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Introduction
Lung cancer remains the leading cause of cancer-related death 
worldwide, with 1,796,144 cases of mortality from both sexes 
and all ages recorded in 2020.1 Among the different subtypes of 
lung cancer, lung adenocarcinoma (LUAD) as the most com-
mon subtype of non-small cell lung cancer (NSCLC), accounts 
for more than 40% of all types of lung cancer.2 Surgical resec-
tion is currently the preferred treatment strategy for patients 
with early-stage NSCLC. Unfortunately, the patients are still at 
high risk of tumor recurrence after complete resection.3 Of 

those who are amenable to surgical resection, 25% to 30% of 
patients with stage-I NSCLC still develop local recurrence or 
distant metastasis even when the resection results in microscop-
ically negative margins.4,5 Moreover, tumor recurrence after 
surgical resection causes treatment failure, which severely lim-
its the survival of patients and is closely linked to the mortality 
risk. Low post-recurrence survival in resected stage-I NSCLC 
has been documented by many reports,6-8 suggesting that 
tumor recurrence significantly raises the risk of death from 
NSCLC. One of the main causes of tumor recurrence could be 
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ABSTRACT

BACkGRound: The potential micrometastasis tends to cause recurrence of lung adenocarcinoma (LUAD) after surgical resection and con-
sequently leads to an increase in the mortality risk. Compelling evidence has suggested the underlying mechanisms of tumor metastasis 
could involve the activation of an epithelial-mesenchymal transition (EMT) program. Hence, the objective of this study was to develop an 
EMT-associated gene signature for predicting the recurrence of early-stage LUAD.

METhodS: The mRNA expression data of patients with early-stage LUAD were downloaded from Gene Expression Omnibus (GEO) and 
The Cancer Genome Atlas (TCGA) available databases. Gene Set Variation Analysis (GSVA) was first performed to provide an assessment 
of EMT phenotype, whereas Weighted Gene Co-expression Network Analysis (WGCNA) was constructed to determine EMT-associated key 
modules and genes. Based on the genes, a novel EMT-associated signature for predicting the recurrence of early-stage LUAD was identified 
using a least absolute shrinkage and selection operator (LASSO) algorithm and a stepwise Cox proportional hazards regression model. 
Kaplan-Meier survival analysis, receiver operating characteristic (ROC) curves and Cox regression analyses were used to estimate the 
performance of the identified gene signature.

RESuLTS: GSVA revealed diverse EMT states in the early-stage LUAD. Further correlation analyses showed that the EMT states presented 
high correlations with several hallmarks of cancers, tumor purity, tumor microenvironment cells, and immune checkpoint genes. More 
importantly, Kaplan-Meier survival analyses indicated that patients with high EMT scores had worse recurrence-free survival (RFS) and overall 
survival (OS) than those with low EMT scores. A novel 5-gene signature (AGL, ECM1, ENPP1, SNX7, and TSPAN12) was established based 
on the EMT-associated genes from WGCNA and this signature successfully predicted that the high-risk patients had a higher recurrence 
rate compared with the low-risk patients. In further analyses, the signature represented robust prognostic values in 2 independent validation 
cohorts (GEO and TCGA datasets) and a combined GEO cohort as evaluated by Kaplan-Meier survival (P-value < .0001) and ROC analysis 
(AUC = 0.781). Moreover, the signature was corroborated to be independent of clinical factors by univariate and multivariate Cox regression 
analyses. Interestingly, the combination of the signature-based recurrence risk and tumor-node-metastasis (TNM) stage showed a superior 
predictive ability on the recurrence of patients with early-stage LUAD.

ConCLuSion: Our study suggests that patients with early-stage LUAD exhibit diverse EMT states that play a vital role in tumor recurrence. 
The novel and promising EMT-associated 5-gene signature identified and validated in this study may be applied to predict the recurrence 
of early-stage LUAD, facilitating risk stratification, recurrence monitoring, and individualized management for the patients after surgical 
resection.
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associated with the scattered micrometastasis or occult tumor 
cells in peripheral blood, bone marrow, lymph node or serous 
cavity even before surgical resection,9 which are difficult to be 
detected by conventional clinical approaches. Hence, the search 
for a new and effective way to stratify the risk of recurrence for 
LUAD is thus of central importance.

Epithelial-mesenchymal transition (EMT) is a reversible 
process by which epithelial cells progressively acquire a range of 
mesenchymal characteristics, with the ability to invade the tis-
sue surrounding primary tissue, intravasate and eventually 
enter the circulation.10 During the development and progres-
sion of many different types of carcinomas, including lung can-
cer, several signaling pathways activate EMT by inducing the 
expression levels of a wide variety of EMT transcription factors 
(EMT-TFs),11 thereby promoting tumor migration, invasion, 
and metastasis. Circulating tumor cells (CTC) exhibit distinct 
epithelial and mesenchymal phenotypes,12 indicating that the 
EMT process has been activated during the dissemination of 
tumor cells. Upon arrival at secondary sites, mesenchymal 
cells can regain the epithelial phenotype by activating epithe-
lial-related gene machinery, which is a process known as 
mesenchymal-epithelial transition (MET) to complete the 
colonization process.13 It is this exchange program between 
EMT and MET that allows tumor cells to invade and dissemi-
nate to the surrounding and/or distant sites. At the cellular 
level, EMT occurs through distinct intermediate hybrid states 
in tumors, which has been proven to be not just a simple binary 
process but a plastic continuum of partial EMT states between 
the epithelial and mesenchymal forms,14-17 resulting in intratu-
moral heterogeneity and displaying differences in stemness, 
tumor-initiating ability, invasiveness, and drug resistance.18,19 
Therefore, considering the multi-faceted impacts of EMT on 
tumor progression, we aim to explore a robust EMT-related 
signature for predicting the recurrence of early-stage LUAD.

Methods
Microarray data collection and processing

Two LUAD datasets from Gene Expression Omnibus (GEO) 
database (https://www.ncbi.nlm.nih.gov/geo/), GSE31210 
and GSE50081 were selected for this study. The mRNA 
expression data and clinical information were downloaded. 
The selection criteria were as follows: i) gene expression profil-
ing was performed on the same chip platform; ii) the LUAD 
tumor samples were resected at early stages (stage I or II); iii) 
the recurrence time of patients were >30 days to avoid compli-
cations from the surgery that are not related to the cancer; 
iv) the availability of the clinical survival information. The 
microarray datasets of GSE31210 and GSE50081 performed 
on Affymetrix Human Genome U133 Plus 2.0 Array were 
then downloaded for subsequent analysis. GSE31210 con-
sisted of 226 patient samples and GSE50081 was made up of 
124 patient samples. The clinical features of all the patients 
including age, gender, smoking status, tumor stage and the 
follow-up time were presented in Supplemental Table S1. 

Recurrence-free survival (RFS) is defined as “the time from 
date of resection surgery to the time of recurrence or death,” 
whereas overall survival (OS) refers to “the time from date of 
resection surgery to the time of death.” Since GSE31210 data-
set contained a higher number of patient samples, it was used as 
a training cohort, while the other GSE50081 dataset was used 
as an internal validation cohort. The mRNA expression data 
from GSE31210 and GSE50081 were processed via affy pack-
age in R 4.0.2 and normalized via the robust multi-array aver-
age (RMA) algorithm. Probe IDs were annotated using the 
annotation package and the gene symbol with the highest 
expression value remained. To increase the reliability and 
accuracy of the data analysis, the sva package in R 4.0.2 was 
applied to remove the batch effects between GSE31210 and 
GSE50081 datasets. Additionally, a LUAD dataset (n = 307) 
from The Cancer Genome Atlas (TCGA) was used as an 
external validation cohort, and the fragments per kilobase of 
transcript per million fragments mapped reads (FPKM) val-
ues and clinical data were acquired from Genomic Data 
Commons using UCSC Xena browser (https://xenabrowser.
net/datapages/). The HALLMARK gene sets were down-
loaded from Molecular Signatures Database v7.2 (https://
www.gsea-msigdb.org/gsea/index.jsp).

Gene set variation analysis (GSVA) and correlation 
analysis

GSVA enrichment scores are generated based on gene 
expression of each sample by the GSVA algorithm, including 
gene expression level statistic, rank order per sample, 
Kolmogorov- Smirnov like random statistic and different score 
distributions.20 Enrichment scores of the 50 HALLMARK 
gene sets (including EMT gene set) were calculated using the 
GSVA package in R 4.0.2 for each sample in GSE31210 and 
GSE50081. EMT enrichment scores were then extracted and 
used for further analyses. The tumor purity was calculated 
using the estimate package in R 3.6.1 and tumor microenvi-
ronment (TME) cell estimation was performed using the 
ConsensusTME package in R 4.0.2.21 After that, Pearson cor-
relations were calculated between enrichment scores of the 50 
HALLMARK gene sets. As for Spearman correlations, the 
EMT score from each patient was used to calculate the correla-
tions with tumor purity, TME cells and the expression of 
immune checkpoint genes in the 2 cohorts. The correlations of 
EMT scores with RFS and OS were analyzed using Kaplan-
Meier method and log-rank test. The survival curves were per-
formed using the survival and survminer package in R 4.0.2. 
P < .05 was considered statistically significant.

Construction of weighted gene co-expression 
network analysis (WGCNA) and function analysis 
of key genes

To identify EMT-associated key genes for a signature 
establishment, WGCNA was constructed22 using GSE31210 
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cohort as GSE31210 dataset contained more patient samples 
than GSE50081. Here, the mean absolute deviation (MAD) 
of each gene was calculated in the expression matrix, and the 
top 5000 genes with the highest MAD were chosen for 
WGCNA using the WGCNA package in R 4.0.2. In this 
part, a soft thresholding power was selected to ensure a scale-
free network. Under this condition, a co-expression network 
was constructed by the blockwiseModules function of the 
WGCNA package. The minimum number of genes in mod-
ules was set as 50. Subsequently, the corresponding modules 
were obtained. The most relevant module to EMT phenotype 
was selected as the key module, from which the key genes were 
extracted. Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment analyses 
were performed using the Database for Annotation, 
Visualization, and Integrated Discovery (DAVID, https://
david.ncifcrf.gov/home.jsp). Protein-protein interaction (PPI) 
network was constructed to reveal the relationship among the 
EMT-associated key genes by Search Tool for the Retrieval of 
Interacting Genes/Proteins (STRING, http://stringdb.org/)23 
and Cytoscape_3.8.1.

Identif ication and validation of gene signature

Based on the EMT-associated genes from WGCNA, a uni-
variate Cox proportional hazard regression analysis was con-
ducted to screen and identify the genes significantly correlated 
with RFS in GSE31210 (P < .01 as selection criteria) using 
the survival package in R 4.0.2. The least absolute shrinkage 
and selection operator (LASSO) algorithm was applied in a 
Cox regression model to further select the variables by 10-fold 
cross-validation using the glmnet package in R 4.0.2. 
Subsequently, an EMT-associated gene signature was built 
via a stepwise Cox proportional hazards regression model. 
The risk score of the signature for each patient was calcu-
lated according to the expression of each gene in the signa-
ture and resulting Cox regression coefficients as follows: 
risk score =  (Gene1 Exp * Gene1 Coef ) +  (Gene2 Exp * 
Gene2 Coef ) + (Gene3 Exp * Gene3 Coef ) + (Gene4 Exp * 
Gene4 Coef ) + . . .. Consequently, an optimal cutoff score 
was acquired using survminer package in R for RFS analysis, 
by which the patients were divided into a high-risk group and 
a low-risk group. Finally, the predictive performance and clini-
cal independence were evaluated by performing Kaplan-Meier 
survival analysis, ROC curves, and univariate and multivariate 
Cox regression analyses.24,25 P < .05 was considered statisti-
cally significant. For validation, patients from GSE50081 and 
TCGA LUAD datasets were similarly assigned into 2 groups: 
high-risk and low-risk, by calculating the risk scores with the 
previous formula and using the same cutoff. In addition, 
the predictive performance of our EMT-associated 5-gene 
signature was also compared with that of 2 other published 
signatures.

Results
EMT positively correlates to f ibroblasts, recurrence-
free survival and overall survival rates of patients 
with early-stage LUAD
As a basis for further understanding the EMT in early-stage 
LUAD, GSVA was first performed in 2 GEO cohorts 
(GSE31210 and GSE50081) to calculate the enrichment 
scores for EMT analysis. The results showed that EMT dis-
played moderately strong positive correlations (correlation 
coefficient > .5) with gene sets involved in the cellular pro-
cesses such as angiogenesis, apical junction, hypoxia, coagula-
tion, KRAS signaling, apoptosis and transforming growth 
factor beta (TGFβ) signaling (Figure 1A). Pearson correlations 
between all the gene sets with P < .05 were shown in 
Supplemental Figure S1. Since the investigation of EMT con-
cerns tumor cells, the correlation between tumor purity and 
EMT was evaluated. Interestingly, the results demonstrated 
that EMT were significantly and negatively correlated to 
tumor purity (r = −0.65 for GSE31210; r = −0.68 for GSE50081) 
(Figure 1B). As most expression profiling uses bulk clinical 
specimens, this negative correlation between tumor purity and 
EMT may indicate that there could be the presence of stromal 
cells, which also display EMT canonical markers. Considering 
TME and immune checkpoints play critical roles in the tumor 
progression, correlations between EMT and TME cells as well 
as immune checkpoint genes were determined. Figure 1C illus-
trated the correlations between EMT and 18 types of TME 
cells, especially a significantly strong positive correlation with 
fibroblasts (r = .86 in GSE31210; r = .81 in GSE50081). Next, 
31 immune checkpoint molecules shown in Supplemental 
Table S2 were selected for correlation analyses based on the 
current literature searches.26-29 The analysis revealed that EMT 
was significantly correlated to cluster of differentiation 200 
(CD200), tumor necrosis factor ligand superfamily member 4 
(TNFSF4) and signal regulatory protein alpha (SIRPA) in both 
cohorts (Figure 1D, P < .05). To evaluate the correlations of 
EMT with RFS and OS in the patients with early-stage 
LUAD, Kaplan-Meier method and log-rank test were used to 
perform RFS and OS analyses. The patients in the high EMT 
score group had significantly worse RFS (Figure 1E) and OS 
(Figure 1F) than those in the low EMT score group. Here, the 
patients of GSE31210 and GSE50081 cohorts were separated 
into high and low EMT score groups using the same cutoff for 
RFS (cutoff = 0.274) or OS (cutoff = 0.265) analyses, respec-
tively. In short, correlation analyses from various aspects 
showed the connection of EMT between TME cells, immune 
checkpoints, RFS and OS of patients with early-stage LUAD.

Construction of weighted co-expression network 
and identif ication of key modules

To identify key modules and genes involved in the EMT phe-
notype, gene co-expression networks were constructed based 
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on the expression values of the top 5000 genes with the highest 
MAD in 226 samples of the GSE31210 cohort (Supplemental 
Figure S2). Here, the soft thresholding power, β = 4 (scale-
free R^2 = 0.9), was used to construct a scale-free network 
(Figure 2A). As a result, 10 co-expression modules were iden-
tified: module1 (turquoise) with 1261 genes, module 2 (blue) 
with 985 genes, module 3 (brown) with 591 genes, module 4 
(yellow) with 447 genes, module 5 (green) with 345 genes, 
module 6 (red) with 291 genes, module 7 (black) with 194 

genes, module 8 (pink) with 100 genes, module 9 (magenta) 
with 72 genes, module 10 (purple) with 62 genes (Figure 2B). 
The results indicated that module 3 (brown) was the most rel-
evant module to EMT phenotype (r = 0.88, P = 7e-74), and this 
module was thus considered the key module for further analy-
sis (Figure 2C).

To further evaluate the gene functions of the key module, 
DAVID was used for GO and KEGG analysis. The analysis 
revealed that genes from module 3, the most relevant to EMT, 

Figure 1. Correlation analyses of EMT in GSE31210 and GSE50081: (A) Pearson correlations of EMT with the HALLMARK gene sets (P < .05), (B–D) 

Spearman correlations of EMT with tumor purity, TME cells and immune checkpoint genes, and (E and F) Kaplan–Meier analyses of RFS and OS based 

on EMT scores.

Figure 2. The weighted gene co-expression network analysis: (A) Analysis of scale-free index and mean connectivity for the different soft thresholding 

powers, (B) Dendrogram of 5000 genes clustered based on the measurement of dissimilarity, and (C) Heatmap of correlations between the module 

eigengenes and EMT.
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were involved in biological process (BP) related to cell adhe-
sion, extracellular matrix organization and disassembly, colla-
gen catabolic process, angiogenesis, and positive regulation of 
cell migration (Figure 3A). As for cellular component (CC), 
these highly relevant EMT-related genes were found mainly 
on extracellular exosome, extracellular matrix and basement 
membrane (Figure 3A). At the cellular level, the molecular 
function (MF) of the genes from module 3 could be related to 
extracellular integrin binding, collagen binding, extracellular 
matrix binding, fibronectin binding, platelet-derived growth 
factor binding (Figure 3A), which all play vital roles in tumor 
progression and metastasis. To reveal the relationship among 
these genes from module 3, the PPI network was constructed 
by using the top 200 connections with the highest weight value 
(Figure 3B). The results indicated that the EMT-related genes 
in module 3 had a close connection. Consistently, KEGG 
results also showed that these genes from module 3 were highly 
associated with 8 pathways related to cancer metastasis, such as 
PI3K-Akt signaling pathway, focal adhesion, ECM-receptor 

interaction (Figure 3C, false discovery rate (FDR) < 0.05). 
Taken together, these functional analyses suggest that these 
genes from module 3 were indeed relevant to EMT since they 
were involved in cancer migration and invasion cellular pro-
cesses and pathways.

Establishment of the EMT-associated gene 
signature for prediction of recurrence

After gaining insights into the possible functions of EMT-
associated genes, an EMT-associated gene signature was con-
structed to predict the recurrence of the patients after 
early-stage LUAD resection. 187 out of 591 genes were found 
to be significantly related to RFS based on a univariate Cox 
proportional hazard regression analysis (Supplemental Table 
S3, P < .01). The LASSO algorithm was used for variable 
selection in a Cox regression model to enhance the prediction 
accuracy. The value 0.05542331 was chosen for optimal 
Lambda using 10-fold cross-validation via the minimum 

Figure 3. GO, KEGG pathway and PPI network analysis of the genes in brown module: (A) Biological process, Cellular component, and Molecular 

function analysis (top 10 enrichment results), (B) PPI network analysis. The arrows indicated the directions of action between genes, and the connection 

widths indicated weight value, representing connection strength between genes (nodes), and (C) KEGG pathway analysis (FDR < 0.05).
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criteria. As a result, 11 genes were obtained through LASSO 
analysis (Supplemental Figure S3 and Table S4) and further 
used to establish the signature via a stepwise Cox proportional 
hazards regression model. Eventually, 5 of them, that is, 
Amylo-Alpha-1, 6-Glucosidase, 4-Alpha-Glucanotransferase 
(AGL), extracellular matrix protein 1 (ECM1), ectonucleotide 
pyrophosphatase/ phosphodiesterase 1 (ENPP1), sorting nexin 
7 (SNX7), tetraspanin 12 (TSPAN12) were extracted to 
establish the EMT-associated 5-gene signature (Supplemental 
Table S5). The risk score of the signature for each patient was 

calculated as follows: risk score = AGL expression * 
(−0.488280568)  + ECM1 expression * 0.269189487 + ENPP1 
expression * 0.26414351 + SNX7 expression * 0.598307462 
 + TSPAN12 expression * (− 0.486050514). In GSE31210 
cohort, the patients whose risk scores were scaled between 
−1.800 and +4.535 were divided into the high-risk group 
(n = 127) and low-risk group (n = 99) based on the optimal cut-
off score (Figure 4A, cutoff = 0.550). Kaplan-Meier survival 
analysis displayed that the high-risk patients had a higher 
recurrence rate than the low-risk patients in the early-stage 

Figure 4. Establishment and evaluation of the EMT-associated gene signature in GSE31210: (A) The distribution of risk score, recurrence time and status 

and gene expression of the signature, (B) Kaplan–Meier analysis of RFS in early-stage LUAD based on the risk score, (C) Time-dependent ROC analysis 

of the EMT-associated gene signature for evaluation of predictive performance, and (D) Kaplan–Meier analysis of RFS in stage-I LUAD based on the risk 

score.
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LUAD (Figure 4B, P < .0001). The time-dependent ROC 
curve demonstrated that our signature had a good predictive 
performance, with values of area under the curve (AUC) of 
0.775, 0.782, and 0.815 for 1, 3, and 5 years, respectively 
(Figure 4C). Moreover, the RFS of the high-risk patients with 
stage I was shorter than that of the low-risk patients based on 
Kaplan-Meier analysis (Figure 4D, cutoff = 0.700, P < .0001).

Validation of the EMT-associated gene signature

To validate the EMT-associated gene signature, GSE50081 
dataset was used as an internal validation cohort. The patients’ 

risk scores were calculated using the previous formula and were 
scaled between −2.111 and +3.146. Then the patients were 
divided into the high-risk group (n = 75) and the low-risk 
group (n = 49) with the same cutoff value as in GSE31210 
(Figure 5A, cutoff = 0.550). It is noteworthy that similar results 
were obtained in the validation cohort. Kaplan-Meier survival 
analysis revealed that the high-risk patients had a worse RFS 
than the low-risk patients in the early-stage LUAD (Figure 5B, 
P = .019). The time-dependent ROC showed AUC values of 
0.591, 0.658, 0.677 at 1, 3,and 5 years, respectively (Figure 5C). 
Furthermore, the stage-I patients with high risk had worse 
RFS than those with low risk (Figure 5D, cutoff = 0.700, 

Figure 5. Validation of the EMT-associated gene signature in GSE50081: (A) The distribution of risk score, recurrence time and status and gene 

expression of the signature, (B) Kaplan–Meier analysis of RFS in early-stage LUAD based on the risk score, (C) Time-dependent ROC analysis of the 

EMT-associated gene signature for evaluation of predictive performance, and (D) Kaplan–Meier analysis of RFS in stage-I LUAD based on the risk score.
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P = .016). All the available patient information and risk scores 
generated from this study for each patient were presented in 
Supplemental Table S6.

Clinical independence of the EMT-associated gene 
signature

To assess the independence of the EMT-associated gene sig-
nature in clinical application, univariate and multivariate Cox 
regression analyses were performed with several clinical char-
acteristics, including age, gender, smoking status and tumor-
node-metastasis (TNM) stage. The results displayed the risk 
score and TNM stage were independent unfavorable factors for 
RFS in GSE31210 cohort (univariate Cox: stage I/II with 
P < .001 and risk score with P < .001; multivariate Cox: stage 
I/II with P = .035 and risk score with P < .001) and GSE50081 
(univariate Cox: stage I/II with P = .006 and risk score with 
P = .010; multivariate Cox: stage I/II with P = .027 and risk 
score with P = .045), respectively (Tables 1 and 2).

Considering that the risk score and TMN stage were shown 
as independent unfavorable factors in LUAD prognosis, we 
evaluated the combined effect of the 2 factors on the 5-year 
recurrence prediction in the patients from the combined cohort 
of GSE31210 and GSE50081 (n = 350). The patients were first 
divided into a high-risk group (n = 164) and a low-risk group 
(n = 186) using the optimal cutoff value through the ROC 
curve and Youden index analysis30 (cutoff = 0.851). The ROC 
curve showed that the combination of the signature-based 
recurrence risk and TNM stage factors represented a higher 
prognostic value (AUC = 0.758) for the prediction of 5-year 
recurrence compared with recurrence risk alone (AUC = 0.748) 
and stage alone (AUC = 0.568) (Figure 6A), suggesting that 
these 2 factors provide a better predictive value on patients 
with early-stage LUAD. On top of that, Kaplan-Meier-survival 
analysis was performed on the same patients from the GEO 
datasets using 4 different combination groups of recurrence 
risk and TNM stage: i) high risk + stage I; ii) high risk +  
stage II; iii) low risk + stage I; iv) low risk + stage II. Expectedly, 

Table 1. Univariate and multivariate Cox regression analyses of the 5-gene signature in GSE31210 cohort.

VARIABLES UnIVARIATE COX MULTIVARIABLE COX

HR 95% CI P-VALUE HR 95% CI P-VALUE

Age n = 226 1.030 0.997-1.070 .074 1.030 0.993-1.067 .112

Gender n = 226 0.787 0.482-1.280 .338 1.345 0.658-2.747 .416

Male/female

Smoking n = 226 1.330 0.815-2.180 .252 1.181 0.583-2.391 .644

non-smoker/smoker

Stage n = 226 3.160 1.920-5.210 <.001 1.793 1.043-3.080 .035

I/ II

Risk score n = 226 2.720 2.130-3.470 <.001 2.538 1.949-3.303 <.001

Abbreviations: 95% CI, 95% confidence interval; HR, hazard ratio.

Table 2. Univariate and multivariate Cox regression analyses of the 5-gene signature in GSE50081 cohort.

VARIABLES UnIVARIATE COX MULTIVARIABLE COX

HR 95% CI P-VALUE HR 95% CI P-VALUE

Age n = 124 0.995 0.964-1.030 .774 0.992 0.961-1.024 .609

Gender n = 124 0.835 0.437-1.600 .586 0.760 0.383-1506 .431

Male/female

Smoking n = 113 0.862 0.405-1.830 .699 0.731 0.331-1.612 .437

non-smoker/smoker

Stage n = 124 2.520 1.300-4.890 .006 2.244 1.098-4.588 .027

I/ II

Risk score n = 124 1.610 1.120-2.300 .010 1.466 1.008-2.131 .045

Abbreviations: 95% CI, 95% confidence interval; HR, hazard ratio.
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the results showed that low risk + stage I demonstrated 
superior predictive capacity in RFS than the other 3 groups 
(Figure 6B, P < .0001). Altogether, these data suggest that the 
signature-based recurrence risk and TNM stage do comple-
ment each other in their predictive capacity on RFS of early-
stage LUAD patients.

Additional evaluation of the EMT-associated gene 
signature

To further confirm the prognostic value of the EMT-associated 
gene signature, we also validated this EMT-associated signa-
ture in an external TCGA cohort. The risk scores of 307 
patients with early-stage LUAD were calculated using the pre-
vious formula and were scaled between −2.139 and +2.526. 
The patients were subsequently stratified into the high-risk 
group and low-risk group based on the previous cutoff (cut-
off = 0.550). Although the mRNA expression data from TCGA 
dataset were measured by RNA sequencing platform instead of 
Affymetrix platform, the EMT-associated 5-gene signature 
was able to effectively distinguish high-risk patients with early-
stage LUAD from low-risk patients, demonstrating significant 
prognostic value on LUAD patients. Kaplan-Meier survival 
analysis showed the high-risk patients experienced a worse 
RFS and OS than low-risk patients with early-stage LUAD in 
TCGA cohort (Figure 7A and E, RFS: P = .041, OS: P = .0076 
cutoff = 0.550).

Since there has been an increasing number of prognostic 
gene signatures being identified for LUAD, it is important to 
compare and evaluate the prognostic performance of different 
gene signatures at the same time for successful clinical 

application in the future. Hence, our EMT-associated gene 
signature was assessed by comparing with 2 other identified 
signatures: a 9-gene recurrence-associated signature31 and a 
10-gene prognostic signature.32 The risk scores of each sample 
from the combined cohort of GSE31210 and GSE50081 were 
calculated using their formulas respectively (Supplemental 
Table S7) and were subsequently used for the following analy-
ses. The ROC curve of the 5-year recurrence prediction shows 
that our 5-gene signature demonstrated better performance 
than the 9-gene recurrence-associated signature (Figure 7B, 
AUC = 0.781 vs AUC = 0.633, respectively). Although the 2 
published signatures exhibited their predictive values in the 
combined cohorts, our 5-gene signature displayed more signifi-
cant p-values in RFS (Figure 7C and D, P-value < .0001 vs 
.00031 with the cutoff of 0.851 and −0.910, respectively) and 
OS (Figure 7G and H, P-value < .0001 vs .021 with the cutoff 
of 0.913 and 99.820, respectively) through Kaplan–Meier anal-
yses with their optimal cutoff values. Apart from that, in terms 
of the 5-year survival prediction, our 5-gene signature showed 
a superior prognostic value compared with the 10-gene prog-
nostic signature (Figure 7F, AUC = 0.681 vs AUC = 0.557, 
respectively). Taken together, the EMT-associated 5-gene sig-
nature represented robust predictive ability in the patients with 
early-stage LUAD since it was successfully validated in the 
external TCGA cohort and demonstrated superior prognostic 
performance over 2 other published gene signatures.

Discussion
The clinical outcomes of patients with early-stage LUAD vary 
significantly despite having similar clinical and pathological 
characteristics. Although the clinical guidelines recommend 

Figure 6. Prediction performance of the signature-based recurrence risk combined with TnM stage: (A) ROC curves for 5-year recurrence prediction of 

recurrence risk combined with TnM stage in the combined cohort of GSE31210 and GSE50081, and (B) Kaplan–Meier analysis of RFS in 4 subgroups of 

the combined cohort of GSE31210 and GSE50081.
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postoperative surveillance of LUAD patients by routine radio-
logic examinations such as computed tomography (CT),33 
small tumors remain undetectable due to the limitations of 

current clinical management approaches. Therefore, a novel 
and robust tool is urgently needed to predict and screen for 
the potential recurrence of early-stage LUAD after surgical 

Figure 7. (Continued)
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Figure 7.  Additional evaluation of the EMT-associated gene signature: (A) Kaplan–Meier analysis of RFS in early-stage LUAD of TCGA cohort based on 

the risk score, (B) ROC curves for 5-year recurrence prediction of the 5-gene signature and 9-gene signature in the combined cohort of GSE31210 and 

GSE50081, (C and D) Kaplan–Meier analyses of RFS in the combined cohort of GSE31210 and GSE50081 based on the risk scores of the 5-gene 

signature and 9-gene signature, (E) Kaplan–Meier analysis of OS in early-stage LUAD of TCGA cohort based on the risk score, (F) ROC curves for 5-year 

survival prediction of 5-gene and 10-gene signatures in the combined cohort of GSE31210 and GSE50081, and (G and H) Kaplan–Meier analyses of OS 

in the combined cohort of GSE31210 and GSE50081 based on the risk scores of the 5-gene signature and 9-gene signature.

resection. Numerous studies have demonstrated the critical 
role of EMT in tumor initiation and progression, especially in 
the advanced stage with metastasis. However, tumor cells in the 
early stage have undergone EMT and resulted in dissemina-
tion in the form of micrometastasis or occult tumor cells. 
Moreover, during the EMT process, the resulting mesenchy-
mal cells acquire the ability to evade immune surveillance34 and 
resisting to therapeutic regimens, such as chemotherapeutics, 
radiotherapy, targeted treatment and immunotherapy, which 
consequently allow for the survival of isolated tumor cells and 
the formation of minimal residual disease (MRD) in cancer 
patients. These may help explain why the patients carry a high 
risk of tumor recurrence despite receiving radical resection and 
adjuvant therapies. Hence, it appears clear that EMT is funda-
mentally linked to tumor recurrence.

In the present study, we identified that EMT displayed 
strong positive correlations with angiogenesis, hypoxia, coagu-
lation, KRAS and TGFβ signaling pathways in the patients 
with early-stage LUAD, which correspond to other publica-
tions on the role of EMT in several types of carcinomas such as 
breast cancer, gastric cancer, lung cancer.10,35-39 Besides EMT, 
apoptosis is another fundamental event that is tightly linked 
to the physiological and disease-related cellular processes. 
Interestingly, the modulation of EMT and apoptosis is largely 
dependent on the functions of TGFβ.40 Although the 
current notion of EMT is mainly associated with resistance to 
apoptosis,41 we found that EMT was positively correlated with 
apoptosis in the patients with early-stage LUAD, which can be 
supported by a publication showing the simultaneous occur-
rence of EMT and apoptosis triggered by TGFβ1.42 It has 

been identified that TGFβ induced EMT in both unsynchro-
nized cells and those synchronized at the G1/S phase of the 
cell cycle, while TGFβ-induced apoptosis occurred only at the 
G2/M phase of the cell cycle, indicating the possibility of 
simultaneous occurrence of EMT and apoptosis.43 Since tumor 
cells are highly heterogenous with cells at different phases of 
the cell cycle, it is likely that induction of EMT leads to an 
increase in apoptosis levels. However, the overall net effect is 
determined by the cellular context and the specific state of the 
cells.43

Apart from that, our analysis also revealed that EMT was 
negatively associated with the tumor purity of LUAD. This 
reflects the fact that most of the gene expression profiling is 
performed with bulk clinical specimens that contain a mix of 
tumor and stromal cells. Since stromal cells, such as fibroblasts, 
contain EMT canonical markers,44 it may explain our finding 
that higher levels of EMT occurred when the tumor purity was 
low. In line with the presence of fibroblasts, this study also 
demonstrated that patients with early-stage LUAD displayed 
EMT that was strongly correlated to TME cells and immune 
checkpoint genes, which are the potential targets for targeted 
therapies and immunotherapies. For example, EMT showed a 
remarkably high positive correlation with fibroblasts, which 
are known to play important roles in the EMT process in 
the tumor microenvironment.45 Several clinical trials related 
to interference with cancer-associated fibroblasts (CAF) acti-
vation, CAF action and CAF normalization are currently 
underway,46 involving targeting TGFβ, C-X-C motif chemokine 
receptor 4 (CXCR4) or vitamin A metabolism. Moreover, 
our analyses revealed correlations between EMT and immune 



12 Cancer Informatics 

checkpoints in early-stage LUAD, such as CD200, TNFSF4 
and SIRPA, which have also been demonstrated in other types 
of carcinomas. For instance, CD200 has been shown to induce 
EMT in head and neck squamous carcinoma through  
β-catenin-mediated nuclear translocation.47 A pan-cancer 
analysis involving 1934 tumors demonstrated high expression 
of the TNFSF4 gene (also known as OX40L) in tumors with 
the most mesenchymal EMT scores.48 Apart from that, it was 
also identified that CD47-SIRPα signaling induced EMT and 
cancer stemness, and was linked to a poor prognosis in patients 
with oral squamous carcinoma.49 In addition, this study found 
that EMT was significantly related to poor RFS and OS in 
patients with early-stage LUAD. Our findings showed the 
multi-faceted roles of EMT in patients with early-stage 
LUAD, which may provide a series of novel targets and strate-
gies for early-stage LUAD treatment.

Subsequently, we identified an EMT-associated 5-gene sig-
nature based on WGCNA, LASSO method and Cox propor-
tional hazards regression model in the GEO database. The 
signature comprised of AGL, ECM1, ENPP1, SNX7, and 
TSPAN12 that could predict the recurrence of patients with 
early-stage LUAD. Recent studies have demonstrated that 
ECM1, ENPP1, TSPAN12 were involved in tumor invasion 
and metastasis. For instance, in breast cancer, ECM1 gene 
overexpression induced EMT progression via regulating the 
beta-catenin signaling pathway and the expression levels of 
ECM1 protein in patient plasma were associated with the 
tumor recurrence.50 Furthermore, ECM1 protein has also been 
found to be highly expressed in hepatocellular carcinoma and 
the overexpression of ECM1 protein resulted in the promotion 
of migration and invasion of tumor cells via EMT induction.51 
As for the ENPP1 gene, it has been reported that ENPP1-
knockdown reduced the expression of cancer stem cell markers 
and reversed TGFβ-induced EMT phenotypes in non-small 
cell lung cancer, including cell migration, the repression of 
E-cadherin and induction of vimentin.52 Lastly, the role of the 
TSPAN12 gene in lung cancer has also been demonstrated. A 
study revealed that knocking down TSPAN12 could promote 
lung cancer cell proliferation and migration; moreover, the 
TSPAN12 gene was significantly down-regulated in NSCLC 
tissues compared with their matched normal adjacent tissues,53 
indicating that TSPAN12 was a favorable factor during 
NSCLC progression. It is noteworthy that the relationship of 
EMT with AGL and SNX7 has not been reported previously, 
and therefore further investigation is needed. In short, these 5 
genes appear to be closely related to EMT and thus tumor 
recurrence. This gene signature could successfully predict the 
recurrence of early-stage LUAD in both training and valida-
tion cohorts. Moreover, this EMT-associated signature was 
independent of the clinical characteristics, including age, gen-
der, smoking and TNM stage. Our present study showed that 
this EMT-associated signature could serve as an independent 
prognostic factor for the recurrence of early-stage LUAD after 

considering other clinical and pathologic factors. Moreover, the 
combination of signature-based recurrence risk and TNM 
stage could better predict the recurrence of early-stage LUAD. 
In particular, it was demonstrated that the patients with low 
recurrence risk and in stage I had the best clinical outcome in 
terms of RFS compared with other patients with high risk 
and/or stage II. In addition, the superior predictive values on 
RFS and OS were represented in our EMT-associated 5-gene 
signature compared with the other 2 identified signatures 
when evaluated in the combined cohort of GSE31210 and 
GSE50081.

Collectively, our EMT-associated 5-gene signature is a 
promising predictive tool for the recurrence of early-stage 
LUAD. In this study, GSE31210 and GSE50081 datasets 
from the same platform were used and the batch effects 
between them were removed to ensure the signature was more 
reliable and accurate. This is the first study to establish an 
EMT-associated gene signature for the patients with early-
stage LUAD, with a good predictive performance and clinical 
independence in the training cohort and validation cohorts. 
Applying this 5-gene signature to clinical settings is relatively 
easy since it could be performed with simple molecular biology 
techniques such as quantitative real-time polymerase chain 
reaction (PCR). There are also limitations to our study. 
Although a wide range of correlation analyses of EMT pheno-
type was conducted, some underlying molecular mechanisms 
remained elusive. Further experiments are required to unravel 
the EMT-associated mechanisms in the recurrence of early-
stage LUAD. Moreover, due to the lack of clinically relevant 
information in the cohorts, the impact of neoadjuvant and 
adjuvant therapies as well as lymph node metastasis on our sig-
nature could not be analyzed, which are also critical factors for 
affecting recurrence. Hence, further prospective and large-scale 
clinical studies are warranted to validate our findings.

Conclusions
Taken together, our present study showed the diverse EMT 
states of the patients with early-stage LUAD, providing us a 
better understanding of the roles of EMT in tumor progression 
and recurrence. Moreover, the robust EMT-associated 5-gene 
signature that had been established and validated in this study 
could be highly predictive for the recurrence among the patients 
with early-stage LUAD, which may also bring novel strategies 
for postoperative monitoring and individualized treatment to 
the patients with early-stage LUAD.
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