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We describe three newly isolated phages—Obliviate, UmaThurman, and Guacamole—that infect Gordonia terrae 3612. The
three genomes are related to one another but are not closely related to other previously sequenced phages or prophages. The
three phages are predicted to use integration-dependent immunity systems as described in several mycobacteriophages.
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Gordonia terrae 3612 and Mycobacterium smegmatis are both
members of the taxonomic order Corynebacteriales. The hun-

dreds of sequenced mycobacteriophages display considerable ge-
netic diversity (1), but few Gordonia phage genome sequences are
available, and their diversity and relationships to the mycobacte-
riophages are ill defined (2–7). Isolation and characterization of
Gordonia phages in the Science Education Alliance–Phage Hunt-
ers Advancing Genomics and Evolutionary Science (SEA-
PHAGES) program assists in addressing these questions (1, 8).

Phages Obliviate, UmaThurman, and Guacamole were iso-
lated by direct plating of soil samples from Pittsburgh, Pennsylva-
nia, USA, on lawns of G. terrae 3612. They were then plaque-
purified and amplified, and their DNA was extracted. All three
phages have similar virion morphologies with 50-nm diameter
isometric heads and long flexible tails, approximately 250 nm
long. Each genome was sequenced using the Illumina MiSeq plat-
form, and 140-bp single-end reads were assembled into major
single contigs with lengths of 49,286 bp, 50,127 bp, and 49,894 bp
with 619-fold, 1,434-fold, and 809-fold coverage for Obliviate,
UmaThurman, and Guacamole, respectively. All have defined
ends with 10-base 3= extensions (Obliviate and Guacamole: 5=-
TCGCCGGTGA; UmaThurman: 5=-TCTCCGGTGA). The GC
contents of the genomes are 67.2, 67.5, and 67.0%, similar to
G. terrae (67.8%). The three phages share extensive nucleotide
sequence similarity with pairwise 96% nucleotide sequence iden-
tity spanning 72 to 82% of their genome lengths. The greatest
similarities are within the virion structural and assembly genes,
with interspersed segments of similarity within the nonstructural
genes. The phages do not share extensive nucleotide sequence
similarity with other phages or predicted prophages, although
there are two small segments (~1.5 kb) with similarity to putative
capsid assembly protease and lysis genes of a potential prophage in
Gordonia sp. KTR9 (9).

Using GeneMark and GLIMMER (10, 11) we identified 80, 83,

and 78 protein-coding genes in Obliviate, UmaThurman, and
Guacamole, respectively; none of the genomes encode tRNAs.

All the predicted genes are transcribed rightward, with the ex-
ception of five to seven leftward-transcribed genes near the ge-
nome centers that include putative immunity repressors and in-
tegrase genes. The genome left arms contain the virion structure
and assembly genes, and the right arms contain nonstructural
genes, including recET recombinases. The lysis genes are unusu-
ally located amid the phage tail gene cluster, and two genes,
Obliviate 19 and 20, encode endolysin functions—the peptidase
and glycoside hydrolase domains, respectively.

Obliviate is predicted to use an integration-dependent immu-
nity system as described for some mycobacteriophages (12, 13),
characterized by the location of the phage attachment site (attP)
within the repressor gene (38), and a degradation tag (-DAA) at
the C-terminus of gp38. Obliviate is predicted to integrate at an
attB site overlapping a Gordonia tRNAthr gene (KRT9_RS04270).
Guacamole encodes a distantly related repressor (gp40; 41%
amino acid [aa] identity with Obliviate gp38), although it contains
the same attP core and is predicted to integrate at the same attB
site. The UmaThurman repressor (gp36) is more distantly related
to the Obliviate/Guacamole repressors (�40% aa identity) and
contains a different attP corresponding to an attB site overlapping
a tRNAarg gene conserved in many actinobacterial strains.

Nucleotide sequence accession numbers. The Obliviate,
UmaThurman, and Guacamole genomes are available from
GenBank under the accession numbers KU963254, KU963251,
and KU963259.
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