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Previous genetic studies on susceptibility to otitis media and airway infections have
focused on immune pathways acting within the local mucosal epithelium, and outside of
allergic rhinitis and asthma, limited studies exist on the overlaps at the gene, pathway or
network level between the upper and lower airways. In this report, we compared [1]
pathways identified from network analysis using genes derived from published genome-
wide family-based and association studies for otitis media, sinusitis, and lung phenotypes,
to [2] pathways identified using differentially expressed genes from RNA-sequence data
from lower airway, sinus, and middle ear tissues, in particular cholesteatoma tissue
compared to middle ear mucosa. For otitis media, a large number of genes (n = 1,806)
were identified as differentially expressed between cholesteatoma and middle ear
mucosa, which in turn led to the identification of 68 pathways that are enriched in
cholesteatoma. Two differentially expressed genes CR1 and SAA1 overlap in middle ear,
sinus, and lower airway samples and are potentially novel genes for otitis media
susceptibility. In addition, 56 genes were differentially expressed in both tissues from
the middle ear and either sinus or lower airways. Pathways that are common in upper and
lower airway diseases, whether from published DNA studies or from our RNA-sequencing
analyses, include chromatin organization/remodeling, endocytosis, immune system
process, protein folding, and viral process. Taken together, our findings from genetic
susceptibility and differential tissue expression studies support the hypothesis that the
unified airway theory wherein the upper and lower respiratory tracts act as an integrated
unit also applies to infectious and nonallergic airway epithelial disease. Our results may be
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used as reference for identification of genes or pathways that are relevant to upper and
lower airways, whether common across sites, or unique to each disease.
Keywords: cholesteatoma, immune pathways, lower airway, mucosa, networks, otitis media, RNA-
sequencing, sinusitis
INTRODUCTION

The unified airway theory proposes that the respiratory tract acts
as an integrated unit, from the middle ear through the distant
bronchioles (Krouse, 2008). Structurally, the mucosae of the
middle ear, nose/sinuses, and lower respiratory tract are highly
similar, lined by mostly ciliated epithelium, which is involved in
the transport of mucosa and particulate matter. Additionally,
bacterial communities in healthy lungs are highly similar to those
in the upper respiratory tract (Charlson et al., 2011; Segata et al.,
2012; Hanshew et al., 2017). The unified airway model has
typically been applied to allergic rhinitis and asthma, with the
observations that allergic rhinitis is present in at least 80% of
asthma patients, and that asthma is found in up to 40% of
patients with allergic rhinitis (Feng et al., 2012; Giavina-Bianchi
et al., 2016). In addition, treatment of allergic rhinitis symptoms
has been found to improve asthma symptoms and pulmonary
function. This is believed to be due to a shared inflammation
model, with local inflammatory processes producing systemic
mediators that affect disease in other areas of the respiratory tract
(Krouse, 2008). Specifically, it has been found that if one area of
the airway mucosa is stimulated with antigen, within hours
system-wide inflammatory changes are observed. Additionally,
atopic patients undergoing surgery for otitis media (OM) with
effusion have similar cellular and cytokine profiles in both the
middle ear effusion and nasopharynx (Nguyen et al., 2004). It is
hypothesized that the middle ear is capable of participating in a
TH2 inflammatory response and that the inflammation in OM
with effusion is not limited to the middle ear (Nguyen
et al., 2004).

Limited nonallergic observations of the unified airway have
been described in the literature. At least 40% and up to 88% of
chronic obstructive pulmonary disease (COPD) patients have
sinonasal symptoms, which are increased during COPD
exacerbations (Hens et al., 2008; Burgel, 2015). In addition, a
study of sinus CT in bronchiectasis patients found that the
severity of sinus disease was worse in bronchiectasis patients
than in allergic rhinitis patients (Ramakrishnan et al., 2013). In
our study, we wanted to further apply the unified airway theory
to infectious and nonallergic airway epithelial disease in the
middle ear, sinus, and lung. We predicted that the host genetic
background contributes to susceptibility to upper and lower
airway epithelial diseases, with the hypothesis that genes and
lavage; COPD, chronic obstructive
nusitis; DEG, differentially expressed
ocus; GEO, gene expression omnibus;
e Expression Project; GWAS, genome-
NTM, nontuberculous mycobacterial
ulmonary tuberculosis; RNA-Seq,
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enriched pathways identified from either DNA or RNA studies
will be shared between upper and lower airway diseases.
METHODS

The study is divided into three parts (Supplementary Methods;
Supplementary Figure 1): Part 1 consists of network analyses
and pathway identification using published genes based on
genome-wide significant variants from DNA studies and
eGenes derived from expression quantitative trait loci (eQTL);
Part 2 includes analyses of RNA-sequence data from middle ear,
sinus, and lung tissue, and identification of common genes and
pathways from network analyses across different sites; and Part 3
involves the comparison of network analysis results from DNA
literature and RNA-sequence data in order to find common
genes and pathways across the upper and lower airways.

Network Analyses for Published Genes
and eGenes (Part 1)
Generation of Gene Lists From the Literature and
UK Biobank
A literature search on DNA studies was performed for upper and
lower airway phenotypes, including OM, chronic rhinosinusitis
(CRS) and/or nasal polyps (NP), chronic bronchitis,
bronchiolitis, acute bronchitis, pneumonia, pulmonary
nontuberculous mycobacterial (NTM) infection, pulmonary
tuberculosis (PTB), and bronchiectasis. Specific terms used for
the search and the exclusion criteria are listed in the
Supplementary Methods. Only studies with genome-wide
significant results were included. Genome-wide significance
criteria were as follows: [1] variant or gene identified using
linkage analyses in family-based studies (LOD≥3.3); [2] variant
or gene identified by population-based genome-wide association
study (GWAS; p < 5.0x10-8 if using single-variant analyses, p <
2.5x10-6 if using gene-based tests). The variants and genes
meeting these criteria are included in Supplementary Table 1
that lists the design, sample size and ancestry of each cited study
cohort from which the power of each study may be assessed.
Aside from published literature, genome-wide significant
variants (p < 5.0x10-8) were extracted from publicly available
GWAS results on selected phenotypes from the UK Biobank
[Supplementary Table 2, (Neale, 2018)]. Variants classified as
“low confidence” in the UK Biobank data set were removed from
further analyses.

From variants identified by single-variant GWAS either in
literature or the UK Biobank, only the most significant variant in
each peak was selected for further analyses and annotated using
the hg19 version of the UCSC Variant Annotation Integrator
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(Kent et al., 2002; Hinrichs et al., 2016). Furthermore, variants
were annotated as eQTLs using the GTEx v7 portal (GTEx
Portal, 2017). In this study, we identified the significant eGenes
for the variants identified from the literature or UK Biobank in
26 selected tissues (Supplementary Table 3) and annotated the
results using Ensembl BioMart (Zerbino et al., 2018). Note that
GTEx has eQTL data for lung but not for middle ear or sinonasal
tissues, thus we were limited to identification of eQTLs based on
other mucosal, respiratory or lymphoid tissues in GTEx
(Supplementary Table 3). Multiple significant eGenes were
typically identified for each variant, but intergenic variants that
were not identified as eQTLs for the 26 tissues selected in GTEx
were not considered further.

Gene l i s t s were compi l ed fo r each pheno type
(Supplementary Table 4), which includes the following: [1]
Genes were significant by gene-based GWAS or linkage
analyses from the literature. [2] From the literature and UK
Biobank, for variants identified by single-variant GWAS, genes
were only included if the variant was located in a gene (coding,
intronic, or UTR), not if it was upstream or downstream. [3] For
all types of variants from single-variant GWAS whether from
literature or the UK Biobank, eGenes were identified from single-
tissue eQTL analysis in GTEx. Duplicate genes were removed
within each list. Additionally, the genes identified for the lower
airway phenotypes were combined into a single list (“Lower”).

Network Analysis for Lists of Published Genes
and eGenes
NetworkAnalyst was used to generate networks (Xia et al., 2014;
Xia et al., 2015; Zhou et al., 2019). The input used were the gene
lists identified from the literature and UK Biobank for Part 1
(Supplementary Table 4), with separate networks created for OM,
CRS, and Lower (Supplementary Methods). Networks were
created using the Generic PPI, with the IMEx Interactome
database from InnateDB (Breuer et al., 2013). The default
network creation method was used for the module and
PANTHER Biological Process (BP) analyses, which adds in the
first neighbors (interacting genes) for the seed genes (genes on the
input list). Module analysis was performed on each subnetwork, to
break the larger subnetworks into smaller, more densely connected
clusters or modules (Xia et al., 2014), using the Walktrap
algorithm (Pons and Latapy, 2005). Nodes representing genes
within a module are likely to work collectively to perform a
biological function. When phenotypes were combined, a
combined network was created in NetworkAnalyst and
visualized using Cytoscape software, in order to delineate
overlaps and differences between phenotypes (Shannon et al.,
2003; Assenov et al., 2008; Doncheva et al., 2012).

PANTHER BP enrichment analysis was completed for each
significant module within the larger subnetworks (Mi et al., 2019).
Each node (gene) is annotated with PANTHER BPGene Ontology
(GO) Terms or pathways. PANTHER uses a subset of GO Terms
to simplify and condense results. The output of the PANTHER BP
enrichment analysis are the pathways that are enriched in the
nodes in the module or subnetwork. Significant pathways [false-
discovery rate (FDR)-adjusted p < 0.05] were compiled into a final
Frontiers in Genetics | www.frontiersin.org 3
list for each phenotype (Supplementary Table 5). The Multiple
List Comparator (http://www.molbiotools.com/listcompare.html)
was used to make comparisons and generate Venn diagrams for
either gene or pathway lists.

Network Analyses Using RNA-Sequence
Data for Upper and Lower Airway
Phenotypes (Part 2)
RNA-Sequencing for Middle Ear Tissues From
Individuals With OM
Prior to start of the study, recruitment of patients undergoing
OM surgery was approved by the Colorado Multiple Institutional
Review Board. All study participants provided written informed
consent. Three cholesteatoma samples (considered “case” tissue)
and four middle ear mucosa samples (“control” tissue) were
collected from patients undergoing OM surgery at the University
of Colorado Hospital or Children's Hospital Colorado, and these
samples were submitted for RNA-sequencing (RNA-Seq). For
cholesteatoma samples, the median RIN was 5.8 and median
DV% was 89.2, while for mucosa samples median RIN was 1.5
and median DV% was 52.8. Tissue samples were processed as
described in the Supplementary Methods. Libraries were
constructed using the NuGEN Trio RNA-Seq kit (Tecan,
Redwood City, CA, USA), which includes an rRNA depletion
step. Sequencing was completed on the Illumina NovaSeq, with
paired-end 2x151bp reads. An average of 11.3 million read pairs
were obtained per sample (range 4.5 to 23.2 million read pairs).
One sample (3086) was removed from further analyses due to an
insufficient mapping rate to the human genome (5%) and not
clustering with the other OM samples in the principal
components analysis (Supplementary Figure 2).

RNA-Seq Data for CRS, NTM, and COPD
Previously, uncinate mucosa tissue from three patients with
CRS and four control individuals underwent RNA-Seq
(Ramakrishnan et al., 2017). For lung phenotypes, a search of
the NCBI Gene Expression Omnibus (GEO) database (http://
www.ncbi.nlm.nih.gov/geo/) did not identify transcriptome data
on lower airway tissue biopsies. However two RNA-Seq data sets
were available on bronchoalveolar lavage (BAL) fluid samples for
NTM cases and controls [GSE103852, unpublished, three cases
and three controls] and large airway brushings for COPD cases
and controls [GSE124180, (Morrow et al., 2019), three COPD
cases and four controls, all without emphysema]. Raw RNA-Seq
results were not available for the COPD data set, and therefore
we used the nonnormalized count data that was available. On the
other hand, the CRS and NTM data sets had the raw read data
available for analysis.

Processing of RNA-Seq Data and Differential
Expression Analysis
Reads were trimmed with either Trimmomatic for the CRS and
NTM data sets or BBDuk software for OM (Bolger et al., 2014;
Bushnell et al., 2017). Transcripts were quantified using Salmon,
run in mapping-based mode, which includes indexing and
quantification (Patro et al., 2017). The tximport package was
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used to extract counts from the salmon quantification output
(Soneson et al., 2015). The DESeq2 workflow was followed for
the tximport steps and DESeq2 analyses [http://bioconductor.
org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.
html, (Love et al., 2014)].

For OM, CRS, and NTM, the nonnormalized counts from
tximport were used for the DESeq2 analyses. For COPD, the
nonnormalized counts were available in the GEO database and
were used as the input. Counts were filtered to have an average of
more than three reads in either the cases or controls. The plotPCA
function in DESeq2 was used to generate principal components
(PC) plots for each data set. DESeq2 was run with default
parameters, and included read count normalization followed by
differential expression analysis. DESeq2 analysis was performed
for each of the four phenotypes individually (OM, CRS, NTM,
COPD). Multiple testing correction was performed using
adjustment for FDR, with significance threshold for differentially
expressed genes (DEGs) at adj-p < 0.05.

Network Analysis for Differentially Expressed Genes
For Part 2, network analysis using the same workflow as in
section 2.1.2 was performed using NetworkAnalyst with the
DEGs and fold-change as input. A “Lower” list was created
that combined the DEGs for NTM and for COPD, while OM and
CRS were analyzed separately. Chord and Venn diagrams were
created to compare the DEGs across OM, CRS, and Lower
phenotypes. Significant pathways were compiled into a final
list for each phenotype group (Supplementary Table 5). Venn
diagrams were also made to quantify pathway overlaps
among phenotypes.

Literature Review for Transcriptome Studies
A literature search on RNA studies was performed for upper and
lower airway phenotypes, using the same workflow as in section
2.1.1. Specific terms used for the search are included in the
Supplementary Methods. Studies were excluded if RNA was
not extracted from the disease tissue of interest. Genome-wide
significance was not required for transcriptome studies. Articles
meeting the criteria were summarized (Supplementary Table 6).

Comparisons Between Published and
RNA-Seq Data (Part 3)
In order to detect concordance between genome-wide significant
genes and eGenes (Part 1) and DEGs from RNA-Seq data (Part
2), the gene lists from each part were compared by phenotype
(OM, CRS, Lower) and Venn diagrams were created. Likewise,
comparisons were made between Parts 1 and 2 for lists of
pathways by phenotype.
RESULTS

Genes and Pathways Identified in the
Literature and UK Biobank GWAS (Part 1)
Upon review of the literature, 46 genome-wide significant
variants and 64 genes were identified from GWAS and family-
Frontiers in Genetics | www.frontiersin.org 4
based studies (Supplementary Table 1). No variants overlap
between phenotypes, but there is some overlap at the gene level,
namely, HLA-DRB1 in both OM and pneumonia and MUC6 in
both bronchiolitis and pneumonia. In addition, 40 significant
variants and 21 genes from the Neale UK Biobank single-variant
GWAS were identified (Supplementary Table 2). Two variants
(rs338598 and rs34210653 in CRS/NP) and three genes
(ALOX15, CYP2S1, and FOXP1 in CRS/NP) were identified in
both the literature and UK Biobank data. The literature source
for the CRS/NP data was a paper that performed a GWAS in
both deCODE and UK Biobank, so the results would be expected
to overlap (Kristjansson et al., 2019). When only the most
significant variant in each peak was selected from single-
variant GWAS, 84 genome-wide significant variants remained
and were queried in the GTEx portal for association with gene
expression levels (eQTLs). In total, 122 eGenes were identified
from 84 variants (Supplementary Table 3). Eighteen variants
were excluded because the variant was not located in a gene and
was not a significant eQTL in the selected GTEx tissues. Table 1
lists the final gene counts for each phenotype, including OM and
CRS. The lower airway phenotypes (bronchiolitis, chronic
bronchitis, pneumonia, and acute bronchitis, and NTM and
PTB) were included in a single “Lower” list for further
analyses. Fifteen genes (8%) overlap between upper and lower
airway phenotypes (Table 1; Supplementary Table 4). The
majority of these genes are immune-related (Supplementary
Table 4).
TABLE 1 | Counts of published genes and eGenes by phenotype (Part 1)1.

Phenotype Published
genes2

eGenes3 Total
genes

References

OM 19 49 68 (Allen et al., 2013; Santos-Cortez
et al., 2015; Einarsdottir et al.,
2016; van Ingen et al., 2016;
Tian et al., 2017; Santos-Cortez
et al., 2018)

CRS 16 25 41 (Kristjansson et al., 2019)
Bronchiolitis 17 30 47 (Salas et al., 2017)
Chronic
Bronchitis

4 1 5 (Lee et al., 2014; Cho et al.,
2015; Dijkstra et al., 2015)

Pneumonia
and Acute
Bronchitis

18 21 39 (Kenyan Bacteraemia Study
Group et al., 2016; Hayden
et al., 2017; Tian et al., 2017;
Salas et al., 2018)

NTM and
PTB

9 12 21 (Curtis et al., 2015;
Sveinbjornsson et al., 2016;
Chen et al., 2017; Zheng et al.,
2018)

All
phenotypes
combined

81 99 180 –

Overlap
between
upper and
lower
airways

1 14 15
(8%)

–

January
1Genes are listed in Supplementary Table 4.
2Published genes include genes that harbor genome-wide significant variants.
3eGenes were identified in eQTL analyses using published genome-wide significant
variants that control expression in 26 selected tissues in the GTEx database.
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In the network created from the combined gene list for OM,
CRS, and Lower (Supplementary Figure 3), there is minimal
overlap between the upper and lower airways at a gene level. The
different phenotypes are interconnected in the network, but the
phenotypic associations are not necessarily with the same genes.

In order to generate lists of significant pathways for each
phenotype, we also analyzed the networks per phenotype. The
network input was the gene list for each phenotype (OM, CRS,
and Lower), and the network was created based on known
protein-protein interactions. For OM, four subnetworks were
generated, composed of 20 modules, all of which were significant.
For CRS, four subnetworks were generated, composed of 10
modules, all of which were significant. For Lower, two
subnetworks were generated, composed of 22 modules, 21 of
which were significant. PANTHER BP enrichment analysis was
completed on each module individually. Significantly enriched
GO Terms/pathways were identified and compiled into a single
list for each phenotype (Supplementary Table 5). Significant
pathways were identified for OM (n = 36), CRS (n = 13), and
Lower (n = 37; Supplementary Figure 4). Overall, based on
published genes and eGenes, 22 pathways (41%) overlap between
the upper and lower airways, and seven pathways were common
to all three phenotypes (OM, CRS, and Lower, Supplementary
Figure 4). These seven pathways include antigen processing and
presentation, endocytosis, immune system process and response,
protein folding, and viral process (Supplementary Figure 4).

Genes and Pathways Identified by
RNA-Seq (Part 2)
Differential expression analysis was completed separately for
each phenotype (OM, CRS, Lower). For OM, a large number
of genes (n = 1,806) were identified as differentially expressed
between cholesteatoma and middle ear mucosa (Supplementary
Table 7). Overall, 19 genes (0.9%) overlap between upper and
Frontiers in Genetics | www.frontiersin.org 5
lower airway phenotypes (Figure 1). The two DEGs that are
present in all three phenotypes are CR1 and SAA1
(Supplementary Table 7). Three DEGs were shared between
CRS and Lower, namely, RDH10, SAA2, and SLC7A11
(Supplementary Table 7). Of the 14 DEGs that were identified
in OM and Lower data sets, half of the genes are known to
perform various enzymatic functions, while four genes are
involved in gene regulation (Supplementary Table 7).

From networks identified in OM RNA-Seq data, four
subnetworks were generated, composed of 96 modules, 16 of
which were significant. For CRS, six subnetworks were
generated, composed of 64 modules, 56 of which were
significant. For Lower, three subnetworks were generated,
composed of 29 modules, 26 of which were significant. Using
the same PANTHER BP enrichment analysis workflow in Part 1
and the DEGs as input, significant pathways were identified for
OM (n = 68), CRS (n = 56), and Lower (n = 34; Supplementary
Figure 5; Supplementary Table 5). Overall, based on DEGs, 32
pathways (38%) overlap between the upper and lower airways,
and 27 pathways were common to all three phenotypes (OM,
CRS, and Lower; Supplementary Figure 5; Supplementary
Table 5). Notably about half of these 27 pathways that were
common in OM, CRS, and Lower also overlap with DEGs
identified in previous microarray and RNA-Seq studies (Liu
et al., 2004; Kwon et al., 2006; Lee et al., 2006; Payne et al.,
2008; Raju et al., 2008; Stankovic et al., 2008; Rostkowska-
Nadolska et al., 2011; Klenke et al., 2012; Macias et al., 2013;
Wang et al., 2016; Ramakrishnan et al., 2017; Wang et al., 2017;
Gao et al., 2018a; Gao et al., 2018b; Kato et al., 2018; Langelier
et al., 2018; Ninomiya et al., 2018; Okada et al., 2018; Jovanovic
et al., 2019; Walter et al., 2019; Yao et al., 2019). The common
pathways from Part 2 RNA-Seq data that were identified in the
transcriptome literature are apoptosis, cell adhesion, cell cycle,
cell proliferation, chromatin organization/remodeling,
FIGURE 1 | Overlap between lists of differentially expressed genes from RNA-Seq data (Part 2). (A) The chord diagram presents the overlap between the
differentially expressed genes (DEGs) for each phenotype (otitis media [OM], chronic rhinosinusitis [CRS], Lower including nontuberculous mycobacterial [NTM and
chronic obstructive pulmonary disease [COPD]). The connecting lines within the chord diagram show the overlap, at a gene level, between phenotypes. (B) Venn
diagram showing the overlap in the Part 2 gene lists between OM, CRS, and Lower (Supplementary Table 6). Nineteen genes (0.9%) overlap between upper and
lower airway phenotypes.
January 2020 | Volume 10 | Article 1352
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endocytosis, glycogen metabolic process, immune system
process, muscle contraction, protein phosphorylation,
proteolysis, RNA metabolic process, and transcription
(Supplementary Table 6).

Comparison of Genes and Pathways From
the Literature or UK Biobank GWAS vs.
RNA-Seq Data (Part 3)
For each phenotype (OM, CRS, and Lower), we compared the
genes and pathways identified from review of literature on DNA
studies vs. RNA-Seq results in order to determine if
commonalities in genetic background in the susceptibility to
upper and lower airway diseases are supported by both types of
studies (Figure 2). For OM, five genes (ABO, CDHR3, HLA-
DQB2, IER3, SURF1, 0.3%) were identified in both the DNA
literature (Part 1) and RNA-Seq (Part 2). For CRS, only the
NGEF gene (0.4%) was identified in both Parts 1 and 2. For the
lower airway, the HCP5 gene (0.6%) was identified in both Parts
1 and 2. Of note, there are a large number of genes that do not
overlap between Parts 1 and 2 for all three phenotypes. In
addition, all genes common between Parts 1 and 2 were
unique to each phenotype.

The same comparisons were made at the pathway level
(Supplementary Table 5; Figure 2). For OM, 21 pathways
Frontiers in Genetics | www.frontiersin.org 6
(25%) were identified in the literature (Part 1) and RNA-Seq
(Part 2). For CRS, 11 pathways (19%), and for the lower airway,
21 pathways (42%) were identified in both Parts 1 and 2. We also
looked at the pathways that were common between Parts 1 and 2
individually for each phenotype, then compared them across the
phenotypes. The common pathways among the three
phenotypes (OM, CRS, and Lower) are chromatin
organization/remodeling, endocytosis, immune system process,
protein folding, and viral process (Figure 2). The additional
pathways that are common between the upper and lower airway
phenotypes are apoptotic process, cell cycle, DNA repair,
glycogen metabolic process, transcription, and translation. In
total, 12 (35%) pathways overlap between upper and lower
airway phenotypes (Supplementary Table 5; Figure 2).
DISCUSSION

Here, we report the results of an investigation of the unified
airway theory in infectious and nonallergic airway epithelial
conditions, both for genetic susceptibility (Part 1) and
differentially expressed genes (Part 2). Five pathways namely
chromatin organization/remodeling, endocytosis, immune
system process, protein folding, and viral process were shown
FIGURE 2 | Comparisons between gene and pathway lists (Part 3). (A–C) Significant genes were compared between Part 1 (published genes and eGenes) and Part
2 (RNA-Seq) for each phenotype (otitis media [OM], chronic rhinosinusitis [CRS], and Lower). Genes are listed in Supplementary Tables 4 and 6. (D–F) The lists of
significant PANTHER Biological Process Gene Ontology (GO) Terms/pathways were compared between Parts 1 and 2 for each phenotype (Supplementary
Figures 3 and 5; Supplementary Table 5). Twelve (35%) pathways were present in both the upper and lower airway phenotypes (Supplementary Table 5).
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to overlap among OM, CRS, and Lower airway phenotypes in
both Part 1 and Part 2 (Figure 2), indicating that our approach is
a viable route for finding overlaps among significant pathways
for diseases across the upper and lower airways. Three of these
pathways (chromatin organization/remodeling, endocytosis, and
immune system process) were also identified in previously
published transcriptome studies (Supplementary Table 6).
These three pathways have the strongest evidence for
involvement in both the upper and lower airway infectious and
nonallergic disease processes. While this study was focused on
the unified airway theory and therefore the pathways that are
common between OM, CRS, and the Lower airway, the pathways
that are unique to each disease site are also of interest,
particularly those that overlap between DNA and RNA studies
(Supplementary Table 5). These pathways may also provide
insight into disease-specific susceptibility and pathogenesis.

In each Part of this study, we identified more overlap
between upper and lower airway at the pathway level than at
the gene level (Figure 1; Supplementary Figures 4 and 5;
Supplementary Table 5). This finding may indicate that the
genes responsible differ between the diseases, but that those
genes impact the same pathways and cause disease or disease
susceptibility in a similar manner. While Part 1 measures
changes that occur at the DNA level and relate to genetic
susceptibility for a disease, Part 2 measures changes that
occur at the RNA level. The latter may be related to the
genetic susceptibility and downstream processes that are
affected, or they may be related to the changes that occur as a
result of the disease process itself. While we saw overlap in the
results from Part 1 and Part 2, especially at the pathway level, it
is reasonable to see that the results did not overlap completely.
On the other hand, genes and pathways that overlap in both
DNA and RNA studies for the same or similar phenotype(s)
provide strong evidence for their involvement in disease.

Cholesteatoma is a middle ear lesion of keratinized
epithelium surrounding squamous debris that usually occurs as
part of chronic OM, and is characterized by uncontrolled growth
and proliferation. This is the first report using RNA-Seq in OM
patients with middle ear cholesteatoma compared to middle ear
mucosal tissue as a control. Previous studies have used either
skin or granulation tissue as control tissue in cholesteatoma
studies (Kwon et al., 2006; Klenke et al., 2012; Macias et al., 2013;
Gao et al., 2018a; Jovanovic et al., 2019). In our study, 1,806 genes
were differentially expressed between cholesteatoma and mucosa
samples (Supplementary Table 7; Figure 1). This large number
of DEGs may be explained by the growth characteristics of the
cholesteatoma tissue. In addition, 68 pathways were enriched in
cholesteatoma tissue (Supplementary Table 5). These RNA-Seq
findings may provide insight into the disease mechanism for
cholesteatoma, which is still poorly understood. Both the DEGs
and pathways identified here provide a resource for future
studies, e.g., for prioritizing candidate genes from sequencing
studies whether by DEGs or expression levels in middle ear and
sinonasal tissues.

For example, of the five OM genes that overlap between Parts
1 and 2, CDHR3, HLA-DQB2, and IER3 are annotated with viral
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process, apoptotic process, and DNA repair, which are some of
the PANTHER BP terms that were found as overlapping
pathways in Parts 1 and 2. HLA-DQB2 (MIM 615161) is a
well-known immune gene, while IER3 (MIM 602996) regulates
genes involved in apoptosis. CDHR3 (MIM 615610) encodes a
transmembrane epithelial protein and was previously identified
in GWAS for childhood ear infections (Pickrell et al., 2016) and
also for asthma exacerbations in children primarily due to viral
respiratory infections (Bønnelykke et al., 2014; Everman et al.,
2019). While the GWAS finding of CDHR3 variant rs114947103
as a protective factor against OM has not been replicated
(Pickrell et al., 2016), the downregulation of CDHR3 in
cholesteatoma compared to mucosal middle ear tissue (adj-p =
0.004) in our RNA-Seq study strongly supports a role for CDHR3
in OM.

However because CDHR3 was identified in a GWAS for
asthma, this gene was not included in overlaps between OM
and Lower airway. Of the 14 DEGs that overlap between OM and
Lower, all the genes except MUCL1 are in overlapping pathways
in OM and Lower (Supplementary Table 5). On the other hand,
there are 42 DEGs that overlap between OM and CRS in the
RNA-Seq data, and are not shared with the Lower airway
phenotype (Figure 1). This suggests that at the gene level there
are more genes that overlap between OM and CRS (n = 42)
compared to OM and Lower airway (n = 14) or between the
upper and lower airway overall (n = 19). The shared number of
DEGs between OM and CRS at the RNA-Seq level may help
explain why, in addition to the physical proximity and
connectedness of the middle ear to the sinonasal complex, OM
and CRS are more similar to each other than either is to the
Lower airway phenotypes.

By comparing the RNA-Seq results from middle ear, sinus,
and lung, we identified two potentially novel genes for OM, i.e.
CR1 and SAA1, that are involved in susceptibility to both upper
and lower airway disease. CR1 (MIM 120620), which encodes the
complement C3b/C4b receptor 1 (Knops blood group), was a
significant DEG in OM, CRS, and Lower (−3.6, +1.8, and −1.5
log2 fold change, respectively). The GO BP pathway annotations
for CR1 include immune system process, viral process, and
negative regulation of complement activation. CR1 is
important for the host response to bacteria, and mediates
immune adherence and phagocytosis (Smith et al., 2002; Li
et al., 2010). In CRS, CR1 was reported to have denser
localization in the mucosa of CRS patients than in normal
mucosa (Miyaguchi et al., 1988), and higher levels of CR1 were
found in granulocytes from the circulation and sinus pus
in patients with purulent sinusitis (Berg et al., 1989). In
pneumonia, CR1 had significantly higher levels on neutrophils
in patients with bacterial pneumonia compared to those with
viral pneumonia (Hohenthal et al., 2006). The CR1 gene
was reported to be important for host defense against
pneumococcal infection in mice (Ren et al., 2004). In addition,
deficiency of CR1 was reported in a patient with OM, sinusitis,
and pneumonia (Sadallah et al., 1999). In our study, CR1 was
found to be downregulated in OM cholesteatoma and NTM
BAL, but upregulated in CRS. This could be consistent with a
January 2020 | Volume 10 | Article 1352

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Baschal et al. Upper and Lower Airway Networks
potential deficiency of CR1 resulting in susceptibility to
infections in the OM and NTM patients.

SAA1 (MIM 104750), encoding serum amyloid A1, was
significantly differentially expressed in OM, CRS, and Lower
(−2.5, +2.9, −4.6 log2 fold change, respectively). The SAA1 GO
BP annotations include positive regulation of cytokine secretion,
receptor-mediated endocytosis, and positive regulation of cell
adhesion. Elevated plasma levels of SAA1 is a well-documented
clinical indicator for inflammatory conditions, and is suggested
to have a role in host defense against bacterial infection. SAA1
has been reported to be upregulated in lung parenchyma and
bronchi of patients with COPD compared with smoking controls
(Lopez-Campos et al., 2013). During TB treatment, SAA1
expression is reduced, and the reduction is greater for patients
who culture-converted at later time points (Sigal et al., 2017;
Kedia et al., 2018). In our study, this gene was found to be
downregulated in OM cholesteatoma and COPD large airway
brushings, but upregulated in CRS. Interestingly for both CR1
and SAA1 the direction of regulation of expression is opposite in
OM vs. CRS but the same in OM vs. Lower. This may be
primarily due to the differences in types of tissues used;
alternatively it may also be due to disease-specific processes in
each site.

One limitation of the OM RNA-Seq study is that we were
unable to collect paired cholesteatoma and mucosa samples
from the same patients due to technical reasons. This prevents
us from comparing the expression levels of genes in the same
patients, which could provide additional valuable information
about the disease process. Other limitations are [1] the small
amount of middle ear tissues available resulting in lower RIN
values, and [2] the small sample size for RNA-Seq studies. On
the other hand, the rRNA depletion protocol used for RNA-Seq
allowed us to have analyzable data for comparison and genetic
results were replicated in other data sets, indicating that our
main findings are not false-positive results. Nevertheless
following up these findings in a well-powered cohort
particularly for OM will help validate the identified DEGs,
enable identification of additional novel DEGs, and also allow
for inclusion of covariates such as patient age, sex and ethnicity.
Based on our OM RNA-Seq data set with ~15,000 genes for
testing, ~1,800 DEGs, minimum fold change≥2, and average
read counts of ~900, we will have sufficient power ≥80% with an
expanded data set of 28 middle ear tissues, preferably with
paired samples.

In summary, we have confirmed support for the unified
airway theory for infectious and nonallergic airway epithelial
disease, using both genetic susceptibility and differential tissue
expression studies. We also identified two potentially novel genes
for OM susceptibility, CR1 and SAA1, in addition to 56 OM
DEGs that are also DEGs for CRS or lower airways. Moreover we
identified a total of 1,806 DEGs and 68 pathways that are
enriched in cholesteatoma compared to middle ear mucosa. In
the process we have created a data set that can be used as
reference for finding genes or pathways that are relevant to upper
and lower airways, whether common across sites, or unique to
each disease.
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