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Aberrant T cell differentiation and lymphopenia are hallmarks of severe COVID-19 disease.
Since T cells must race to cull infected cells, they are quick to differentiate and achieve
cytotoxic function. With this responsiveness, comes hastened apoptosis, due to a
coupled mechanism of death and differentiation in both CD4+ and CD8+ lymphocytes
via CD95 (Fas) and serine-threonine kinase (Akt). T cell lymphopenia in severe cases may
represent cell death or peripheral migration. These facets depict SARS-Cov-2 as a
lympho-manipulative pathogen; it distorts T cell function, numbers, and death, and
creates a dysfunctional immune response. Whether preservation of T cells, prevention
of their aberrant differentiation, and expansion of their population may alter disease course
is unknown. Its investigation requires experimental interrogation of the linked differentiation
and death pathway by agents known to uncouple T cell proliferation and differentiation in
both CD4+ and CD8+ T cells.
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INTRODUCTION

A remarkable feature of infection identified early in the pandemic was a relative lymphopenia in
patients shown to correlate with poor outcomes (1–4). Whether this was due to direct viral
infection, activation-induced cell death or migration to the periphery remains unknown. Severe
Covid-19 is associated with significant lymphocyte hyperactivation, organ infiltration, and tissue
damage, suggesting widespread and, perhaps, deleterious immune activity. T-cell differentiation and
collapse can be facilitated by the canonical death receptor CD95 and interestingly, Bellesi et al.
describe the increased expression of CD95 and PD-1 on the T lymphocytes of Covid-19 patients and
suggest it could predispose T cells to apoptosis and exhaustion (5). Here, we explore the
implications of targeting lymphocyte death and differentiation in Covid-19 via Fas/Akt, and we
propose that CD95 may not only serve as a functional marker for apoptosis but also a means of
exuberant differentiation culminating in cytotoxic function and this expression may represent a
therapeutic point of intervention.
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DISCUSSION

Alternative Hypotheses to the “Cytokine
Storm” Needed
The immune dysfunction in Covid-19 has been so far enigmatic.
At first, the focus was on the elevation of cytokines characteristic
of the innate immune compartment (a “cytokine storm”)
associated with severe Covid-19, including IL-6, IL-8, and IL-
10, among others (3, 4, 6–8). However, a meta-analysis showed
IL-8 and IL-10 were substantially lower in Covid-19 as compared
to conditions like cytokine release syndrome, Acute Respiratory
Distress Syndrome (ARDS), and Sepsis (7). The authors suggest
the attribution of a “cytokine storm” to Covid-19 pathogenesis
was questionable (7). In a randomized trial, IL-6 blocking
therapy was unfortunately noted to be of little therapeutic
benefit in hospitalized patients (9). Based on their findings,
Leisman, et al. call for alternative hypothetical mechanisms
explaining the level of organ damage and immunopathology
(7). One consistency they note, however, is the preponderance of
lymphopenia in cases of severe Covid-19 (7).

Dissecting Possible T Cell Migration, “Exhaustion”,
and End Organ Damage in Covid-19
A key question is whether the lymphopenia is a mere marker of
worsening disease or is a mechanistic component where
intervention could influence outcomes. Diao et al. and Wang
et al. note decreases in CD4+ and CD8+ T cells (10, 11), and
Wang et al. show in a multivariate analysis that posttreatment
decreases in CD8+ T cells, B cells, and an increased CD4+/CD8+
ratio were independent predictors of poor outcomes (11).
Another study by Moderbacher et al. describe a causal
relationship of the presence of naïve CD8+ T cells and claimed
that in acute and convalescent cases of Covid-19, peak disease
severity was associated with a lack of naïve CD8+ T cells and
suggested the relationship may be causal by virtue of their less
proliferative and responsive capacity (12).

Diao et al. also noted elevated PD-1 and TIM-3 expression on
CD8+ T cells in recovering patients and proposed the cells may be
exhausted in the latter stages of the disease, with CD4+ cells
showing elevated PD-1 expression in worsening disease (10).
Zheng et al. noticed a kinetic where the total number of Natural
Killer (NK) cells and CD8+ T cells would decrease with worsening
disease, and upregulate the marker of exhaustion NKG2A, but they
claim with successful treatment with lopinavir-ritonavir the counts
would then increase and NKG2A expression would decrease during
the convalescent period (13). Zheng et al. did not find lymphopenia
in their cohort, however they noted that a non-exhausted subgroup
of PD-1- CTLA4- TIGIT- CD8+ T cells were significantly reduced
in percentage in patients with severe Covid-19 compared to mild
and moderate (14). Westmeier et al. sought to characterize the
proteins that cause cytotoxicity and possibly immunopathological
organ damage, and they found in young (29–79) patients CD8+ T
cells activated ex vivo following convalescence produced granzymes
A, B, and perforin at greater levels than healthy donors despite
expressing PD-1, suggesting the exhaustion was not functional
despite PD-1 expression (15). However, the CD8+ T cells of the
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elderly group (ages 80–96) did not upregulate the cytotoxic markers
Granzyme B and Perforin as the younger group did (ages 29–79),
indicating age-related exhaustion (15). They conclude PD-1
expressing CD8+ cells should not be ‘misclassified’ as exhausted,
however they state that PD-1 therapy may improve virus control
(presumably in the elderly group) but also may “exaggerate the
immunopathology in the lungs and other organs” (15). We agree
with this therapy in regard to aged patients but also propose that
cytotoxic function may be overexuberant in younger populations
and that withholding differentiation may, to an extent, temper
Granzyme and Perforin expression. Because of the possibility
raised, testing T cell modulators in pre-clinical animal models
is advised.

Ueland et al. recapitulate the findings by Diao et al. and report
that sTIM-3, an exhaustion marker associated with chronic
infections including HIV, Hepatitis B, Hepatitis C, and
pulmonary tuberculosis, had a rise in expression in severe
(ICU) patients, which correlated with the measured degree of
pulmonary infiltration and the cardiac marker NTproBNP (16).
Ueland et al. hypothesize that T cells are traveling to these organs
and are responsible for their harm, but temporarily upregulate
sTIM-3 as “a mechanism to prevent persistent and overshooting
T-cell activation, which could harm the host” (16). They still,
however, claim their findings suggest that T-cell activation and
exhaustion play a role in Covid-19 and posit T-cell targeted
treatment options may be of interest (16). Varchetta et al. report
an increase in TIM-3 and CD69 expression in CD8+ T cells and
note the extent of CD8+ T cell lymphopenia was significantly
greater in patients that succumbed to Covid-19 (17). They
describe this as a hyperactivated/exhausted state and observed
that during recovery TIM-3 and CD69 expression on T cells fell
and CD8+ lymphocyte count rose. They offer TIM-3, PD-1, and
NKG2A as “druggable molecules” that may be used to “unleash
antiviral activity” (17).

In an autopsy series, Nienhold et al. describe two
“immunopathological reaction patterns” (18). The first is
characterized by lung infiltration of CD8+ PD1+ T cells that they
speculate are causing diffuse alveolar damage (DAD) but better viral
control, and they question whether the PD-1 positivity denotes
exhaustion, but no conclusions are drawn. The other
immunopathological pattern is characterized by significantly
higher CD4+ T cell lung infiltrates and a higher viral load (18).
They conclude this suggests CD8+ T cells indeed contribute to viral
clearance butmay exert a degree of endorgandamage (18). Schurink
et al. foundeitheroneof two typesofTcell infiltration inall autopsies:
a CD8+ infiltrate causing DAD, or a CD4+ interstitial infiltrate with
exudative diffuse alveolar damage and bronchopneumonia (19).

Too Many Licenses to Kill
Multiorgan tissue damage is present in severe cases of Covid-19 and
Multisystem Inflammatory Syndrome in Children (MIS-C),
possibly contributed to by T cells activated by a superantigenic-
like insert (20). After activation, such T cells may be capable of
migration to peripheral tissues following their differentiation
and acquisition of cytotoxic ability conferred by effector
differentiation (20). Cheng et al. argue that virtue of the
December 2020 | Volume 11 | Article 600405
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superantigenic insert, infection would prime self-reactive T cells
(20). Combined with the apparent downregulation of FOXP3 in
CD4+ CD25+ T cells and their expression of FASL in Covid-19
patients (21), this could bode poorly for organs and immune-
privileged sites. Following Covid-19 even canonically immune-
privileged sites like the eye have inflammatory infiltrates (22)
along with organs like the heart (19). Israelow et al. observe
hyperactivation of CD8+ cells and their infiltration into the lung
in a murine model of Covid-19 (23). Indeed, an increase in the
frequency of effector cells has been shown in one analysis of T cell
physiological correlates of Covid-19 disease severity; CD8+ T cells
in severe cases expressed increased levels of Granzyme and Perforin
than in patients with mild disease (16). Whether this represents
increased effector function or amarker for exhaustion in Covid-19 is
unknown considering that in the Covid-19 disease state, since
Kalfaoglu et al. show even PD-1 was not inducing lymphocyte
exhaustion (21). Taken with the recent findings discussed
previously, we propose testing the alternative hypothesis put
forward by Westmeier et al, that the expression of granzyme and
perforin may engender greater end organ damage by virtue of their
function (15). These insights and observations suggest exuberant
activation in Covid-19 may facilitate the differentiation of T cells.
Overexuberant acquisition of effector function may be targeted
through CD95’s nonapoptotic signal via Akt (24).

Evidence of Absence (Hyperactivation and Perhaps
Death)
Zinzula describes the crucial role of the type I interferon
responses in Covid-19 in respect to the viral ORF8 protein
(25). When this protein, which downregulates MHC I, is
ablated with the frameshift mutation D382, patients experience
mild illness (25). In a study of patients with the mutation, Young
et al. find these patients exhibit higher levels of IFN-g, TNF-a,
IL-2, and IL-5, which they contextualize as associated with T cell
activation (26). Illustrating the importance of an early response,
Tan, et al. show early T cell responses were associated with rapid
viral clearance and mild disease and suggested an early IFN‐ g
producing CD4+ T cell response recognizing ORF7/8 may be
implicated in viral control (27). Without early control Sars-Cov-
2 may accumulate and create pathogenesis through cytopathic
and immune-mediated mechanisms. Habel et al. describe an
irreconcilable amount of CD8+ “bystander activation… by some
mechanism”. They also observe, in convalescence, a paucity of
circulating effector subsets, and describe it as either due to 1)
limited clonal expansion and differentiation or 2) T cell effectors
are being driven to sites of virus-induced pathology and to
apoptosis (28). In a transcriptome analysis Zhang et al. found
that the CD8+ naïve T cell subset did not restore to the levels of
healthy donors in convalescence, and that a subset of CD8+
effectors expressing GNLY had highly cytotoxic function,
became high and remained high even in convalescence (29).
Furthermore, using Gene Set Ontology, they found statistically
significant, stepwise increases in the programs for 1) apoptosis
and 2) migration in T cells from patients with Covid-19 (healthy
donor/moderate/severe), which led them to conclude “T cells in
severe patients likely underwent migration and apoptosis” (29).
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Taken together with the proposed presence of a superantigenic-
like insert by Cheng et al., we propose that attenuation of the honest
expression of MHC I by ORF8 may allow superantigenic
accumulation to a point to when the adaptive compartment is
finally presented antigen, there is an atypically massive viral protein
and superantigenic burden in the pipeline which may
hyperstimulate, lead to AICD, overexuberant differentiation, tissue
migration (as per the alternative hypothesis put forth by Habel,
et al.), and cytotoxic function. Indeed, De Biasi et al. find production
and release of cytokines they describe as similar to “a polyclonal,
superantigen-driven T-cell activation” and observed increased levels
of IFN-g in the plasma of Covid-19 patients (30). They also noted
the increased expression of CD57 on CD8+ T cells of Covid-19
patients, which they claim denotes a susceptibility to activation-
induced cell death and a lack of proliferative capacity (30). However,
Focosi et al. note there is preservation of cytokine secretion after
stimulation of CD57+ lymphocytes (31). Furthermore,
Chattopadhyay et al. have noted CD8+ T cells “expressing high
levels of Perf were uniformly bright for CD57” (32).

With the findings by Bellesi et al, of increased CD95
expression, we believe there may be a contributing element of
apoptosis to the lymphopenia observed in Covid-19, but this is a
challenge to prove as cells which apoptose by this mechanism do
not remain for functional read-outs. Exogenously withholding
differentiation may 1) reduce the expression of the cytotoxic
proteins like granzyme and perforin that Westmeier, et al.
theorize contribute to end organ damage; 2) maintain CD62L
expression and other functional markers associated with less
differentiation which may keep T cells from peripheral
migration; and 3) prevent CD95-mediated death, which has
been shown to predominantly occur in differentiated effector
memory lymphocytes rather than naïve, stem cell memory, and
central memory subsets of differentiation (24).

Aberrant CD4+ T Cell Differentiation in
Covid-19
Aberrant effector differentiation has been described in CD4+ T
cells in severe cases of Covid-19 as well (21). Kalfaoglu et al.
describe an aberrantly differentiated subset of CD4+ CD25+
FOXP3- T cells they call “hyperactivated T-cells” which become
multifaceted Th1-Th2 effector cells rather than Tregs due to the
repressed expression of FOXP3 (21). These CD4+ CD25+ T cells
‘vigorously’ proliferate, downregulate FOXP3, and express FasL
in a dysfunctional differentiation pathway induced by Covid-19
(21). The authors also state the CD25+ ‘hyperactivated T-cells”
also expressed PD-1, but noted it was not able to control or
suppress their function and hypothesize CD80 may be
suppressing PD-1 function (21). We would like to bring this
insensitivity to exhaustion in context to the observations and
assumptions of exhaustion in studies cited previously. Such
insensitivity to PD-1 in these aberrant cells represents
exuberant function, and the FasL expression may represent a
liability. For example, FasL expression on CD8+ T cells is known
to confer a paracrine T-cell fratricidal liability in vivo (33), and a
paracrine T-cell to T-cell FasL-Fas signal was also shown to
enhance differentiation of naïve CD8+ T cells by concurrently
December 2020 | Volume 11 | Article 600405
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stimulated memory CD8+ T cells in an effect that was mitigated
by a FasL blocking antibody (24). This paracrine effect of FasL
also pushed naïve CD8+ T cells to express dramatically increased
Granzyme B and Ifn-g levels (24).

Much like their CD8+ counterparts, Non-apoptotic signaling of
Fas differentiates murine CD4+ T cells as well (34); Cruz et al. show
that LZ-FasL treatment during in vitro stimulation of CD4+ cells,
enhances differentiation from naïve to CD44hi CD62Llo effector
memory for wild type CD4+ T cells (34). Differentiation was
induced in Fas palmitoylation-deficient (C194V) cells, (which are
replete in non-apoptotic Fas signaling but have a palmitoylation
defect which prevents the apoptotic signal of Fas and therefore the
apoptosis) but not for CD4+ lpr cells which are completely deficient
in Fas signaling (34). Additionally, non-apoptotic signaling of Fas
has been shown to reduce the frequency of FOXP3+ CD4+ Tregs in
mice (34). lpr mice completely deficient in Fas signaling were
crossed to express a version of Fas that was replete in non-
apoptotic signaling but that had the palmitoylation defect
(C194V) had a decrease in Tregs from the higher frequency of
that in lpr alone, to a normal/near wild-type frequency, which may
suggest non-apoptotic Fas signaling in vivo may reduce the
frequency of FOXP3 expressing CD4+ cells (34). Furthermore,
Akt signaling in human CD4+ T cells represses FOXO1- a key
transcription factor that enables FOXP3 expression and function
(34–36). CD4+ T cells, like CD8s, have effector differentiation
withheld during stimulation with an AKT inhibitor (37, 38) and
also retain functional FOXO1 (38). It seems warranted to test
whether FOXP3 expression can be maintained by inhibition of
the Fas/AKT pathway in the Covid-19 disease state.

CD95 Sensitivity Following Activation
Leading to Differentiation
In parallel with lymphopenia in severe cases of Covid-19, the
machinery responsible for T cell death and differentiation are
enriched as well. Bellesi et al. showed CD-95 was highly
expressed on the T cells of Covid-19 patients (5), and Mathew
et al. identify CD95 as a marker of aberrant CD8+ cells in an
‘immunotype’ associated with severe Covid-19 (39). Both the
expression of CD95 on T cells and the sensitivity to CD95
stimulation are rapidly inducible through T cell activation (24),
and Cheng et al. argue T cells are activated by a superantigenic
motif on the Spike protein of SARS-Cov-2 that is highly similar
to staphylococcal enterotoxin B (20). Activated T cells are
especially sensitive to the CD95-mediated differentiation signal
(24). Interestingly, a non-apoptotic CD95 signal was shown to
cause differentiation and effector function in activated (CD3/
CD28 stimulated) murine and human CD8+ T-cells in a dose-
dependent manner with leucine zipper tagged Fas ligand (LZ-
FasL), and this differentiation signal was carried through Akt
(24). Interestingly, the death induced by trimerized CD95 Ligand
(CD95L/CD178) was shown to be predominantly limited to the
terminally differentiated cells rather than the Naïve and Central
Memory (24). Furthermore, death and differentiation were
withheld during in vitro stimulation and expansion of T cells
by use of an AKT inhibitor even in the presence of LZ-FasL,
revealing a dominant effect of AKT inhibition for the mitigation
Frontiers in Immunology | www.frontiersin.org 4
of CD95 signaling (24). Considering this mechanism of
widespread activation, T cells not specific to SARS-COV-2 may
differentiate, achieve expression of functional cytotoxic proteins,
and die, possibly via a CD95 mediated component (Figure 1).

Who Will be The First to Akt?
Akt inhibition as a potential therapeutic for Covid-19 has been
proposed in the past. Fagone et al. describe a transcriptomic
profile in which Akt signaling was associated with disease
progression (40), and Somanath discusses a similar rationale of
modulating immune-mediated inflammation: that Akt
inhibition is justified on the basis of an anti-inflammatory
effect exerted by CD4+ T cells that may differentiate into
Effector T regulatory cells in the ARDS lung (41). While we
concur, we would like to supplement this argument further with
discussion of the effects on the differentiation and acquisition of
effector function and the inclusion of nonapoptotic CD95
upstream signaling. Akt inhibition has also been proposed on
the basis of an anti-viral effect (42–44). However, it appears that
in presenting stages of Covid-19 disease antiviral agents seem to
have questionable therapeutic benefit, possibly due to the disease
entering an immunopathological stage of exuberant lymphocytic
response (19). Sorbera et al. claim SARS-Cov-induced apoptosis
via a caspase-dependent mechanism may suggest inhibition of
the Fas/FasL interaction may have efficacy in Sars-Cov-2, but the
rationale disregards differentiation (45). Finally, in a CRISPR-
Cas9 lentiviral vector knock out of GM-CSF in CAR T cells, Fas
expression was significantly inhibited, which the authors argue
would reduce CAR-T apoptosis (46), and GM-CSF inhibition
trials are undergoing. Considering 1) the role the immune system
may have in Covid-19 pathogenesis, 2) the observation that FasL
is upregulated (21), and 3) that Fas signaling induces Akt-
mediated differentiation, investigation is warranted.

Physiological Type I Interferons Required:
An Aetiological Subset of Covid-19
Disease
While we propose the attenuation of an exuberant effector
differentiation may dampen end organ damage, there is a caveat
to the general application of this proposed mechanism that requires
nuance in the diagnosis and management of patients with distinct
aetiologies. Lee and Shin discuss the heterogeny of type I interferon
responses and attribute the cause of such discrepancies as due to
timing of the observations (early vs. late) and severity of disease
(mild/moderate/severe) (47). They propose a feed-forward
mechanism found by Lee et al. where Type I IFNs break a
tolerance induced by TNF (48). Lee et al. posit that an early IFN-
I response can control viral replication, but a delayed response can
cause pathological inflammation (48). Indeed, an interferon deficit
can permit high levels of detectable virus in the blood (49).
Illustrating this heterogeneity, Lee and Shin cite a trial which
found administered IFNa had a protective effect if given early
and a detrimental effect if given late (47, 50). Furthermore, Bastard
et al. describe individuals predisposed to severe Covid-19 with
autoantibodies against type I interferons representing about 10%
of a cohort of severe patients (51), and Zhang et al. identify inborn
December 2020 | Volume 11 | Article 600405
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errors of Interferons (including TLR3, IFNAR1, and IFNAR2) in
3.5% of patients in a cohort with life-threatening Covid-19 (52). We
believe studying the role of CD95 in a murine model of Covid-19
without such inborn or acquired errors may not recapitulate the
autoantibody or inborn errors of IFN seen in a subset of patients but
would rather be more comparable to the pathological experience in
a patient without such inborn defects in Interferon or autoantibody
responses. We cannot comment on the T cell kinetics or
differentiation states of such patients, or whether altering T cell
differentiation would be a boon for such patients as insufficient data
exists, however Zhang et al. propose it would be helpful to identify
such patients early or even before infection so they may have their
deficiencies supplemented with Interferon when an efficacious
therapy is found (52).

Mitigating the T Cell Physiological
Consequences of Covid-19
CD4+ and CD8+ T cells post Covid-19 were on the whole, less
comprised of naïve and memory subsets in survivors vs. healthy
donors, while the former had a lesser proportion of naïve cells on
a background of lymphopenia (53). When taking this finding
from Yang et al. of a diminished proportion of Naïve CD4+ and
CD8+ T cells post- Covid-19 (53) along with the finding from
Frontiers in Immunology | www.frontiersin.org 5
Moderbacher, et al. that naïve CD8+ T cells are associated with
lesser disease severity (12), we must consider the consequences of
reinfection if the pool of naïve T cells significantly diminishes
after infection and outcomes are influenced by the presence of
naïve CD8+ T cells. In this scenario, it would be best to preserve
lesser-differentiated populations of T cells by blocking CD95-
mediated T-cell death and differentiation in vivo, which is
precedented in a murine-human xenograft model of CAR-T
adoptive immunotherapy; CAR-T cells transduced with a
recombinant Fas receptor lacking an intracellular signaling
domain were substantially more capable of inducing durable
tumor responses and showed increased in vivo persistence,
presumably by virtue of their attenuated differentiation and
death (54). Also, blocking T cell effector acquisition in vitro
during TCR stimulation and expansion with a CD95 blocking
antibody or with an AKT1/AKT2 (AKT VIII) inhibitor, has been
shown to allow tumor-specific CD8+ T cells to proliferate
without differentiating, thereby greatly increasing their
numbers and withholding premature apoptosis (24).
Furthermore, on a cell-for-cell basis, T cells with their
differentiation withheld by Akt inhibition were superior at
eradicating established human and murine tumor after
adoptive transfer in both a murine and murine-human
FIGURE 1 | Model of in vivo therapy targeting differentiation with either AKTi or Fas/FasL blocking antibody (A) Starting populations of T cells and relative Fas
expression. Note: patients with greater levels of differentiation would be more likely to benefit from this therapy by virtue of greater expression of Fas (B).
Superantigenic stimulation of T cells (C) Akt-mediated differentiation of T cells. Note: Stimulation can serially occur, and differentiation can be attenuated by providing
an Akt inhibitor or Fas/FasL blocking antibody in vivo (D), The population of cells after stimulation (E) cells with greater levels of differentiation will have higher levels of
cytotoxic function, with the most terminally differentiated likely to show true exhaustion as referenced in the text.
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xenograft models of adoptive T cell immunotherapy (24, 37, 38).
Akt inhibition also maintained a higher percentage of CD62L+
CD44- CD8+ T cells (Tn or Tscm) after stimulation, and Fas
signaling induced with LZ-FasL, a trimerized CD95 ligand,
differentiated naïve T cells in a dose-dependent fashion (24).
While we are aware that stimulation and expansion in vivo vs. ex
vivo are entirely different contexts, we propose the differentiation
and death signal and susceptibility of T cells to CD95 is similar. It
would be advisable to further characterize the effect in vivo.
CONCLUSION

The role of an Akt-mediated CD95 signal as a causal factor
rather than a marker in this aberrancy warrants exploration
Frontiers in Immunology | www.frontiersin.org 6
since CD95 could be implicated in the exuberant effector
differentiation and death of T cells in severe Covid-19 (21).
Given the dual function of CD95, CD95-mediated
differentiation and death may be advancing T cells to greater
effector acquisition, fewer numbers, and immune dysregulation
(Table 1). This may be a pathological state yielding tissue
damage due to superantigenic stimulation of T cells not specific
to SARS-Cov-2. Whether CD95-mediated death and/or
differentiation is pathogenic can be tested in murine models
of severe/lethal Covid-19, like the K18 hACE2 model (55).
Preclinical animal models of severe Covid-19 that recapitulate a
type I interferon competent and lymphopenic experience may
be useful for the investigation of a strategy that seeks to
preserve T cells and reduce their dysfunction by preventing
their death and differentiation.
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