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Abstract

Background: Ancestral Recombinations Graph (ARG) is a phylogenetic structure that encodes both duplication
events, such as mutations, as well as genetic exchange events, such as recombinations: this captures the (genetic)
dynamics of a population evolving over generations.

Results: In this paper, we identify structure-preserving and samples-preserving core of an ARG G and call it the
minimal descriptor ARG of G. Its structure-preserving characteristic ensures that all the branch lengths of the
marginal trees of the minimal descriptor ARG are identical to that of G and the samples-preserving property asserts
that the patterns of genetic variation in the samples of the minimal descriptor ARG are exactly the same as that of
G. We also prove that even an unbounded G has a finite minimal descriptor, that continues to preserve certain
(graph-theoretic) properties of G and for an appropriate class of ARGs, our estimate (Eqn 8) as well as empirical
observation is that the expected reduction in the number of vertices is exponential.

Conclusions: Based on the definition of this lossless and bounded structure, we derive local properties of the
vertices of a minimal descriptor ARG, which lend itself very naturally to the design of efficient sampling algorithms.
We further show that a class of minimal descriptors, that of binary ARGs, models the standard coalescent exactly
(Thm 6).

Background
The study of genetic evolution of populations is an
important problem and myriad aspects of this have been
studied extensively for the past few decades. This pro-
blem is regaining momentum as more and more
detailed genomes of different organisms, highlighting
the unexpected diversity within a species, become avail-
able [1]. There are two broad directions to studying and
understanding this diversity. One is through model-
based population simulation studies: this helps hypothe-
size various evolutionary constraints and conditions and
understand the observed population structures in that
context. While it is impossible to model every detail of
all the genetic events, very good statistical processes
summarizing the series of genetic events exist [2-4].

Moreover, model based methods have been at the heart
of various demographics-aware approaches [5-7]. The
second direction is to reconstruct a plausible evolution-
ary history given the observed population structure as
extant samples of chromosomes. In the context of
human data, the reconstruction of trees from genomic
data under uni-linear transmission, such as nonrecom-
bining Y chromosome (NRY) or mitochondrial data is
well accepted [8]. However, evolutionary reconstruction
of recombining portions of the genome continues to be
a challenge. Under these conditions, the second direc-
tion is arguably hard and reconstruction methods [9,10]
have been evaluated in various orchestrated evolution
scenarios [11]. In this paper, we introduce a minimal
descriptor that plays a critical role in both the directions
of study. Firstly, it does not compromise any detail of
the genetic dynamics for simulation studies and sec-
ondly, leads itself to a structure amenable for recon-
struction studies. Finally, since the minimal descriptor is
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very compact (as well as exact), it can form the basis for
statistical inferencing methods as well.
The central mathematical object of study in this con-

text is the Ancestral Recombinations Graph (ARG): the
coalescent with recombination describes the genealogies
underlying the common evolutionary history of samples
of chromosomes from unrelated individuals of an ideal
population [12,13]. This is also called the standard coa-
lescent model in literature. This object has been studied
intensively in literature primarily in the context of simu-
lations. In [14], the more general version of the ARG
was studied as a random graph to address the general
reconstructability question. In this paper, the attempt is
to understand some inherent characteristics of the ARG
from a reconstruction perspective. Not surprisingly, this
has implications in simulations as well.
In the context of simulations, Hudson introduced MS

the seminal implementation to sample sequences from a
population evolving under the Wright Fisher model
[15], It is important to point out a subtlety here. Usually
under the coalescent model, the coalescence is between
exactly two lineages and multiple genetic events do not
occur in the same generation in the common evolution-
ary history. These simplifications help in defining the
model as a ordered sequence of events as well as in esti-
mating the time from one event to the next. In the soft-
ware GENOME [16], instead of simulating the time to
next event, the authors simulate the coalescent and
recombination events at every generation proceeding
backwards in time. Thus this models an evolutionary
history, more general than the standard coalescent
model. In the random graphs framework in [14], the
genetic exchange model or mixed subgraph represented
this more general model. In this paper, to avoid confu-
sion in terminologies, we call such a general model sim-
ply the generic ARG and unless specified otherwise an
ARG refers to a generic ARG. On the other hand we
call the standard coalescent model as the binary ARG,
for obvious reasons. While the above methods generate
events backwards in time, an orthogonal approach,
introduced in [17], samples the events along the
sequence. This is called the Spatial Algorithm (SA) and
one of its characteristic effects is that the density of
recombination breakpoints increases as one moves along
the sequence. Another (perhaps related) characteristic of
SA is that the process is not Markovian. The Sequen-
tially Markov Coalescent [18] introduces modifications
to the process to make the structure Markovian. Based
on this model, in FastCoal [19], the authors use an addi-
tional heuristic of retaining only a subset of local trees
while moving along the sequence. However in all three,
a probabilistic formulation of the underlying random
mathematical object is not obvious. It turns out that
even the Markovian structures only approximate the

standard coalescent model. While each model is defined
algorithmically as a sequence of precise steps, yet the
reason for this lack of exactness is not clear enough to
provide algorithmic modifications to close or reduce the
gap with the standard model. On the other hand, the
random-graphs framework [14] leads to a procedure-
independent model, the minimal descriptor of binary
ARGs, that is not only very compact but also exactly
models the standard coalescent. Our ideas stem from a
graph theoretic viewpoint of the generic ARG. We
define structure-preserving and samples-preserving trans-
forms of a generic G which maintain the invariance of
the marginal genealogies and the samples (hence genetic
variation patterns) respectively, called a minimal
descriptor, that exactly models the generic ARG. This
setting helps us in providing mathematical proofs of
exactness of the model (Thms 2 and 6) as well as in
deriving the other properties from the model (Thms 3-5).
The local properties of the nodes lend themselves natu-
rally to designing sampling algorithms for the method-
independent model, say by modifications to Hudson’s
algorithm (Results section).

Background
As seen above, ARG forms the basis for most systematic
simulation studies. It is important to point out another
subtlety here. An ARG is a random object and there are
many (infinite) instances of the ARG. Usually, when we
say that a topological property holds for the ARG, we
mean that the property that holds for every instance of
the ARG, i.e. the property holds with probability 1. Note
that some may hold for a subset of instances (such as
unboundedness).
Focusing on the topology of the ARG, and its effect on

the samples, provides us with insights to identify vertices
that “do not matter”. Modeling these as missing nodes in
the ARG, leads to a core that preserves the essential char-
acterisitcs. We begin the exposition by recalling some
important topological characteristics of the random
ARG, which is defined by at least two parameters: K, the
number of extant samples and 2N, the population size at
a generation. A Grand Most Recent Common Ancestor
(GMRCA), plays an important role in restricting the zone
of interest in the common evolutionary structure.
A GMRCA is defined as a unit whose genetic material is
ancestral to all the genetic materials in all the extant
samples [8]. Thus while the relevant common evolution-
ary history of some K > 1 units is potentially unbounded,
it is reasonable to bound this structure of interest with
this single GMRCA. Thus when a GMRCA exists, it is
unique and and we say the ARG is bounded. When an
ARG has no GMRCA, we call it unbounded.
The least common ancestor (LCA) of a set of vertices

V in a graph is defined as a common ancestor of V with
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no other common ancestor of V on any path from the
LCA to any vertex of V. In our earlier work [14], we
presented a combinatorial treatment of the ARG based
on random graphs. The (directed) graph representation
is acyclic, a root is analogous to a GMRCA, and the leaf
nodes to the extant samples. Though tantalizingly simi-
lar, GMRCA and LCA do not define the same entity in
an ARG. The implications of this treatment relevant to
this paper is summarized as follows.
The common evolutionary history of an ideal popula-

tion can be modeled as a random graph. Due to the
“ancestor without ancestry” paradox, the topology alone
of this graph is not adequate and the nodes or edges
must be embellished with additional information, which
is the genetic material they transmit. Then
Theorem 1 (Par10) 1. G satisfies the bounded-degree

property.
(In the random graph model, the ARG is defined on

an infinite set of vertices. However, each vertex has not
only finite, but a bounded number of incident edges,
determined by the input parameters alone. Note that
this is called the bounded-degree property, which is one
of the measures of simplicity of a graph.)
2. For every G on K > 1 extant samples, there exists

some M ≥ 1, such that G is the union of M overlapping
trees (or forests), each with the same K extant samples.
This is written as G =∪T∈ΤT, where Τ is the set of M trees.
(Thus this Genetic Exchange Model gives an alterna-

tive parametrization of an ARG, with the number of
non-mixing segments M)
3. In the embellished graph, the GMRCA is the Least

Common Ancestor with Ancestry (LCAA) of all the K
extant samples, where ‘ancestry’ is deduced from the
embellishments, The topological definition of the
GMRCA is as follows.: It is the LCA of the LCAs of the
M embedded trees (of 2 above).
Based on (2) above, we set up the problem for study-

ing the ARG and its structure-preserving core in the
next section. Statement (3) is used in proving the exis-
tence of the structure even for unbounded ARGs as
well as in computing the actual bound on the size. We
show that the minimal structure displays the same
graph-theoretic characteristic as in Statement (1)
above. The interested reader may see Fig. 6 in [14] for
an explanation of the ‘Ancestor without Ancestry ’
paradox and an illustration of its consequence in Fig. 3
of the same paper.

Methods
Basic definitions
The ARG is usually parameterized by three essential
parameters: K the number of extant samples, 2N the
population size and recombination rate r (see texts such
as [3] for a detailed description). The alternative

definition suggested by Thm 1 (2) is illustrated in Fig. 1
(a). Here an ARG, defined on three (K) extant samples, is
decomposed into three (M) trees. Note that M is the
number of non-mixing or completely-linked segments in
the extant samples. In both the models all the samples
are of same length say s and additionally the length of
each of the M segments is specified as s1, s2, .., sM with

s sii

M ==∑ 1
, in the former.

The graph description
For ease of exposition in the following paragraphs, let
the edges be directed, the direction towards the more
recent generation (or the leaves). In other words, the
leaf (extant) nodes have no outgoing edges and the root
node has no incoming edges. The edges of the ARG are
annotated with genetic event and the labels are dis-
played in the illustrations. See Fig. 1(c) for an example.
An edge in G is defined to have multiple strands. In the
illustrations, the multiple strands are shown as distinct
colors, each color corresponding to one of the compo-
nent trees 1 ≤ i ≤ M. Between any pair of vertices v1
and v2, no two strands can be of the same color. Thus
the number of multiple strands, corresponding the edge,
between a pair of vertices can be no more than M.
The annotations on the edges play a critical role

since it is these annotations that ultimately shape the
extant samples. In the paper, samples refer to extant
samples. The two kinds of genetic events represented
in the graph are (1) duplication events and (2) genetic
exchange events. While the latter is modeled by the
genetic exchange nodes, the former is modeled by
labels on the edges. To keep this discussion simple, let
the duplication genetic event correspond to Single
Nucleotide Polymorphisms (SNPs). For example in
Fig. 1(c), the SNPs on the red tree are shown as a, b,
c, d in red. Also, the exact position of the SNP on the
genome does not matter. However, in the ARG, a par-
ticular ordering of the M trees is assumed and hence
the SNPs of each of the M trees respect this order
(this is reflected in the sample definitions below where
red is the leftmost segment and blue the rightmost).
Each strand of an edge is labeled by a set of genetic
events (SNPs), possibly empty. A node with multiple
ascendants (parents) is called a genetic-exchange node.
A node with multiple descendants (children) is a coa-
lescent node. Note that a node can be both a coales-
cent as well as a genetic-exchange node. In Figures 1,
2, 3, 4, a genetic-exchange node is displayed as a
hatched disc. To summarize,
Property 1 (ARG properties) 1. An ARG G must

satisfy the following
(a) (topology) Every node v in G must have multiple

children or multiple parents (since chains are not
informative).
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(b) (annotations) The duplication genetic event label
(say, SNP) corresponding to a position on the samples
must transmit down to at least one extant sample.
2. Further, a nontrivial G must encode at least M – 1

genetic exchange events.
Samples S(G)
Next, we define the samples represented by the graph
instance G of the ARG. This is denoted as S(G) which is
a set of K sequences which is also the number of leaf
nodes in G. Each sequence is obtained simply by “flow-
ing” the genetic event labels of tree i, 1 ≤ i ≤ M, along
paths of color i all the way down to the leaf (samples)
units. In the figures in the paper, we assign colors to the
labels to associate the genetic events with the specific
colored strand. For example, the samples defined by G
in Fig. 1(c) are shown in Fig. 5. Here we have aligned
and numbered the three samples as (1), (2) and (3) cor-
responding to the labeled leaf nodes of Fig. 1(c).
Definition 1 (samples-preserving) G and G′ are sam-

ples-preserving if and only if S(G) = S(G′).
When two instances are samples-preserving, all the

allele statistics, including allele frequencies, LD decay
and so on are identical in the two.

1-vertex compactification
By Property 1 (1a), G should not contains chains. Con-
sider a case where the underlying evolutionary history
of G is unbounded. Then G has no GMRCA. Then it
is possible that G contains chains of infinite length.
We introduce a natural one-vertex compactification to
obtain a well-defined graph G′ from G as follows. If
the structure has l disjoint chains of infinite lengths
starting from v1,v2,..,vl, we introduce a new vertex v′
and replace each infinite chain starting from node vj,
1≤j≤l, with an edge from v′ to vj and the label of these
new edges is the union of all the component edges of
the respective chains. Since the chains are disjoint, by
the construction,
1. v′ the LCA of v1,v2, ..,vl, and
2. G and G′ are samples-preserving, i.e., S(G) = S(G′).

Resolvability of nodes and ARGs To maintain biologi-
cal relevance, a “missing” node is modeled by the fol-
lowing vertex removal operation.
Definition 2(G \ {v}) Given G and a node v in G,G\ {v}

is obtained in the following steps.
1. For each child vc,i of v, that is in the embedded tree

1 ≤ i ≤ M,

Figure 1 (a) G (b) Three embedded trees (c) Genetic flow The dotted horizontal lines represent time (in generation) and the extant samples,
numbered 1, 2, 3, are at the bottom row. Thus K = 3, in this example. The genetic material flows from the nodes at a higher level to the nodes
at the lower level in the figures. The hatched nodes are the genetic exchange nodes. (a) The topology of an instance of an ARG, where the
GMRCA is marked by an additional ring. (b) A possible embedding of (a) by 3 trees (shown in red, green and blue respectively) by Thm 1 (2).(c)
Genetic event labels on the ARG.
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(a) (adding new edges) this child is connected by a new
edge to vc i

p
, the parent of v in i,

(b) (annotating the new edges) the new edges
between vc i

p
, and vc,i have the same label as that of the

corresponding old edges between v and vc,i, except for
exactly one such new edge whose label is the union of
the labels on the two edges, i.e., the outgoing edge from v
to vc,i and the incoming edge from vc i

p
, to v.

(This is to avoid introducing parallel mutations, i.e,
the same label appearing multiple times on the
embedded tree i.)
2. The node v with all the edges incident on it are

removed from G.
See Fig. 2 for an illustrative example. Notice that for the

red tree, the new annotation of {d, c} is obtained by taking
the union of the sets on the incoming and outgoing red
edges on v, for only one (out of the two) new edges.
Definition 3 (resolvable node) Node v of G is called

non-resolvable if S(G) = S(G\{v}). Similarly node v is
called resolvable if S(G) ≠ S(G \ {v}).
Next, we extend the definition of removing multiple

vertices from G. The following is straightforward to ver-
ify and we omit the details.

Observation 1 Given vertices v1 and v2 in G,
S((G \ {v1}) \ {v2}) = S((G\ {v2}) \ {v1}).

A minimal descriptor
Next we identify the vertices in G that determine the
topology (as well as the branch lengths) in the M
embedded trees.
Definition 4 (t-coalescent, structure-preserving) (1)

A coalescent vertex in G is t-coalescent if and only if it is
also a coalescent node in at least one of the M
embedded trees. (2) Given G and G′, if each of the M
embedded trees in G and G′ are identical in topology as
well as branch lengths (in generations), then G′ preserves
the structure of G and vice versa.
For example, the marked vertex in Fig. 2(a) is t-coales-

cent since it is also a coalescent node of the red
embedded tree.
Theorem 21. A resolvable coalescent node v is also

t-coalescent in G.
2. If G′ G\U and no t-coalescent vertex of G is in U,

then G′ is structure-preserving.
Proof (1) Since v is resolvable S(G) ≠ S(G \ {v}). The

number of samples corresponds to the number of leaf

Figure 2 (a) G with marked v (b) G \ {v} An example to show how G \ {v} is computed. v is marked on G in (a). Note that v has two red and
one green outgoing edges; it has one red and one green incoming edge. When v is removed, one of the new red strands is labeled by the set
{d, c} and the new green strand is labeled by the singleton q. The resulting edges and labels are shown in (b). [Note that vertex v is a resolvable
node in G.]
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nodes in G and since v is not a leaf node, this number of
elements in both S(G) and S(G \ {v}) is unchanged and |S
(G)| = |S(G\{v})| must hold. Since both the sets have the
same cardinality, the description of the sample(s) must be
different. In other words, the flow of the genetic material
must be affected. Note that the genetic event annotation
(say SNPs) on the edges flows to the reachable samples.
Assume the contrary, i.e., v is not a coalescent node of any
of the embedded trees. Note that the union of labels (in
Step 1(b) of removing a vertex operation) on the incoming
edges and outgoing edges on v does not affect the set of
samples that carry these SNPs. However, the union of the
labels of the two outgoing edges of v causes the samples to
be different (unless the two edges have exactly the same
reachable samples). This is possible only when these two
outgoing edges on v are part of the same component, say
1 ≤ i ≤ M, and thus v is a coalescent node of the compo-
nent tree i. This contradicts the assumption, proving
Statement (1).
(2) The topology and the individual branch lengths of

each tree i, 1 ≤ i ≤ M, is defined completely by the coa-
lescent nodes of the tree i. Since U does not contain
any of the coalescent nodes of any of the M trees, then
the structure of G′ is preserved by Definition 4.

The theorem shows that the vertices that ensure the
invariance of the branch lengths of each embedded tree
are also resolvable, leading to the following.
Definition 5 (minimal descriptor) (1) An ARG G is a

minimal descriptor if and only if every coalescent vertex,
except the GMRCA, is t-coalescent. (2) An ARG Gmd is a
minimal descriptor of G if and only if (a) Gmd preserves
the structure of G, (b) Gmd is a minimal descriptor, and
(c) G and Gmd are samples-preserving, i.e., S(G) =
S(Gmd) holds.
The following gives a constructive description of a

minimal descriptor.
Observation 2 Given G, let U be the set of all coales-

cent vertices in G, other than the GMRCA, that is not
t-coalescent. Let G′ G\U. Then G′ is biologically and evo-
lutionary relevant as
1. (samples-preserving) the allele statistics (including

allele frequencies, LD decay) in the samples in both G
and G′ are identical, and
2. (structure-preserving) the embedded (marginal) trees

of G and G′ are identical.
In other words, G′ is a minimal descriptor of G.
Proof: By Definition 5 (1) and the following (which

can be verified), G′ is a minimal descriptor.

Figure 3 (a) G (b) G (c) Gmd Overall picture: (a) A generic ARG and all its genetic flow in (b), thus defining the samples S(G). The two marked nodes
are not t-coalescent. (c) A minimal descriptor, Gmd as it preserves the structure of G. The marked nodes are t-coalescent but non-resolvable. Note
that although the graphs are clearly topologically very different, yet they define exactly the same samples i.e., S(G) = S(Gmd). Note that Gmd

preserves the structure of G.
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Let v1 be a t-coalescent vertex and v2 a non t-coalescent
vertex in G. Then v1 continues to be a t-coalescent vertex
in G\{v2}. Further if V1 is a set of t-coalescent vertices,
and V2 a set of non t-coalescent vertices in G, then each v
Î V1 continues to be t-coalescent in G\V2.
(1) It follows from Thm 2(1) that if v is not t-coales-

cent then v is not resolvable, hence by Obs 1, S(G) = S
(G′). Then it follows that the allele statistics must be
identical since the samples are. (2) It follows from Thm
2 (2) that G′ is structure preserving. Hence the topology,
as well as the branch lengths, of each M embedded tree
is the same in G and G′. Thus, by Definition 5 (2), G′ is
a minimal descriptor of G.
Flexibilities of ARG structures
Fig. 4 shows two distinct minimal descriptors for an
ARG G. This is partly due to the flexibility of a network
topology, in contrast to say a tree topology. For
instance, we demonstrate here how seemingly unrelated

nodes can be potentially merged into one with neither
affecting the samples nor the embedded tree structures.
This can be systematized as follows, although the merge
operation, defined below, is not biologically interpretable
in an obvious way.
Observation 3 Let v1and v2 be two vertices in an ARG

G such that (1) there is no directed path from v1 to v2 or
v2 to v1and (2) sg(v1) ∩ sg(v2) = ø. We define a node-
merge operation of v1 and v2 as follows. ARG G′ is
obtained from G by removing v1and v2and introducing a
new vertex v3 where the incoming edges of v3 is the
union of that of v1 and v2 and similarly the outgoing
edges of v3. Then the node-merge operation is structure-
preserving and samples-preserving (S(G) = S(G′)).
The first condition ensures that the merging does not

introduce directed cycles in the graph thus maintaining
the integrity of the ARG structure. The second condi-
tion ensures that the two vertices affect non-overlapping

Figure 4 (a) G (b) Gmd (c) ′Gmd Multiple minimal descriptors: Both Gmd and ′Gmd are minimal descriptors of G (both samples-preservisng and
structure-preserving). The two have exactly the same number of nodes, though ′Gmd has more genetic exchange nodes.

Figure 5 amples defined by G of Fig 1(c).
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portions of the sample space. Hence merging the two
nodes neither affects S(G) nor the embedded trees.
In fact it is even possible to merge more than two ver-

tices and additionally, under more relaxed constraints
than in Obs 3. The example in Fig. 4(c) shows a “mer-
ging” of three t-coalescent nodes of (b) (shown as red,
blue and green hollow circles in (b)).

Results
Properties of minimal descriptor ARGs
Given the topology of an ARG G with the embedded
(marginal) trees and annotations representing genetic
events, we have seen that this defines an unambiguous
genetic flow giving rise to the samples S(G). This
annotation also implicity defines the segments asso-
ciated with each node. The M embedded trees in G
correspond to M segments on the chromosome of the
K samples which is encoded by the leaf nodes of G.
We assume that these M segments of interest are con-
secutive on the chromosomes of the samples. Thus
these trees can be numbered by consecutive integers
from 1 to M, the values indicating the order on the
chromosomes. Thus the multiple edges of G (defined
in the last section as colored edges) implies an

annotation of a node v as well. We define this as sg(v)
which is formalized below.
Definition 6 (sg(v) overlap) Given node v in an ARG

G, sg(v) is the set of the embedded trees that v is incident
on. Two vertices v1 and v2 in G are said to overlap if sg
(v1) ∩ sg(v2) ≠ ø.
In [14], this is defined as gm(v), however in this paper

we use sg(.) to avoid confusion with the SNPs as genetic
events. For example, consider the marked node v of
Fig. 2(a). Let the red, green and blue trees be numbered
1, 2 and 3 respecting the order in which they appear on
the chromosomal segment as defined in the samples in
Fig. 5. Then sg(v) = {1, 2}. Also, let the leaf nodes
marked 1, 2 and 3 of the same tree in Fig. 6(a) be u1,u2,
u3 respectively. Then

sg(u1) = sg(u2) = sg(u3) = {1, 2, 3}.

Fig. 6(b) displays these segments at each node. To
simplify the exposition, assume that the M segments are
numbered consecutively from 1 to M.
Definition 7 (gapped/ non-gapped node) A node v

in ARG G is called a gapped node if the elements of sg
(v) are not consecutive. A non-gapped node is a node
that is not a gapped node.

Figure 6 (a) The embedded trees (b) The sg(v) at each node Viewing the transmission of the genetic material in an G where the number of
non-mixing segments M = 3. (b) An alternative view of (a) explicitly showing the flow of the ancestral material. At each node the nonmixing
segment corresponding to the embedded tree is shown in the same color as that of the tree.
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Note that when the elements of sg(v) are not consecu-
tive, or v is gapped, it implies that while tracking the
relevant chromosomal segments in the ARG, v appears
to be carrying segments that matter (i.e., are ancestral to
the corresponding segments of some of the samples)
and are interspersed with segments that do not matter
(i.e., are not ancestral to the corresponding segments in
any of the samples).
On boundedness of ARGs
A generic ARG is not necessarily bounded, i.e, it can
have an infinite number of vertices. See Fig. 7(a) for an
example of such an ARG.
Theorem 3 An unbounded ARG G always has a

bounded minimal descriptor.
Proof: We prove this by constructing a bounded mini-

mal descriptor from the unbounded G. Since G is
unbounded, G has no GMRCA. Obtain G′ from G by
removing all coalescent vertices that are not t-coales-
cent. Then by definition G′ is structure-preserving and
S(G) = S(G′).
By Thm 1 (2), G′ has M embedded trees. For each

embedded tree Ti, let Li be the set of LCAs in G. Note
that the LCA of a tree is completely defined topologi-
cally. Let L Li

M
i= ∪ =1 . Then we prove the following:

The only infinite chains in G′ originate in a vertex in L
and they are disjoint.
First we need to show that any infinite chain in G′

must originate in a vertex in L. Assume the contrary
that there is a chain originating in v ∉ L. Let u be an
extant sample reachable from v and let i Îsg(u), then v
must be an LCA in tree i and then v ÎL by construc-
tion, which is a contradiction. Next we need to show
that no two chains overlap. Assume the contrary that a
pair of infinite chains, one originating in v1 ÎL and the
other in v2 ÎL, cross paths, say at u. Since it is a chain,
u is a coalescent node and not the GMRCA. If sg(v1) ∩
sg(v2) = ø, then it contradicts the fact all (non-GMRCA)
coalescent nodes in G′ must be t-coalescent. But if i Î

sg(v1) ∩ sg(v2), then it contradicts the fact that v1 and v2
are LCAs of the embedded tree i. Hence no two chains
can cross.
(B) and (C) prove the statement. Then since the pre-

conditions hold, we can apply the 1-vertex compactifica-
tion to G′ by adding the new vertex v′ and obtain G″.
To show that G″ is a minimal descriptor of G using
Definition 5, we next assert the following three
statements:
(i) S(G″) = S(G), (ii) G″ preserves the structure of G

and (iii) v′ is the GMRCA of G″.
From (A) and the definition of the 1-vertex compacti-

fication process, statements (i) and (ii) hold. Also by the
construction, v′ is the LCA of all the vertices in
L. Hence by Thm 1 (3), v′ is the GMRCA of G″. This
concludes that G″ is a minimal descriptor of G with the
GMRCA v′, hence bounded.
Corollary 1 The degree of the GMRCA in a minimal

descriptor is ≤ MK.
This follows from the cardinality of C in the proof.

Since each segment can have no more than K LCAs,
|L| ≤ KM.
Fig. 7 illustrates the construction procedure used in

the proof of the theorem on a simple example with K =
M = 2. The corollary states that even if the underlying
ARG G is unbounded, there exists a minimal descriptor
with a GMRCA with not just finite but a priori bounded
degree.
Back to properties of ARGs
The previous section gave a global characteristic of a
minimal descriptor ARG in terms of resolvable nodes.
In this section we explore properties of nodes of the
minimal descriptor ARG that can be determined by
studying a very local neighborhood of the node.
Theorem 4 1. If a coalescent node v, except the

GMRCA, in a minimal descriptor ARG has descendants
u1, u2, .., ul, for some l > 1, then for any ui, there exists
uj, i ≠ j, such that

Figure 7 (a) Unbounded G (b) G′¬G\U (c) Gmd Bounded Gmd of unbounded G: (a) An unbounded G. Here K = 2 corresponding to the
samples numbered 1 and 2 and M = 2, for the two segments colored red and blue. The pattern of vertices and edges can be repeated along
the dashed edges to give an unbounded structure. The coalescent nodes that are not t-coalescent are marked by circles: let U be the set of all
such nodes. (b) G′ is obtained from G after removing the vertices in U. (c) Gmd is obtained by the 1-vertex compactification of G′ with the new
vertex v′.
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sg(ui) ∩ sg(uj) ≠ ø.
In other words, for each descendant ui of v there exists

another descendant uj of v overlapping with ui,1 ≤ i ≠ j ≤ l.
2. The number of vertices in a minimal descriptor ARG

is finite. Moreover, if nc the number of coalescent events,
ne is the number of genetic exchange events, and nv the
number of vertices in a nontrivial minimal descriptor
ARG, excluding the leaf nodes, then the following holds:

1 ≤ nc ≤ M(K – 1) + 1, (1)

0 ≤ ne ≤ K(M – 1) + M(K – 1), (2)

nv = O(MK). (3)

Proof: (1) Since, by Definition 5, every coalescent node
in the minimal descriptor is t-coalescent, this must hold.
(2) By Thm 3, every minimal descriptor ARG has a
GMRCA. Also the GMRCA is a coalescent node. In G
there are kM segments that eventually coalesce into M
segments. The smallest number of coalescences occurs
when all vertices coalesce into a single vertex, the
GMRCA, giving a lower bound of 1. Again, by (1), since
every coalescent vertex must be the coalescence in at
least one embedded tree, the number of coalescent ver-
tices, excluding the GMRCA, in a minimal descriptor
ARG is no more than (K – 1)M. By Thm 1 (3), includ-
ing the GMRCA introduces only one more node and
this proves nc ≤ M(K – 1) + 1 of Eqn 1.
By the definition of the parameters of the ARG, G

must have at least one genetic exchange vertex encod-
ing (M – 1) genetic exchange events. However, the
above count excludes the leaf nodes and it is possible
to encode these (M – 1) events in a single genetic
exchange leaf node. Hence a lower bound of 0 for ne.
When a vertex in the ARG is displayed as a linear
ordering of the non-mixing segments with distinct col-
ors for each segment (as in Fig. 6(b)), then the poten-
tial junctions for the exchange events are at the

junction of the colored segments. Recall that by the
definition of the ARG, each unit has at most M non-
mixing segments, hence can have no more than M – 1
genetic exchange events. Thus there are K(M – 1)
such junctions potentially each representing a recombi-
nation (or exchange) event. We adopt the following
convention: each non-mixing segment in a vertex v
contributes to a junction to its left. Thus, by this con-
vention, the left-most segment has no associated junc-
tion. See vertex v in Fig. 8 as an illustration. Each
distinct non-mixing segment is shown by a distinct
color; gap is shown as a white segment and junctions
are marked by arrows of the same color as that of the
segment associated with it. Thus the green, red, blue,
magenta colored segments show the associated junc-
tions, and the leftmost green segment has none in
Fig. 8(b). We call the non leftmost as interior seg-
ments. Also, note that a gap does not contribute to a
potential junction by our convention. For a recombina-
tion event to occur multiple times at the same junction
involving the same or similar set of samples, it is clear
that a coalescence must occur. Then the following can
be verified.
Each coalescent event of an embedded (marginal) tree

can create at most one additional junction in the coales-
cing node.
Consider Fig. 8. In (a), v is not t-coalescent. In (b) four

coalescences in four embedded trees produces three junc-
tions in the coalescing node. Since the total number of
coalescent events in the embedded trees is no more than
M(K – 1), the additional junctions is bounded by the same
number. Hence ne ≤ K(M – 1) + M(K – 1) of Eqn 2. See
Figs. 9-10 for illustration of other scenarios where there is
no increase in the number of junctions in the coalescing
vertices. The coalescent events are absorbed in the worst
case scenario in the count of genetic exchange events.
Next, Eqn 3 follows from Eqns 1 and 2.

Figure 8 (a) Non-resolvable node v (b) t-coalescent node v The arrows point to the junctions in the segment. In each of the two there is an
increase in the number of junctions from the descendants to the coalescing vertex v. (a) A non-resolvable node and the coalescence of two
descendants has produced an additional junction, shown by a cyan arrow. (b) A t-coalescent node and the coalescence of the eight
descendants. The four coalescences give rise to three junctions.
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Corollary 2 The minimal descriptor satisfies the
bounded-degree property (of Thm 1 (1)).
By Corollary 1, there is an a priori bound on the

GMRCA. By the theorem there is such a bound on all
the other vertices. Hence the result.

Binary ARGs
The sampling algorithms incorporating the coalescent
process produces ARGs that bound the indegree and
outdegree of a node to two [3]. We call such ARGs as
binary ARGs and they also give stronger characteristics
that can be further exploited by the sampling algo-
rithms. We find that, to prove these characteristics, it is

not necessary to restrict the incoming edges of a node
to two.
Definition 8 (binary ARG) A vertex in a binary G has

no more than two outgoing edges, except the GMRCA.
We next identify some properties on these binary

ARGs that can be again used in the sampling algo-
rithms, if required. Consider the scenario where the
genetic exchange event is restricted to recombinations.
In other words if a node v has two incoming edges
them the genetic material of v is split such that the left
part of the segment is derived from one of the parental
nodes and the right part is derived from the other par-
ent. This is in contrast to an arbitrary segment being

Figure 9 (a) Non-resolvable node v (b) Two distinct configurations for t-coalescent vertex v Examples to illustrate the effect of overlap of
descendants of vertex v on the number if junctions in v. (a) The rightmost descendant does not overlap with any of the two left descendants.
In this case the number of junctions increase by one. (b) The three descendants, in each of the two cases, satisfy the conditions of Thm 4 (1)
and there is no increase in the number of junctions.

Figure 10 (a) Non-gapped segments (b) Gapped segments t-coalescent vertex v: Five cases are shown where the total number of junctions
does not increase with coalescence. The white segments represent the gaps whereas the colored segments refer to the non-mixing segments.
(a) Two cases with non-gapped segments. (b) Three cases with gapped segments.
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derived from one and the remaining from the other par-
ental node. Next, we prove a rather unexpected property
of a node of a binary minimal descriptor ARG under
recombinations: the genetic material carried by a node
has no gaps. This result is somewhat counter-intuitive
(since it appears unduly restrictive and is counter to ear-
lier beliefs) and is proved in (2) below.
Theorem 5 1. If nc is the number of coalescent events,

ne the number of genetic exchange events, and nv the
number of vertices in a nontrivial binary minimal
descriptor, excluding the leaf nodes, then the following
holds:

(K – 1) ≤ nc ≤ M(K – 1) + 1, (4)

0 ≤ ne ≤ K(M – 1), (5)

nv = O(MK). (6)

2. Let (a) the genetic exchange events be restricted to
recombinations and (b) all the leaf nodes be non-gapped.
Then no node in a binary minimum descriptor is gapped.
Proof (1) The proof of Eqn 4 is along the lines of that of

Eqn 1. We show ne ≤ K(M - 1) of Eqn 5 as follows. By the
definition of the ARG, each unit has at most M non-
mixing segments, hence can have no more than M – 1
genetic exchange events. Thus there are K(M – 1) such
junctions. For a recombination event to occur multiple
times at the same junction involving the same or similar
set of samples, it is clear that a coalescence must occur.
Following the notation used in the proof of Thm 4, We
next prove the following statement:
If there is some overlap in the coalescing vertices u1,u2,

then there is no increase in the number of junctions from
the sum total in u1 and u2 to that of the coalesced vertex v.
Every non-mixing segment of v corresponds to the

same non-mixing segment in at least one of the descen-
dants u1,u2. There can be an increase in the junctions in
v if and only if a leftmost non-mixing segment in say u1,
is not the leftmost in v. It cannot be a leftmost in u2 as
well, since it is not a leftmost in v. Thus it is an interior
in u2. Thus this segment has a corresponding junction
in u2 that contributes to the junction in v without intro-
ducing an increase in the count of junctions. Since a
coalescence does not increase the count of junctions,
ne ≤ K(M – 1) holds. Next, Eqn 6 follows from Eqns 4
and 5. This completes the proof of Statement (1).
(2) Assume the contrary, i.e., there exist gapped nodes

in G. Amongst all such nodes, consider a least node v,
i.e., v is such that there is no other gapped node in all
the paths from v to the reachable nongapped leaf nodes.
Let v have only one child u. Since the only genetic
exchange event is recombination, u must be gapped for
v to be gapped. This leads to a contradiction that v is
the least such node. Then v must have two children.
Consider the two following cases. Case i: Let the two

descendant nodes of v be coalescent nodes. By the
assumption each of them is non-gapped and by Thm 4
(1) the two must overlap. Hence v must be non-gapped
as well. Case ii: Let at least one of the descendant nodes
of v, say u, be a genetic-exchange node. Again, since the
only genetic exchange event is recombination, the seg-
ment transmitted by u to v is nongapped. Hence by
Thm 4 (1) v is nongapped. Thus for v to be gapped at
least one of its two descendants must be gapped, leading
to a contradiction.
Comparison with the standard coalescent
We introduce a definition of equivalence of ARG
instances here.
Definition 9 (equivalent ARG instances) Let G and

G′ be two ARG instances with G = ∪T∈ΤT and G′ = ∪T∈Τ′
T where each T is a tree. G and G′ are said to be equivalent
if and only if the following conditions hold. (1) S(G) = S(G
′), i.e., both define the same set of samples and (2) there
exists a bijection f : Τ®Τ′ such that for every TÎΤ, f(T) is
isomorphic to T via an edge-length as well as leaf-label
preserving isomorphism.
A graph-theoretic isomorphism definition, for the

equivalence of two ARG instances, is unduly rigid and
this weaker, but more relevant, definition of equivalence
is derived from the typical handling of ARGs in litera-
ture [13,17-19]. Next, we prove the following.
Theorem 6 Given an instance of ARG G, its minimal

descriptor Gmd is equivalent to G. (In this sense, the
minimal descriptor of a binary ARG is the standard coa-
lescent model.)
The equivalence of G and Gmd follows from Defns 5

and 9. (Further, since the binary ARG is an alternative
modeling of the standard coalescent, the minimal
descriptor of the binary ARG is equivalent to the stan-
dard coalescent model.)
Furthermore, in our experiments that involved compar-

ison with other models utilizing the recombination rate
parameter, r, we enforce this parameter on the minimal
descriptor to simplify the task of comparison. We
observe empirically that properties such as embedded
(marginal) tree branch length distribution, LD decay of
samples etc match very well with that of MS[15] and
GENOME[16] although the first method uses the coales-
cent time to the next event and the second carries out
the simulation at every generation. However, that is not
the case with the approximate models [17-19].

Estimating redundancy in an ARG
Recall that in G there is no vertex that has one descen-
dant and one ascendant (Property 1 (1)). We call G
reduced if it has no vertex that has only one descendant.
Given G, if G′ is obtained from G by removing all and
only those vertices that have single descendants then G′
is called as reduced G. Since a coalescent node cannot
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have a single descendant the following is easily verified:
If G′ is a reduction of G then G′ is structure-preserving
and S(G) = S(G′). A reduced G is a canonical form and
then it is meaningful to compare the number of vertices
between canonical forms.
Observation 4 If Gmd is a minimal descriptor of G,

then the number of vertices in reduced Gmd, which is no
more than in reduced G.
We have shown that an unbounded G (with infinite

number of vertices) always has a minimal descriptor
(with number of vertices = O(MK)). Hence we focus on
a subspace here- that of binary minimal descriptors. To
estimate their number, we use Thm 5 (2) that states no
node in a binary minimal descriptor is gapped. Charac-
terizing the type of nodes as gapped and non-gapped,
we simply compare the cardinality of the respective ‘uni-
versal sets’ of nodes of binary ARGs and binary minimal
descriptors, for a rough estimate. The following is the
ratio of non-gapped to gapped configurations, where M
is the usual parameter:

M M
M

i
i

O M

i

M

M( ) /

!

( )
+
⎛

⎝
⎜

⎞

⎠
⎟

=

=

−

∑
1 2

2

1

2

(7)

Sampling algorithm
An ARG construction has the following two indepen-
dent tasks: (1) Constructing the topology of the struc-
ture including the lengths (or time estimates) of the
edges. (2) Annotating the edges of the structure with
genetic events, the number of the events (say, muta-
tions) is a function of the length of the edges. The
topology is a critical part of the ARG and the graph-
theoretic treatment of the problem isolates the topol-
ogy which has lead to various novel insights. Due to
the fundamental characteristics in capturing the
essence of the evolving population and its versatility,
the standard coalescent approach [12,15] can be used
to estimate the lengths of the edges in the topology.
Thus even with the graph-theoretic treatment of the
problem, we appeal to essentials of coalescent theory
for the sampling of the minimal descriptors. All the
methods discussed in the introduction section are
based on the standard coalescent model, which is ana-
logous to the binary ARGs in this paper. Hence we
focus only on this subspace of generic ARGs in this
section.
Based on the models presented on this paper, there

are at least two possible approaches to sampling the
space: (1) One is sampling the space of standard ARGs.
(2) Since a minimal descriptor is also an ARG the other
approach is to directly sample the subspace of standard
ARGs, corresponding to the binary minimal descriptors.

In the first approach, a standard ARG is sampled and its
minimal descriptor is extracted either as a post-proces-
sing step or simultaneously during the construction pro-
cess. This approach has the advantage that the sampling
distribution is exactly the same as that of the standard
ARG, which is well studied in literature. The second
approach is to directly sample a subspace of ARGs.
A theoretical (time-expensive) sampling algorithm with
the ‘true’ probabilities for a generic ARG is presented in
[14]. Though extensively in use, the sampling distribu-
tion of the standard ARGs (binary) of the practical algo-
rithms is not fully understood (see, for instance,
discussions in [18]). Thus an understanding of the sam-
pling distribution of a subspace of ARGs may be equally
elusive.
There are two local properties of the vertices of a

minimal descriptor: (1) every coalescent vertex is also a
coalescent in one of the M embedded trees (Thm 2),
and, (2) a coalescing vertex must overlap with another
(Thm 4). Since these are local properties, it is possible
to exploit one or both of these (related) properties in
the sampling algorithms in both the above approaches.
In our experiments we have used the overlap property
of Thm 4 in the second approach of the last paragraph
to sample the space of minimal descriptor of binary
ARGs. To recapitulate, the input parameters to our
sampling algorithm are: (a) N(≥ 1): population size is
2N at each generation. (b) K(> 1): the number of sam-
ples. (c) M(≥ 1) & (s0,s1,s2,…,sM): M is the number of
nonmixing segments. The lengths of the segments are
(s0,s1,s2,…,sM) that model varying recombination rates
along the chromosome.

Discussion
Based on the graph-theoretic treatment of the pro-
blem, we first identify resolvable nodes in an ARG, i.e.
a node that has a possibility of being detected by some
algorithm. A non-resolvable node has no impact on
the extant samples, thus cannot be resolved without
additional information. Next, we identify the structure-
preserving nodes, i.e., the nodes critical to the struc-
ture of all the embedded (marginal) trees. Combining
these two characteristics, we give a method-indepen-
dent definition of a minimal descriptor that is both
structure-preserving and samples-preserving. We prove
that even an unbounded ARG has a bounded minimal
descriptor. However, the ‘missing’ and ‘extra’ nodes in
the model continue to be a source of unavoidable
complexity.

Missing nodes & Extra nodes
Since a minimal descriptor can be viewed as a full ARG
with missing nodes, then what are these nodes that are
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ignored? These carry some sets of the non-mixing seg-
ments and it turns out that whether they are trans-
mitted in a single unit or in multiple units has no
bearing either on the extant samples or on the
embedded (marginal) trees. This also implies that if
a multitude of such nodes is injected into an ARG,
it will continue to be structure-preserving with no
impact on the extant samples, thus giving an inflation of
the putative volume of evolutionary events. Then, their
complete elimination also suggests a possible deflation.
Additionally, there are a myriad ways to merge nodes
(see Methods) that are both structure-preserving and
samples-preserving, but alter the nature as well as the

volume of the genetic events. Thus it is not immediately
apparent how such intense variabilities, within the invar-
iants (structures and samples) can be effectively tackled.
It is best left to the specific question being addressed
and the data at hand.
Nevertheless, due to the local properties of the nodes

of the models, it may be still possible to exploit these
characteristics. Recall that while the nodes in the gen-
eric minimal descriptor may be gapped, no node in a
binary minimal descriptor is gapped (Thm 5 (2)).
Additionally the number of nodes in the minimal
descriptor of both the generic and the binary ARG is
O(MK) (Thms 4 and 5).

Figure 11 Comparison with standard ARG, MS [15], termed ‘Hudson’ in the figure, and the minimal descriptor ARG, termed ‘MD ARG’.
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Conclusion
By isolating the topology of the ancestral recombina-
tions graph, we have identified a lossless structure-pre-
serving subgraph of the general ARGs termed the
minimal descriptor ARG. We have also identified a sub-
class of ARGs, binary minimal descriptors, that are ana-
logous to the standard coalescent model in literature.

Two interesting observations are: (1) every ARG, includ-
ing unbounded ARGs, has an a priori bounded minimal
descriptor, and, (2) the decrease in the number of nodes
from an ARG to its minimal descriptor is estimated to
be exponential.
Some preliminary results from our implementation is

shown in Figs. 11, 12, 13 for the interested reader.

Figure 12 Comparison of the number of recombination nodes between standard and minimal descriptor ARG.

Figure 13 The branch length comparisons with GENOME [16] (that does not use the standard coalescent model) and MS [15]. Due to the
structure-preserving property of MD ARG, the lengths match very well.
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