these two scaffold types at the start (synthetic and natural), we identified 11 dif-

ferent strategies to the moment of implantation. These strategies concealed (Figs 3A and 4)

Fig 1. Flowchart outlining the protocol adapted from PRISMA guidelines.

https://doi.org/10.1371/journal.pone.0258046.g001
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Fig 2. A. Percentage of publications of studies on TEHV scaffolds shifted from mainly natural-based scaffold designs before 2015, to synthetic scaffolds designs after 2015.

B. Total number of animals used per year in studies on TE pulmonary valve implantations showed increase of (mean) numbers of animals over the last 20 years.

https://doi.org/10.1371/journal.pone.0258046.g002

Fig 3. Study characteristics in studies on synthetic- (yellow/orange) and natural (green) based scaffolds. A. Mainly acellular in situ TE was performed with natural

scaffold, also mentioned as decellularized xeno-/autografts. Histogram presents percentage of valves of total (n = 693) valve implants. B. Nine different polymers and one

not specified (XPV) type were identified in studies analysing polymer- based synthetic scaffolds. Natural valves originated most often from pigs. C. The sheep was the most

used animal model in studies on synthetic as well in natural scaffolds. Natural scaffolds were mostly implanted as xenograft D. The most used follow-up time for synthetic

scaffolds was shorter (modus 1 month) compared to that of natural scaffolds (modus 6 months). AV: Aorta valve. BU; Bis-urea ECM; Extracellular matrix P(L,DL)LA; Poly
(L-lactide-co-D,L-lactide). P4HB; Poly-4-hydroxybutyrate PC; Poly-carbonate PCL; Polycaprolactone PCUU; Poly-carbonate urethene urea PDO; Poly(1,4-dioxan-2-one)
PGA; Polyglycolic Acid. PHO; Polyhydroxyoctanoate PV; Pulmonary valve. SIS; Small intestinal submucosa TE; Tissue engineering TEHV; Tissue engineered heart valve.
UPy; 2-ureido-4[1H]-pyrimidinone.

https://doi.org/10.1371/journal.pone.0258046.g003
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pre-seeding, tissue culturing, coating and decellularization processes, in single or combined

order.

The polymer-based synthetic scaffolds (196/223; 87.9%) were directly implanted (67/223;

30.0%; in-situ TE), pre-seeded and cultured (65/223; 29.1%; in vitro TE) or decellularized after

cell culturing (50/223; 22.4%; decellularized de novo). Of the polymer-based synthetic scaffolds,

10 different polymers (blends) were used (Fig 3B). In addition, 12 valves were (hand-) made of

connective tissue sheets which were cultured subcutaneously in dogs (12/223; 5.4%; in body
TE). Another 15 valves (15/223; 6,7%) were made of tissue, engineered from cultured (ovine)

fibroblast in hydrogel.

The natural scaffolds were mostly derived from donor valves (416/470; 88.5%;) and decellu-

larized. Decellularization methods of the natural valves included: non-ionic detergents (e.g.,

Triton X-100), ionic detergents (SDS or sodium deoxycholate), zwitterionic detergents (hypo-

tonic and hypertonic solutions, EDTA), or enzymatic (endonucleases) methods. The natural

scaffold derived from donors were directly implanted (261/470; 55,5%; in situ TE), pre-seeded

and cultured (77/470; 16,4%; in vitro TE), seeded on the fly with cells or bioactive agents (72/

461; 15.3%;) without a culture period, or coated with a polymer (P4HB) (6/461; 1.3%). In addi-

tion, 54 (11.5%) valves were hand-made from commercially available porcine derived decellu-

larized small intestine submucosa ECM sheets (SIS-ECM).

Sixty-one percent (287/470) of the natural valves were implanted as xenograft and 39% as

allografts.

Fig 4. Overview of strategies in tissue engineering of heart valves. Start with the scaffold materials (synthetic or natural), subsequent the pathways of preparation

techniques prior to implantation. Finally, 11 strategies were identified. n = numbers of valves represented in each group. TE; Tissue engineering. SIS-ECM; Small intestinal
submucosa extra cellular matrix. �Decellularized. Xeno-/autografts.

https://doi.org/10.1371/journal.pone.0258046.g004
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Most donor valves were harvested from pulmonary position (297/416; 71.4%) or from aor-

tic position (112/416; 26.9%). One study (7/416; 1.7%) implanted (equine) jugular vein valves

in the pulmonary position in sheep.

Scaffold decellularization, seeding, culturing and coating

If scaffolds were pre-seeded, a variety of methods and cells was used. Mostly, seeding of the

synthetic scaffolds (n = 22 studies) was conducted with vascular or bone marrow derived

(BMD) (autologous) cells. These were mostly typed as (myo)fibroblast cells and in several

cases combined with seeding of endothelial cells (ECs). Exceptions to mention here are neona-

tal human derived dermal fibroblast [38,101], human vascular derived fibroblasts [54], and

BMD mononuclear cells [37,40,100] or a combination [34]. Pre-seeding of natural scaffolds

(n = 14 studies) was also mainly performed with vascular derived (myo)fibroblast (MFB) like

cells, sometimes combined with (progenitor) ECs and/or smooth muscle cells. Three studies

used BMDs mononculear cells [71], endothelial progenitor cells [57] or EC-like and MFB-like

cells [61]. Three studies with naturel decellularized scaffolds used bioactive agents to stimulate

specific cell adhesions, respectively fibronectin alone [3,58], or combined with stromal derived

factor [60], fibronectin with or without hepatic growth factor (HGF) [68], or cysteine-rich

angiogenic inducer 61 (CCN-1) [70]. Two studies evaluated naturel decellularized scaffolds

coated with polymer PHBHHx 3–5% [55] or a blend of 82% P3HB and 18% P4HB [56]. One

study conditioned the synthetic scaffold with transforming growth factor ß-1(TGF-ß1) [101].

If valves were cultured in vitro, this was done in static conditions in six studies using natural

scaffolds [30,32–36] and in seven studies using synthetic scaffolds [3,57,61,62,67–69]. In some

cases, the static condition was followed by a dynamic environment. In eleven studies on syn-

thetic [29,32,34,49–54,101,105] and four studies on natural scaffolds [64–66,70], only dynamic

(pulse and/or flow) systems were used to mature cells or the novo ECM in vitro (S5A and S5B

Table).

Reporting quality

The assessment on reporting quality is illustrated in Fig 5 and supplement S6 Table. Animal

characteristics (Q1- Q6) were generally well reported, except for animal gender, which was

poorly reported (41% of the studies). The items concerning the study design (Q7- Q11) were

poorly reported. In 56% (45/80) of the studies, some sort of control group was present (Q9) to

evaluate the echo results. Studies described the use of negative or positive controls (e.g., cellular

versus acellular scaffolds) in 89% (40/45 studies), comparative controls (e.g., clinically used

biological valves) in 9% (4/45), or a combination of these in 7% (3/45). In one study, a sham-

control [81] was used. To get more insight in the reasons not to use a control group, we asked

additional questions (Fig 5B). This showed that 9% (3/35) of authors mentioned in their man-

uscript the reason why they did not use a control group. The other studies (32/35; 91%;) did

not specify the reason for absence of a control group. Of the latter, 31% (10/32) of the studies

could be qualified as a pilot or feasibility study. In the other 69% (22/32), one scaffold variant

was studied and evaluated at different time points. Random allocation (Q10) of animals to

their experimental group (if applicable) was reported in five (11%) studies. Blinding of qualita-

tive functional outcome assessment (Q11) was described (if applicable) in only 2 of the 72

(3%) studies.

The third and fourth topic concerned items regarding the adverse events (Q12-15) of the

surgical procedure and composition (Q16-Q17) of the valves, which were almost all well

reported (>75%), except the timepoint of the dropouts (Q14), that was not clearly reporteded

in 67% (26/39) of the studies. The diameter of the implanted valve was described in 68% (54/
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80) of studies. The last topic concerned the TE strategies (Q18 -Q22). The sterilization method

(Q19) and banking prior to implantation (Q20) were moderately reported (75%; 59/79 and

30%; 22/73 respectively). Pre-seeding and decellularization procedures (Q21 and Q22 respec-

tively) were well reported (38/38;100% and 54/56; 96%).

Meta-analysis

Mortality. Data on mortality could be extracted from all studies on synthetic (27 compari-

sons, n = 196) and all studies on natural scaffolds (51 comparisons, n = 493). The overall

pooled estimated mortality rate was 17% (CI 95% [13–20%]) and did not differ between syn-

thetic (18% (CI 95% [12–27%]) and natural scaffolds (16%; CI 95% [12–20%], I2 = 0). Sub-

group analyses, applicable on 7 out of 11 TE strategies, did not show significant difference in

mortality (Figs 6A and 7A and S7 Table).

Valve regurgitation. Twenty-one studies on synthetic and 32 on natural scaffolds, con-

taining 35 and 75 independent comparisons (n = 122 and n = 251), assessed valve regurgita-

tion by sonographic imaging. There was no statistically significant difference in fraction of

moderate/severe regurgitation between synthetic and natural scaffolds nor in the subgroup

analyses, applicable in five out of the 11 strategies (Figs 6B and 7B).

Valve pressure gradient. Fourteen studies on synthetic and 20 on natural scaffolds, con-

taining 22 and 42 comparisons (n = 60 and n = 93), reported the mean valvular pressure gradi-

ent (non-invasively measured). Mean pressure gradient was significantly (p = 0.03) higher in

the synthetic scaffolds than in the natural scaffolds, resp. 11.6 mmHg (95% CI [7.3–15.9]) ver-

sus 4.7 mmHg (95% CI [3.9–5.4]; I2 = 100.0) (Fig 6B). Subgroup analyses were only conducted

for the groups containing at least 5 comparisons and a minimum of three independent

Fig 5. Quality assessment of included articles (total n = 80). (A) Quality of reporting on animal information, study design, adverse events, procedure items, and specific

tissue engineering items showed a general moderate report of all items except the random allocation to the groups (selection bias) and blinding of the assessment of echo

quality (detection bias). (B) Specification of the control variants showed a general preference for the use of a positive or negative control if a control was used. The absence

of control groups consisted mainly of an unspecified description by the referenced authors, but these studies usually only showed results for one subgroup.

https://doi.org/10.1371/journal.pone.0258046.g005
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comparison. Consequently, five out of 11 strategies could be analyzed for the valve pressure

gradient. This showed a significant higher (p = 0.01) peak valve pressure gradient in decellular-

ized xeno-/autografts than in bioactive/cell-seeded-on-the-fly natural scaffolds. (resp 5.25

mmHg (95% CI [4.2–6.3]) versus 3.10 mmHg 95% CI [3.7–6.3]) (Figs 6C–7C).

Sensitivity analyses

Variation of the follow-up times of the echocardiographic assessments were visualized in

box plots (S1 Fig). The mean follow-up times were qualified as equal between the synthetic

and natural scaffold groups.

Fig 6. Results meta-analyses natural and synthetic scaffold. Point estimates of synthetic or natural scaffolds on mortality (A), reported incidence (%) of moderate or

worse valve regurgitation (B) and peak valve pressure gradient (C). Overall pooled estimate (horizontal black line) and 95% CI (dotted horizontal bar). Values presented of

point estimates and 95% confidence intervals. Number of comparisons on top of the bars. � p< 0.05.

https://doi.org/10.1371/journal.pone.0258046.g006

Fig 7. Results meta-analyses of TE strategies. Point estimates of TE strategies on mortality (A), reported incidence (%) of moderate or worse valve regurgitation (B)

and mean valve pressure gradient (mmHg) (C). Overall pooled estimate (dotted horizontal bar). Values presented of means estimate and 95% confidence intervals and

number of comparisons (top op de bars) �p< 0.05.

https://doi.org/10.1371/journal.pone.0258046.g007
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Sensitivity analyses showed that, when including the studies presenting medians and ranges

(and recalculate them to means and SDs), the peak pressure gradient in synthetic versus natu-

ral scaffold was no longer significant.

Sensitivity analyses on echocardiographic imaging methods (TTE, TEE, epicardial) showed

no changes in the conclusions, and the data appear robust.

Discussion

This is the first systematic review and meta-analysis summarizing all available literature on

pulmonary TEHV implantations in large animal models.

This literature review clearly illustrates the large heterogeneity in study characteristics and

TE strategies that have been examined. Moreover, it presents the poor reporting of essential

experimental items, that hampers translation of the preclinical findings from this review to the

clinical situation. Our meta-analyses showed that pressure gradients are higher in synthetic

scaffolds compared to natural scaffolds. These results should however be interpreted carefully

and interpreted as hypothesis generating because of the low number of included studies, high

study heterogeneity, and the absence of control groups in the analysis.

The ovine model is currently by far the most used animal model for valve replacement stud-

ies. It is often chosen because of similarities with the human cardiovascular anatomy and phys-

iology [108], as well as its ease of use [109]. Moreover, bioprosthetic valve calcification is the

most frequent complication affecting patient outcomes. Because the sheep model shows rapid

calcification in valve replacement [110], especially in (but not limited to) the young animal

[111], therapies have generally been studied in this animal model. Still, the obtained data need

to be put in perspective, as much is still unknown regarding species specific similarities and

differences [112].

The mean follow-up time of the studies presented in this paper was relatively short (3.4 and

5.0 months in resp. synthetic and natural scaffold studies), and the mean number of animals

per experimental group (comparison) was low (n = 3 per experimental group). Only four

experimental groups (27 animals) had a follow-up time of 20–24 months [47,74,102]. While

valve calcification might be evaluated in a relative short time period, TE of heart valves has the

aim to create prostheses at least not inferior in durability compared to the currently available

valve prostheses. In order to test extended durability of valve prostheses, it is the authors

believe that preclinical in vivo TE studies of heart valves should preferably have long follow-up

times.

An important finding in our study was that 61% of the natural scaffolds were xenografts

and 39% allografts (homograft equivalent in humans). This is an important aspect in TEHV

implantation because the immune response, induced by donor-recipient interaction, plays a

major role in the tissue regeneration process. Xenotransplantation of natural acellular scaffolds

does not necessarily induce an adverse tissue rejection response but can induce a desirable and

required constructive remodeling process [113,114]. However, it can also lead to severe rejec-

tion response resulting in dramatic clinical outcomes [115]. In this regard, it is important to

emphasize that animal studies using an allograft design can only be translated to a homograft-

like use in patients, and must not be extrapolated to a xenograft-like situation. Moreover, in

pre-clinical studies that evaluate xenograft implantation, researchers need to take into account

the adaptive immuneresponse and the model specific HLA (mis)match in their chosen donor

and animal model. The authors noticed that most of the studies on natural scaffold implanted

as xenografts did studied the innate immuneresponse by (immune)histology (e.g., CD45,

CD68, CD57) but in lesser extent evaluated the adaptive response by T-cells, B-cells (CD8,

CD3, CD11b) or immunoglobulins by panel reactive antibody test.
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The assessment of the reporting quality showed that there is room for improvement. Ani-

mal gender, blinding and randomization were poorly reported. In only 41% of the studies, the

animal gender was clear, even though reporting the animal gender is easy and required,

according to the ISO-5840 for cardiac valve prostheses [116] that can be used as basic require-

ments as long as no specifc ISO-standards on TEHV is available. Cardiovascular clinical trials

already pay attention on biological gender difference, since they are a known important modi-

fier [117] in relation to gender-specific inflammatory mediators involved in cardiovascular

and valve diseases [118–120].

The quality assessment also revealed poor reporting of randomization and blinding meth-

ods. Randomization was reported in only five of the 46 studies applicable to use randomization

[60,80,81,83,105] and when reported, the method was not always clearly described. Randomi-

zation increases the internal validity and, importantly, reduces the risk of detection bias [121].

Moreover, random allocation of animals to experimental and (if present) control groups

reduces the risk of selection bias, increases the reliability of the results, and is a requirement

for an appropriate experimental design when interventions are being compared [122]. Mea-

sures to ensure blinding of the investigators and other personnel is often poorly reported in

animal studies [123,124]. We have identified only two studies [71,94] that reported blinding of

the assessors on valve functionality. Blinding is especially important when it comes to qualita-

tive outcome assessment, particularly if there is a subjective element in the outcome like echo-

cardiographic evaluation of the valve or reading histological slides, both important in TEHV

studies. We understand that blinding is not always possible in the surgical procedure of valve

implantations. However, description of blinding (or the reason to not blind), always is.

While evaluating the presence of a control group, it appeared that no standard type of con-

trol group is used in TEHV research. Standardization of a control valve would improve the

comparability between studies. However, the use of control animals is expensive and raises

ethical concerns regarding the number of animals. Moreover, depending on the research ques-

tion and stage of the study, the necessity and type of control valve differs.

Furthermore, it should be taken into account that valve degeneration is faster in children

than in adults. The choice of the control animal must match here.

The use of a (clinical accepted) biological prosthesis as comparative control, is one (and

probably the most important) option [125]. Indeed, bioprostheses can serve as control for

valve function and durability. However, they lack information regarding formation/engineer-

ing of valve tissue, which is specific for TEHV. In our opinion, it is time to gain consensus on

these vital quality items that will reduce risks of bias and improve interpretation and translat-

ability of the studies. Many initiatives have been developed to support researchers and journal

editors to improve the quality of animal studies [126]. For example, by pre-registration of

planned animal studies (https://preclinicaltrials.eu) or using the ARRIVE reporting checklist

[127,128].

We performed a meta-analysis on mortality and valve functionality. This was not to obtain

a precise point estimate, but rather to get an impression whether or not the various scaffolds

used in the preclinical setting may differ in functionality. Until now, validated data of

(expected) mortality in pulmonary valve implantations in large animals was lacking. Our study

shows an overall pooled estimated mortality of 17%. The meta-analysis showed no significant

differences in mortality between the groups. The incidence of (unplanned) mortality are help-

ful in preparation and calculation of the numbers of animals to include in future studies.

Moreover, the cause of mortality (see supplement) was mainly either operation related or due

to endocarditis. This highlights the importance of trained personnel and sterility.

The meta-analysis showed that synthetic scaffolds had a higher mean pressure gradient

compared to natural scaffolds. This difference is not unexpected, since the natural valve ECM
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micro-architecture is very important for leaflet flexibility and mechanical strength [129–131].

The natural micro-architecture has not yet been replicated in synthetic scaffolds. Still, the esti-

mated pressure gradient in both groups is low and in the range of normal human pulmonary

valve mean pressure gradients (< 25 mmHg in rest or<30 mmHg in exercise). Also, during

sensitivity analyses, peak pressure gradient in synthetic valve remained higher compared to

natural scaffolds, however, the difference was no longer statistically significant.

Research on TEHV exist nearly 25 years and studies enter the clinical stage [132]. In our

opinion, it is time to have a discussion with a group of experts, and strive towards standardiza-

tion of preclinical large animal studies (e.g., control group, follow-up time) and animal-free

(or friendly) alternatives. With this review, we highlight the importance of good reporting in

animal studies. Adequate reporting and standardization will greatly enhance the possibilities

for meta-analysis and support safe translation to the clinic.

Limitations and future implications

Several limitations appear in this systematic review and meta-analysis. First, the studies are

very heterogeneous in design. Heterogeneity in animal studies can be expected, more so than a

typical clinical trial because of the often-exploratory approach [133]. To account for this het-

erogeneity, we used a random effects model, and explored the suggested causes for study het-

erogeneity by means of subgroup analyses. Evaluation of this heterogeneity is one of the added

values of meta-analysis of animal studies and might help to design future animal studies and

subsequent clinical trials. However, successfully translating findings to the clinical arena

largely depends upon an understanding of the sources of heterogeneity, and their impact on

effect size. We made a start by presenting an overview of these (heterogeneous) study charac-

teristics. Still, future (sensitivity) analyses on animal species, scaffold topographical character-

istics or cell type could give insight in the relation of each of the items on the outcomes.

Second, due to a low number of comparisons in the meta-analysis, the estimated summary

effect may be imprecise. As a final point, because no standard control groups in the studies

were used, we could not calculate an effect estimate between groups, only an estimate of the

individual experimental group. Because of these mentioned items, interpretation of the out-

come should be taken with caution.

Conclusion

This systematic review summarizes all available literature on pulmonary TEHV implantation

in large animals. We showed that there is substantial heterogeneity in study designs and TE

strategies between the included studies. Moreover, it shows that the methodological quality

and quality of reporting can be improved by providing more detailed description of animal

characteristics and blinding and randomization methods.

The meta-analysis revealed that the transvalvular pressure gradient was significant higher

in synthetic scaffolds. However, these results should be interpreted with caution due to sub-

stantial heterogeneity in the design of the included studies, and the relatively small number of

included studies. To move the TEHV field forward and enable reliable comparisons, it is essen-

tial to define standardized methods and ways of reporting. This would greatly enhance the

value of individual large animal study.
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