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Abstract: Much attention has been paid to construct an applicable knowledge measure or uncertainty
measure for Atanassov’s intuitionistic fuzzy set (AIFS). However, many of these measures were
developed from intuitionistic fuzzy entropy, which cannot really reflect the knowledge amount
associated with an AIFS well. Some knowledge measures were constructed based on the distinction
between an AIFS and its complementary set, which may lead to information loss in decision making.
In this paper, knowledge amount of an AIFS is quantified by calculating the distance from an AIFS to
the AIFS with maximum uncertainty. Axiomatic properties for the definition of knowledge measure
are extended to a more general level. Then the new knowledge measure is developed based on an
intuitionistic fuzzy distance measure. The properties of the proposed distance-based knowledge
measure are investigated based on mathematical analysis and numerical examples. The proposed
knowledge measure is finally applied to solve the multi-attribute group decision-making (MAGDM)
problem with intuitionistic fuzzy information. The new MAGDM method is used to evaluate the
threat level of malicious code. Experimental results in malicious code threat evaluation demonstrate
the effectiveness and validity of proposed method.

Keywords: Atanassov’s intuitionistic fuzzy sets; malicious code; distance measure; knowledge
measure; uncertainty measure; decision making

1. Introduction

Atanassov [1,2] developed the concept of intuitionistic fuzzy set on the basis of
Zadeh’s fuzzy set [3]. Atanassov’s intuitionistic fuzzy sets (AIFSs) relax the condition
that the non-membership degree and the membership degree sum to 1. AIFSs are a
generalization of fuzzy sets, i.e., a particular case of other types of generalized fuzzy
sets [4,5]. Moreover, AIFSs are identical to interval-valued fuzzy sets (IVFSs) from a
mathematical perspective [6]. In an AIFS, the hesitation degree is the difference between
one and the sum of membership and non-membership grades. The hesitation degree
contributes much serviceability to the depiction of uncertain information. Researchers
have paid much attention on the intuitionistic fuzzy set theory since its advantage in
modeling uncertain information systems [7]. The theory of intuitionistic fuzzy sets has
been successfully applied in many fields, including uncertainty reasoning [8] and decision
making [9,10]. The connection between AIFSs and other uncertain theories is also attracting
increasingly much interest [11–18].

Zadeh [3] first introduced the notion of entropy to fuzzy sets to measure the uncer-
tainty or fuzziness in a fuzzy set. The notion of fuzzy entropy defined for fuzzy sets
is partially similar to the concept of Shannon entropy [19], which was initially defined
in probability theory. Luca and Termini [20] developed the axiomatic definition of en-
tropy, and then proposed a kind of non-probabilistic fuzzy entropy. Then, Burillo and
Bustince [21] first axiomatically defined the measure of intuitionistic entropy, which was
merely determined by hesitation degree. Unlike the entropy measures created by Burillo
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and Bustince [21], the entropy measure for intuitionistic fuzzy sets developed by Szmidt
and Kacprzyk [22] was defined based on the ratio of two distance values. Axiomatic
definition for intuitionistic fuzzy entropy was also presented by Szmidt and Kacprzyk [22].
Following the work of Szmidt and Kacprzyk [22], many authors [23–26] have done a great
deal of work concentrating on the definition of entropy measures. Some research has
also focused on the entropy of AIFSs and their application in the evaluation of attribution
weighting vector [9,10]. It has been pointed out by Szmidt et al. [27] that entropy measure
cannot capture all uncertainty hidden in an AIFS. Thus, it may be difficult to develop a
satisfactory uncertainty measure for AIFSs merely by entropy measure. The difference
between entropy and hesitation in measuring the uncertainty of AIFSs has been pointed
out by Pal et al. [28]. In [28], it was claimed that the combination of entropy and hesitation
may furnish an effective way to measure the total uncertainty hidden in an AIFS.

Generally, knowledge measure is related to the useful information provided by an
AIFS. From the perspective of information theory, much information indicates a great
amount of knowledge, which is helpful for decision making. Therefore, the notion of
knowledge measure can be regarded as the complementary concept of total uncertainty
measure, rather than of entropy measure. This means that less total uncertainty always
accompanies a greater amount of knowledge. With the purpose of making an evident
distinction between types of intuitionistic fuzzy information, Szmidt et al. [27] took both
intuitionistic fuzzy entropy and hesitation into consideration to develop a knowledge
measure for AIFS, in which the intuitionistic fuzzy entropy was defined by quantifying
the ration between the nearer distance and farer distance. This knowledge measure has
been used to estimate the weight of each attribute to solve multi-attribute decision making
(MADM) problems [29]. Nguyen [30] has developed a novel knowledge measure by mea-
suring the distance from an AIFS to the most uncertain AIFS. It seems that this knowledge
measure can well describe fuzziness and intuitionism in AIFSs. However, the use of nor-
malized Euclidean distance may bring another problem, namely that the relation between
fuzziness and knowledge cannot be completely reflected. Recently, Guo [29] put forward a
new axiomatic definition for the knowledge measure of AIFS. A new and highly robust
model was introduced in [31] to quantify the knowledge amount of AIFS. By measuring the
difference between an AIFS and its complement, the new model proposed by Guo [31] has
been widely used to defined entropy measure for AIFSs [32,33]. Moreover, the combination
of the two parts in Guo’s model [31] lacks a clear physical interpretation. Several years
ago, Das et al. [34] performed a comprehensive review of axiomatic definitions of infor-
mation measures of AIFSs and investigated their relationships, in which entropy measure,
knowledge measure, distance measure, and similarity measure are all concerned.

The above analysis demonstrates that the topic of knowledge measure for AIFSs is
still open for debate, and commanding prodigious attention. Most research on knowledge
and uncertainty measures of AIFSs mainly focus on the difference between AIFS and its
complement. Only a few knowledge measures are constructed by measuring the distinction
between an AIFS and the AIFS with maximum uncertainty or minimum uncertainty.
Although Nguyen [30] opened up this new way of studying knowledge measures of AIFSs,
further exploration is needed to improve this kind of knowledge measure and realize a
desirable knowledge measure for AIFSs. This motivates us to present a new method to
measure the knowledge of AIFSs based on a novel intuitionistic fuzzy distance, which
is defined based on the transformation from an intuitionistic fuzzy value (IFV) to an
interval value. An axiomatic definition of the knowledge measure of AIFSs will also be
formulated from a more general point of view. Moreover, we will further explore the
proposed knowledge measure’s properties, and we compare it with other measures based
on numerical examples to demonstrate its performance. Then we will apply it to the
problem of intuitionistic fuzzy multi-attribute group decision making (MAGDM).

The remainder of this study is structured as follows. Several concepts regarding
AIFSs are explained in Section 2. In Section 3, a new type of distance measure for AIFSs
is developed, followed by the proposal and discussion of the distance-based knowledge
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measure in Section 4. In Section 5, the proposed distance and knowledge measures are
used to develop a new method to solve MAGDM problems in intuitionistic fuzzy condition.
Application of the new method for MAGDM is presented in Section 6 to illustrate the
performance of the proposed method. Some conclusions of this paper are presented in
Section 7.

2. Preliminaries

Here, we briefly recount some background knowledge about AIFSs to for ease of
subsequent exposition.

Definition 1. Letting a non-empty set X = {x1, x2, · · · , xn} be the universe of discourse, a fuzzy
set A in X is then defined as follows [3]:

A = {〈x, µA(x)〉|x ∈ X } (1)

where µA : X → [0, 1] is the membership degree.

Definition 2. The intuitionistic fuzzy set B in X = {x1, x2, · · · , xn} as defined by Atanassov can
be expressed as [1]:

B = {〈x, µB(x), vB(x)〉|x ∈ X } (2)

where µB : X → [0, 1] and vB : X → [0, 1] are membership degree and non-membership degree,
respectively, with the condition

0 ≤ µB(x) + vB(x) ≤ 1 (3)

The hesitation degree of AIFS B defined in X is denoted πB. ∀x ∈ X, and the hesitation degree
is calculated by the expression that follows:

πB(x) = 1− µB(x)− vB(x) (4)

Apparently, we can obtain πB(x) ∈ [0, 1], ∀x ∈ X. πB(x) is also referred to as the
intuitionistic index of x to B. Greater πB(x) indicates more vagueness. It is apparent that
when πB(x) = 0, ∀x ∈ X, the AIFS degenerates into an ordinary fuzzy set.

For two AIFSs A and B defined in X, the following relations were defined in [1]:
A ⊇ B if and only if µA(x) ≥ µB(x), vA(x) ≤ vB(x) for each x ∈ X. The complement of B
is denoted BC [1], and can be obtained by BC = {〈x, vB(x), µB(x)〉|x ∈ X }.

It has been proved that AIFSs and IVFSs are mathematically identical [4,6]. They can
be converted to each other. Thus, For an AIFS B defined in X and x ∈ X, we can use an
interval [µB(x), 1− vB(x)] to express the membership and non-membership grades of x
with respect to B. We can see this as the interval-valued interpretation of AIFS, in which
µB(x) and 1− vB(x) represent the lower bound and upper bound of membership degree,
respectively. Apparently, [µB(x), 1− vB(x)] is a valid interval, since µB(x) ≤ 1− vB(x)
always holds for µB(x)+ vB(x) ≤ 1. The correspondence relation between AIFSs and IVFSs
holds only from the mathematical point of view. If we explore their conceptual explanation
and practical application, they may differ in the description of uncertainty [9,35].

In what follows, AIFSs(X) is used to denote the set consisted of all AIFSs defined in
X. Generally, the couple 〈µB(x), vB(x)〉 is also called an IFV for clarity.

Definition 3. For two IFVs a = 〈µa, va〉 and b = 〈µb, vb〉, the partial order between them is
defined as a ≤ b⇔ µa ≤ µb, va ≥ vb [1].

For all IFVs, based on the partial ranking order, we can obtain the smallest IFV as
〈0, 1〉, denoted by 0, and the largest IFV as 〈1, 0〉, denoted by 1.

For a linear order of IFVs, to rank multiple IFVs, Chen and Tan [36] defined the score
function of an IFV as S(a) = µa − va. Following the concept of score function for IFVs,
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Hong and Choi [37] developed an accuracy function H(a) = µa + va to depict the accuracy
of IFV a = 〈µa, va〉. Xu [38] then proposed a ranking-order relation between two IFVs a
and b, which can be equivalently shown as follows.

For their score functions, if S(a) is greater than S(b), then a is greater than b, and
vice versa.

If S(a) and S(b) are equal, we consider the following cases: (1) if H(a) is equal to
H(b), then a and b are equal; and (2) if H(a) is greater than H(b), then a is greater than b;
and vice versa.

Based on above order relation, the linear order relation of multiple IFVs can be ob-
tained.

We know that similarity measure and distance measure are important in the research
of fuzzy set theory [39]. Similarly, the construction of similarity measure and distance
measures for AIFSs plays an important role in AIFSs [23,40–50], and they are helpful for
the comparison of intuitionistic fuzzy information [24,25].

Definition 4. For a mapping D : AIFS× AIFS→ [0, 1] , it is called a distance measure between
two AIFSs A and B defined in X if D(A, B) satisfies the following properties [23]:

(DP1) 0 ≤ D(A, B) ≤ 1;
(DP2) D(A, B) = 0, if and only if A = B;
(DP3) D(A, B) = D(B, A);
(DP4) If A ⊆ B ⊆ C, then D(A, B) ≤ D(A, C)andD(B, C) ≤ D(A, C)

Definition 5. A mapping S : AIFS× AIFS→ [0, 1] is called a similarity measure two AIFSs A
and B defined in X if S(a, b) satisfies the following properties [40]:

(SP1) 0 ≤ S(A, B) ≤ 1;
(SP2) S(A, B) = 1, if and only if A = B;
(SP3) S(A, B) = S(B, A);
(SP4) If A ⊆ B ⊆ C, then S(A, B) ≥ S(A, C) and S(B, C) ≥ S(A, C).

Similarity measure and distance measure usually are regarded as a couple of dual
concepts. Thus, distance measures can be used to define similarity measures, and vice versa.

3. New Intuitionistic Fuzzy Distance Measure

In past years, numerous similarity measure and distance measure have been ad-
vanced [7,39,45]. However, some may lead to unreasonable results in practical applica-
tions [7]. Some new defined distance/similarity measures may have complicated expres-
sions [39,45], which are not suitable for constructing knowledge measure for AIFSs. Thus,
it is necessary to define a desirable distance measure to assist us in developing a new
knowledge measure. Here, we propose a new distance measure for AIFSs by borrowing a
distance measure for interval values. It has been claimed that an AIFS can be represented
in the form of interval-valued fuzzy set [5]. Based on such relation, an intuitionistic fuzzy
distance measure can be developed based on interval comparison.

3.1. Interval-Comparison-Based Distance Measure for AIFSs

AnAIFS B = {〈x, µB(x), vB(x)〉|x ∈ X } defined in X = {x1, x2, · · · , xn} indicates the
membership degree of xi to B is uncertain, with lower and upper bounds of µB(xi) and
1− vB(xi), respectively. That is to say, the membership grade of xi to B lies in an interval
[µB(xi), 1− vB(xi)], i = 1, 2, · · · , n. Thus, we can measure distance between AIFSs A and
B defined in X = {x1, x2, · · · , xn} by comparing interval values [µA(xi), 1− vA(xi)] and
[µB(xi), 1− vB(xi)], i = 1, 2, · · · , n.

In [51], authors have reviewed distances between interval values. They pointed out
that the distance measure dTD proposed in [52] is not a metric distance, since for an interval
value a = [a1,a2], dTD(a, a) = 0 does not always hold. Thus, Irpino and Verde [51] proposed a
Wasserstein distance based on the point of view of one-dimensional uniform distribution,



Entropy 2021, 23, 1119 5 of 26

rather than from that of two-dimensional uniform distribution as developed in [52]. The
definition as follows gives the Wasserstein distance measure between interval values.

Definition 6. Given two interval values a = [a1,a2] and b = [b1,b2] with a, b ∈ [0, 1] , the distance
between them is defined as [51]:

dI(a, b) =

√(
a1 + a2

2
− b1 + b2

2

)2
+

1
3

(
a2 − a1

2
− b2 − b1

2

)2
(5)

Thus, ∀i ∈ {1, 2, · · · , n}, and for Axi = 〈µA(xi), vA(xi)〉 and Bxi = 〈µB(xi), vB(xi)〉 the
distance between their corresponding interval values [µA(xi), 1− vA(xi)] and [µB(xi), 1− vB(xi)]
can be expressed by

dI(Axi , Bxi ) =

√(
µA(xi)+1−vA(xi)

2 − µB(xi)+1−vB(xi)
2

)2
+ 1

3

(
1−vA(xi)−µA(xi)

2 − 1−vB(xi)−µB(xi)
2

)2
(6)

which can also be expressed as

dI(Axi , Bxi ) =

√(
µA(xi)−vA(xi)

2 − µB(xi)−vB(xi)
2

)2
+ 1

3

(
µA(xi)+vA(xi)

2 − µB(xi)+vB(xi)
2

)2
(7)

or

dI(Axi , Bxi ) =

√(
µA(xi)− vA(xi)

2
− µB(xi)− vB(xi)

2

)2

+
1
3

(
πA(xi)

2
− πB(xi)

2

)2

(8)

Since all parameters µA(xi), vA(xi), πA(xi), µB(xi), vB(xi), and πB(xi) take values in the
interval [0,1], we have −1 ≤ µA(xi)− vA(xi) ≤ 1, −1 ≤ µB(xi)− vB(xi) ≤ 1. The maximum
value of dI(Axi , Bxi ) can then be obtained as 1, which is obtained when Axi = 〈0, 1〉, Bxi = 〈1, 0〉
or Axi = 〈1, 0〉, Bxi = 〈0, 1〉. Thus, the relation 0 ≤ dI(Axi , Bxi ) ≤ 1 can be obtained.

According to the analysis above, we are able to define a new distance measure for
Atanassov’s intuitionistic fuzzy sets. Given two AIFSs A = {〈x, µA(x), vA(x)〉|x ∈ X } and
B = {〈x, µB(x), vB(x)〉|x ∈ X } defined in X = {x1, x2, · · · , xn}, then the distance between
them is calculated by the expression that follows:

DI(A, B) = 1
n

n
∑

i=1

√(
µA(xi)−vA(xi)

2 − µB(xi)−vB(xi)
2

)2
+ 1

3

(
µA(xi)+vA(xi)

2 − µB(xi)+vB(xi)
2

)2
(9)

Theorem 1. For AIFSs A = {〈x, µA(x), vA(x)〉|x ∈ X } and B = {〈x, µB(x), vB(x)〉|x ∈ X }
defined in X = {x1, x2, · · · , xn}, DI(A, B) is a distance measure between A and B.

For the sake of readability, we provide the proof process of Theorem 1 in Appendix A.
Considering the weight of xi, i = 1, 2, · · · , n, the distance between AIFSs A =

{〈x, µA(x), vA(x)〉|x ∈ X } and B = {〈x, µB(x), vB(x)〉|x ∈ X } defined in X =
{x1, x2, · · · , xn} can be measured as

DI
W(A, B) =

n
∑

i=1
wi

√(
µA(xi)−vA(xi)

2 − µB(xi)−vB(xi)
2

)2
+ 1

3

(
µA(xi)+vA(xi)

2 − µB(xi)+vB(xi)
2

)2
(10)

where wi is the weight of xi, i = 1, 2, · · · , n, with wi ∈ [0, 1] and
n
∑

i=1
wi = 1.

Theorem 2. DI
W(A, B) is distance measure between AIFSs A = {〈x, µA(x), vA(x)〉|x ∈ X }

and B = {〈x, µB(x), vB(x)〉|x ∈ X } defined in X = {x1, x2, · · · , xn}.
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Its proof can be implemented in the same way as the proof of Theorem 1.

3.2. Comparative Analysis

By way of demonstrating the availability of the new distance measure to distin-
guish the information in form of intuitionistic fuzzy set, we apply numerical examples
to conduct a comparative analysis. Owing to the complementary relation between dis-
tance measure and similarity measure, the below widely used measures defined for
two AIFSs A = {〈x, µA(x), vA(x)〉|x ∈ X } and B = {〈x, µB(x), vB(x)〉|x ∈ X } defined
in X = {x1, x2, · · · , xn} will be used for comparison.

1. Hamming distance [53]:

DNH(A, B) = 1
2n

n
∑

i=1
(|µA(xi)− µB(xi)|+ |vA(xi)− vB(xi)|+ |πA(xi)− πB(xi)|) (11)

2. Euclidean distance [53]:

DNE(A, B) =

√
1

2n

n
∑

i=1

(
(µA(xi)− µB(xi))

2 + (vA(xi)− vB(xi))
2 ++(πA(xi)− πB(xi))

2
)

(12)

3. Distance measurement of Wang and Xin [23]:

DW(A, B) = 1
n

n
∑

i=1

[
|µA(xi)−µB(xi)|+|vA(xi)−vB(xi)|

4 + max(|µA(xi)−µB(xi)|,|vA(xi)−vB(xi)|)
2

]
(13)

4. Ye’s cosine similarity measure CIFS [54]:

CIFS(A, B) =
1
n

n

∑
i=1

µA(xi)µB(xi) + vA(xi)vB(xi)√
(µA(xi))

2 + (vA(xi))
2
√
(µB(xi))

2 + (vB(xi))
2

(14)

Example 1. Three patterns are presented by AIFSs defined in X = {x1, x2, x3} and are given as

A1 = {< x1, 0.4, 0.5 >,< x2, 0.7, 0.1 >,< x3, 0.3, 0.3 >},
A2 = {< x1, 0.5, 0.4 >,< x2, 0.7, 0.2 >,< x3, 0.4, 0.3 >},
A3 = {< x1, 0.4, 0.5 >,< x2, 0.7, 0.1 >,< x3, 0.4, 0.3 >}.

A sample B = {< x1, 0.1, 0.1 >,< x2, 1, 0 >,< x3, 0, 1 >} is given to be classified.

Using Equations (11) and (12), we obtain

DNH(A1,B) = DNH(A2,B) = DNH(A3,B) = 0.483,

DNE(A1,B) = DNE(A2,B) = DNE(A3,B) = 0.442.

Using the proposed distance measure DI(A,B), we obtain

DI(A1,B) = 0.3098, DI(A2,B) = 0.3389, DI(A3,B) = 0.3244.

We note in this example that the Hamming and Euclidean distances cannot be used
to determine the pattern of B. The new proposed measure DI can classify B as pattern A1
because the distance between B and A1 is the least.

Example 2. Three patterns are presented by AIFSs defined in X = {x1, x2, x3, x4} and are given as

A1 = {< x1, 0.3, 0.4 >,< x2, 0.3, 0.4 >,< x3, 0.6, 0.1 >,< x4, 0.6, 0.1 >},
A2 = {< x1, 0.4, 0.4 >,< x2, 0.3, 0.5 >,< x3, 0.7, 0.1 >,< x4, 0.6, 0.2 >},
A3 = {< x1, 0.4, 0.4 >,< x2, 0.3, 0.4 >,< x3, 0.7, 0.1 >,< x4, 0.6, 0.1 >}.
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A sample to be classified is given as

B = {< x1, 0.35, 0.65 >,< x2, 0.55, 0.45 >,< x3, 0.65, 0.1 >,< x4, 0.6, 0.15 >}.

Using Equation (13), we can obtain: DW(A1,B) = DW(A2,B) = DW(A3,B) = 0.119.
Using our proposed distance measure DI(A,B), we obtain

DI(A1,B) = 0.0806, DI(A2,B) = 0.0948, DI(A3,B) = 0.0877.

These results show that the class of B cannot be determined based on the distance
measure proposed by Wang and Xin [23]. Based on our proposed distance measure, we are
able to obtain the minimum distance between B and three patterns as DI(A1,B) = 0.0806;
therefore, sample B is classified to pattern A1.

Example 3. Three patterns expressed by AIFSs which are defined in X = {x1, x2} are given as

A1 = {< x1, 0.4, 0.4 >,< x2, 0.3, 0.3 >},
A2 = {< x1, 0.2, 0.2 >,< x2, 0.3, 0.3 >},
A3 = {< x1, 0.1, 0.1 >,< x2, 0.5, 0.5 >}.

An unknown sample to be recognized is given by

B = {< x1, 0.1, 0.1 >,< x2, 0.5, 0.5 >}.

Using Equation (14), we can get: CIFS(A1,B) = CIFS(A2,B) = CIFS(A3,B) = 1.
Using the proposed distance measure DI(A,B), we obtain:

DI(A1,B) = 0.1443, DI(A2,B) = 0.0866, DI(A3,B) = 0.

It is obvious that sample B is identical to pattern A3, but sample B may be classified as
A1, A2, and A3 simultaneously based on the cosine similarity, which is counter-intuitive. It
can be seen that our distance measure can be used in classifying sample B as A3 due to the
zero distance between them.

The above examples show that our proposed distance measure is effective in dif-
ferentiating the information conveyed by different AIFSs. It can be easily proved that
the choice of attribute weights will not change the conclusion obtained based on each
example. Moreover, we note that the cosine similarity may be undefined when there is a
zero denominator. The developed distance measures can overcome such deficiencies, so
these examples indicate that the proposed distance measures are reasonable and effective
in discriminating intuitionistic fuzzy information.

4. Knowledge Measure of AIFSs Based on DI

Suppose that A = {〈x, µA(x), vA(x)〉|x ∈ X } is an AIFS defined in X = {x1, x2, · · · , xn},
its knowledge measure K should intuitively satisfy some properties. It is rational that
the knowledge measure K must be a non-negative function determined by µA(x) and
vA(x). The knowledge amount of A should be identical to the knowledge amount of its
complement, i.e., K(A) = K(AC). When the AIFS A is reduced to classical Zadeh’s fuzzy set,
a negative correlation should exist between the knowledge measure and fuzziness. It has
been in our mind that the fuzziness of Zadeh’s fuzzy set determines its fuzzy entropy, and
they are both negatively correlated to |µA(x)− vA(x)| [22]. So the knowledge measure
K(A) should be monotonously increasing with respect to |µA(x)− vA(x)|. Moreover, we
note that a crisp set provides the maximum amount of information, so the knowledge
amount of a crisp set reaches the maximum value Kmax = 1. Conversely, the case that
∀x ∈ X, µA(x) = vA(x) = 0 means full ignorance, so the knowledge amount reaches
its minimum value Kmin = 0. In addition, in the case of µA(xi) = vA(xi) = a 6= 0, we
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have πA(xi) = 1− 2a. Thus, the less a indicates greater the greater hesitant degree πA(xi),
which leads to the greater uncertainty degree and smaller knowledge amount.

Considering these intuitive properties, we give the following definition to describe
the axiomatic properties of the knowledge measure for AIFSs.

Definition 7. If a mapping K : AIFS→ [0, 1] satisfies the following properties, it is called a
knowledge measure of an AIFS A defined in X = {x1, x2, · · · , xn}:
(KP1) K(A) = 1if and only if A is a crisp set.
(KP2) K(A) = 0 if and only if πA(xi) = 1, ∀i ∈ {1, 2, · · · , n}.
(KP3) K(A) increases with |µA(xi)− vA(xi)| for fixed πA(xi) and decreases with πA(xi) if
|µA(xi)− vA(xi)| is unchanged, i = 1, 2, · · · , n.
(KP4) K(AC) = K(A).

Since both knowledge and entropy measures are always regarded as two comple-
mentary concepts, we discuss these properties by comparing them with those of entropy
measure. We can see that the third property in [22] defined for intuitionistic fuzzy en-
tropy, denoted as E, is stated as: E(B) ≤ E(A) if B is less fuzzy than A, i.e., ∀x ∈ X,
(1) µB(x) ≤ µA(x) and vB(x) ≥ vA(x) for µA(x) ≤ vA(x), or (2) µB(x) ≥ µA(x) and
vB(x) ≤ vA(x) for µA(x) ≥ vA(x).

The first condition indicates that µB(xi) ≤ µA(xi) ≤ vA(xi) ≤ vB(xi) and
|µB(xi)− vB(xi)|≥ |µA(xi)− vA(xi)|. Similarly, the second condition implies that µB(xi) ≥
µA(xi)≥ vA(xi) ≥ vB(xi) and |µB(xi)− vB(xi)|≥ |µA(xi)− vA(xi)|. Therefore, the en-
tropy measure of AIFS decreases with |µA(xi)− vA(xi)|, i.e., E(B) ≤ E(A) if
|µB(xi)− vB(xi)| ≥ |µA(xi)− vA(xi)|, i = 1, 2, · · · , n, which is related to the property
of KP3. However, this property of intuitionistic fuzzy entropy does not consider the in-
fluence of hesitation degree. It may not be sensible to discuss the relationship between
fuzziness and intuitionistic fuzzy entropy if the hesitance degree is not fixed. Moreover,
since |µA(xi)− vA(xi)| ≥ |µB(xi)− vB(xi)| cannot always induce µA(xi) ≤ µB(xi) ≤
vB(xi) ≤ vA(xi) or µA(xi) ≥ µB(xi) ≥ vB(xi) ≥ vA(xi), the property E(A) ≤ E(B) if
|µA(xi)− vA(xi)| ≥ |µB(xi)− vB(xi)| is more general than the third property listed in [22].
Thus, for the relation between knowledge and fuzziness, our proposed axiomatic property
is made more general by relaxing the formal constraint by using |µ(x)− v(x)|. However,
such relaxation does not cause an unreliable measure of the knowledge amount because of
the limitation of hesitation degree, which will be illustrated later. This also demonstrates
the possibility and reasonability of further exploring the relation between the entropy mea-
sure and knowledge measure of AIFSs. We point out that the entropy of an AIFS reaches
its peak value when the membership degree and non-membership degree are identical
for all elements [22]. This is analogous to the entropy measure of fuzzy sets, which solely
concerns the relation between membership degree and non-membership degree. Therefore,
the notions of entropy and knowledge measure are not just complementary concepts, but
rather they differ from each other not only in the aspect of viewpoint, but also in the point
they focus on. The fuzzy entropy merely depicts the difference between an AIFS and a
crisp set, which is denoted as fuzziness, while knowledge measure is defined to measure
the closeness between AIFS and a crisp set, which takes both fuzziness and hesitancy
into account.

Following the axiomatic properties in Definition 7, we can create knowledge measures
for AIFSs by a mapping F: D→[0,1], where D = {(x, y) ∈ [0, 1]× [0, 1]|x + y ≤ 1}, and F
must satisfy the following conditions:

(C1) F(x, y) = 1 if and only if |x−y| = 1.
(C2) F(x, y) = 0 if and only if x = y = 0.
(C3) For a fixed x+y, F(x, y) increases while |x−y| increases.
(C4) For a fixes |x−y|, F(x, y) increases while x+y increases.
(C5) F(x, y) = F(y, x).
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For (x, y) ∈ [0, 1]× [0, 1], we can effortlessly obtain many F functions satisfying the above
conditions, such as F(x,y) = (|x−y|+x+y)/2 and F(x,y) = x2+y2. Using these functions, we can
construct knowledge measures for AIFSs. Given an AIFS A = {〈x, µA(x), vA(x)〉|x ∈ X }
defined in X = {x1, x2, · · · , xn}, its knowledge measure K can be expressed by K =

n
∑

i=1
F(µA(xi), vA(xi))/n. In this way, many knowledge measures can be created for AIFSs,

but most may lack of specific physical meaning. This motivates us to construct knowledge
measures with both clear physical significance and axiomatic mathematical properties.

4.1. Construction of Knowledge Measure

From the second property KP2, we can conclude that the AIFS F = {〈x, 0, 0〉|x ∈ X}
conveys the least knowledge. The amount of knowledge conveyed by an AIFS A can be
reflected by the distance between A and F. The greater the distance between them, the
greater the knowledge amount the AIFS A conveys, prompting us to devise a knowledge
measure according to the distance from A to F.

For an AIFS A = {〈µA(x), vA(x)〉} defined in X = {x}, the distance between A and
F = {〈x, 0, 0〉} can be calculated by Equation (9):

DI(A, F) =

√(
µA(x)− vA(x)

2

)2

+
1
3

(
µA(x) + vA(x)

2

)2

(15)

Equation (15) can be further written as

DI(A, F) =
1
2

√
(µA(x)− vA(x))2 +

1
3
(µA(x) + vA(x))2 (16)

Considering the conditions 0 ≤ µA(x) ≤ 1, 0 ≤ vA(x) ≤ 1, and 0 ≤ µA(x) + vA(x) ≤
1, we have −1 ≤ µA(x) − vA(x) ≤ 1. Since the conditions µA(x) + vA(x) = 1 and
|µA(x)− vA(x)| = 1 can be satisfied simultaneously, the maximum value of DI(A, F) is√

3/3. Thus, the distance between A and F can be normalized by multiplying by
√

3,
giving the following form:

DI
N (A, F) =

√
3

2

√
(µA(x)− vA(x))2 +

1
3
(µA(x) + vA(x))2 (17)

We can then construct a knowledge measure for AIFSs defined in the discourse
universe X = {x} as follows:

K I(A) =

√
3

2

√
(µA(x)− vA(x))2 +

1
3
(µA(x) + vA(x))2 (18)

Generally, for the AIFS defined in X = {x1, x2, · · · , xn}, denoted as
A = {〈x, µA(x), vA(x)〉|x ∈ X }, its knowledge amount can be quantified by

K I(A) =

√
3

2n

n

∑
i=1

√
(µA(xi)− vA(xi))

2 +
1
3
(µA(xi) + vA(xi))

2 (19)

Theorem 3. For the AIFS A = {〈x, µA(x), vA(x)〉|x ∈ X } defined in X = {x1, x2, · · · , xn},
the function K I(A) defined by Equation (19) is a knowledge measure of AIFS A.

Theorem 3 is proved in Appendix B.

4.2. Numerical Examples

Here, the performance of the proposed knowledge measure KI will be examined
considering some numerical examples.
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Example 4. Four AIFSs A1, A2, A3 and A4 are defined in universe X = {x}. They are given as

A1 = {〈x, 0.5, 0.5〉}, A2 = {〈x, 0.3, 0.3〉}, A3 = {〈x, 0.2, 0.2〉}, A4 = {〈x, 0, 0〉}.

The entropy measure presented in [23,55–58] cannot discriminate these AIFSs, since
these measures are defined according to the difference between membership degree and
non-membership degree. The membership degree and non-membership degree are identi-
cal in these four AIFSs, so they may be considered identically with the maximal entropy,
which induces a minimal knowledge amount conveyed by them. However, according to
the proposed knowledge measure KI, we have

K I(A1) = 0.5, K I(A2) = 0.3, K I(A3) = 0.2, K I(A4) = 0

It can be seen that these four different AIFSs differ greatly from each other from the
viewpoint of knowledge amount. This is helpful for handling such extreme cases with
identical supporting and opposing degrees. From the definition of KI, we find that, when
µA(x) = vA(x) and for all x ∈ X, the calculation of KI assumes the following form:

K I(A) =
1
n

n

∑
i=1

µA(xi) (20)

which indicates that the knowledge amount increases with the variable µA(xi) in the
conditions of µA(xi) = vA(xi) and ∀i ∈ {1, 2, · · · , n}. This useful feature coincides with
intuitive analysis.

To further demonstrate the discriminability of the knowledge measure KI, we give
Figure 1 to depict the value of knowledge amount associated with AIFS A defined in X =
{x}. The value of KI (A) is reflected by the color assigned on each point (µA(x), vA(x)) in
the simplex. It is shown that the figure is symmetric along the line µA(x) = vA(x), which
illustrates the property of KI (AC) = KI (A). On the symmetric line µA(x) = vA(x), the
rising trend of knowledge amount is clear. As shown in Figure 1, the maximum amount of
knowledge is obtained in two points, (0,1) and (1,0), and in the point (0,0) the knowledge
amount is minimum.

Figure 1. Knowledge amount KI of AIFSs defined in X = {x}.
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Example 5. Let X = {6,7,8,9,10} be the discourse universe, an AIFS A in X is defined as:

A = {〈6, 0.1, 0.8〉, 〈7, 0.3, 0.5〉, 〈8, 0.5, 0.4〉, 〈9, 0.9, 0〉, 〈10, 1, 0〉}.

De et al. [59] defined an exponent operation for AIFS A defined in X. Given a non-
negative real number m, Am is defined as

Am =
{〈

x, (µA(x))m, 1− (1− vA(x))m〉x ∈ X
∣∣} (21)

Based on the operations in Equation (21), we have

A0.5 = {〈6, 0.316, 0.553〉, 〈7, 0.548, 0.293〉, 〈8, 0.707, 0.225〉, 〈9, 0.949, 0〉, 〈10, 1, 0〉},
A2 = {〈6, 0.010, 0.960〉, 〈7, 0.090, 0.750〉, 〈8, 0.250, 0.640〉, 〈9, 0.810, 0〉, 〈10, 1, 0〉},
A3 = {〈6, 0.001, 0.992〉, 〈7, 0.027, 0.875〉, 〈8, 0.125, 0.784〉, 〈9, 0.729, 0〉, 〈10, 1, 0〉},
A4 = {〈6, 0.0001, 0.998〉, 〈7, 0.008, 0.938〉, 〈8, 0.062, 0.870〉, 〈9, 0.656, 0〉, 〈10, 1, 0〉}.

Considering the characterization analysis of linguistic variables, we can consider AIFS
A as “LARGE” in X. Correspondingly, AIFSs A0.5, A2, A3, and A4 can be regarded as “More
or less LARGE,” “Very LARGE,” “Quite very LARGE,” and “Very LARGE,” respectively.

Intuitively, from A0.5 to A4, the uncertainty hidden in them becomes less and the
knowledge amount conveyed by them increases. Therefore, the following relations hold:

E
(

A0.5
)
> E(A) > E

(
A2
)
> E

(
A3
)
> E

(
A4
)

(22)

K
(

A0.5
)
< K(A) < K

(
A2
)
< K

(
A3
)
< K

(
A4
)

(23)

To make a comparison, the entropy and knowledge measures listed in Table 1 are used.
It is worth nothing that some of the entropy measures in the table are initially designed for
interval valued fuzzy sets [56,57]. These entropy measures are modified for AIFSs based
on their connection with interval values fuzzy sets. We present the results obtained based
on different measures in Table 2 to facilitate comparative analysis.

From Table 2, we can see that entropy measures EZL, EZB, EBB, ESK, EHC, ES, and EZJ
induce the following relations:

EZL(A) > EZL(A0.5) > EZL(A2) > EZL(A3) > EZL(A4),
EZB(A) > EZB(A0.5) > EZB(A2) > EZB(A3) > EZB(A4),
EBB(A) > EBB(A0.5) > EBB(A2) > EBB(A3) = EBB(A4),
ESK(A) > ESK(A0.5) > ESK(A2) > ESK(A3) > ESK(A4),

EHC(A) > EHC(A0.5) > EHC(A2) > EHC(A3) > EHC(A4),
ES(A) > ES(A0.5) > ES(A2) > ES(A3) > ES(A4),

EZJ(A) > EZJ(A0.5) > EZJ(A2) > EZJ(A3) > EZJ(A4).

Because the entropy of AIFS A0.5 is less than that of AIFS A, entropy measures EZL, EZB,
EZE, EBB, ESK, and EZJ do not perform as well as other entropy measures. From the point of
view of knowledge amount, we note that the results obtained by KSKB, KN, and KG are not
so reasonable, since counter-intuitive relations KSKB(A0.5) > KSKB(A), KN(A0.5) > KN(A),
and KG(A0.5) > KG(A) exist. However, our developed knowledge measure KI can produce
a rational result as KI(A0.5) < KI(A) < KI(A2) < KI(A3) < KI(A4). Thus, it is demonstrated
that half of entropy measures in Table 1 cannot reflect the uncertainty hidden in these
AIFSs. Although several knowledge measures have been presented, they are not able to
distinguish the nuance of knowledge amount in different AIFSs. Thus, our developed
knowledge measure outperforms other knowledge measures by providing persuasive
results complying with intuitive analysis.
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Table 1. Entropy/knowledge measures used for comparative analysis.

Authors Entropy/Knowledge Measure

Zeng and Li [56] EZL(A) = 1− 1
n

n
∑

i=1
|µA(xi)− vA(xi)|

Zhang, Zhang, and Mei [57] EZA(A) = 1−
√

2
n

n
∑

i=1
|µA(xi)− 0.5|2 + |1− vA(xi)− 0.5|2

Zhang, Zhang, and Mei [57] EZB(A) = 1− 1
n

n
∑

i=1
(|µA(xi)− 0.5|+ |1− vA(xi)− 0.5|)

Zhang, Zhang, and Mei [57] EZC(A) = 1− 2
n

n
∑

i=1
max(|µA(xi)− 0.5|, |1− vA(xi)− 0.5|)

Zhang, Zhang, and Mei [57] EZD(A) = 1−
√

4
n

n
∑

i=1
max

(
|µA(xi)− 0.5|2, |1− vA(xi)− 0.5|2

)
Zhang, Zhang, and Mei [57] EZE(A) = 1− 2

n

n
∑

i=1

(
|µA(xi)−0.5|+|1−vA(xi)−0.5|

4 +
max(|µA(xi)−0.5|,|1−vA(xi)−0.5|)

2

)
Burillo and Bustince [21] EBB(A) = 1

n

n
∑

i=1
(1− µA(xi)− vA(xi))

Szmidt and Kacprzyk [22] ESK(A) = 1
n

n
∑

i=1

min(µA(xi),vA(xi))+πA(xi)
max(µA(xi),vA(xi))+πA(xi)

Hung and Yang [60] E2
HC(A) = 1

n

n
∑

i=1

(
1− (µA(xi))

2 − (vA(xi))
2 − (πA(xi))

2
)

Hung and Yang [60] ES(A) = − 1
n

n
∑

i=1
(µA(xi) ln µA(xi) + vA(xi) ln vA(xi) + πA(xi) ln πA(xi))

Vlachos and Sergiadis [61]

EVS(A) =

− 1
n ln 2

n
∑

i=1
(µA(xi) ln µA(xi) + vA(xi) ln vA(xi) + (1− πA(xi)) ln(1− πA(xi))) +

1
n

n
∑

i=1
πA(xi)

Zhang and Jiang [58] EZJ(A) = 1
n

n
∑

i=1

min(µA(xi),vA(xi))
max(µA(xi),vA(xi))

Li, Deng, Li, et al. [55] ELDL(A) = 1− 1
2n

n
∑

i=1

(
|µA(xi)− vA(xi)|3 + |µA(xi)− vA(xi)|

)
Szmidt, Kacprzyk, andBujnowski [27] KSKB(A) = 1− 1

2n

(
n
∑

i=1

min(µA(xi),vA(xi))+πA(xi)
max(µA(xi),vA(xi))+πA(xi)

+ πA(xi)

)
Nguyen [30] KN(A) = 1

n
√

2

n
∑

i=1

√
(µA(xi))

2 + (vA(xi))
2 + (µA(xi) + vA(xi))

2

Guo [31] KG(A) = 1− 1
2n

n
∑

i=1
(1− |µA(xi)− vA(xi)|)(1 + πA(xi))

Table 2. Comparative results of all AIFSs with respect to A (counter-intuitive results are in bold type).

A 0.5 A A 2 A 3 A 4

EZL 0.4156 0.4200 0.2380 0.1546 0.1217
EZA 0.3214 0.3043 0.1974 0.1330 0.0979
EZB 0.4156 0.4200 0.2380 0.1546 0.1217
EZC 0.3338 0.3200 0.1400 0.0612 0.0283
EZD 0.2777 0.2463 0.1188 0.0562 0.0271
EZE 0.3747 0.3700 0.1890 0.1079 0.0750
EBB 0.0818 0.1000 0.0980 0.0934 0.0934
ESK 0.3446 0.3740 0.1970 0.1309 0.1094
EHC 0.3416 0.3440 0.2610 0.1993 0.1613
ES 0.5811 0.5874 0.4555 0.3489 0.2778

EVS 0.5518 0.5217 0.3491 0.2357 0.1733
EZJ 0.2851 0.3050 0.1042 0.0383 0.0161

ELDL 0.5083 0.5019 0.3454 0.2516 0.2001
KSKB 0.7868 0.7630 0.8525 0.8879 0.8986
KN 0.8585 0.8471 0.8738 0.8927 0.8999
KG 0.7665 0.7610 0.8651 0.9108 0.9257
KI 0.7059 0.7098 0.8066 0.8624 0.8858
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For a further investigation of the performance of the proposed knowledge measure,
we modify the AIFS “LARGE” defined in X = {6,7,8,9,10} by increasing the non-membership
degree of element “8” and reducing its hesitant degree. The modified AIFS “LARGE” is
given as

B = {〈6, 0.1, 0.8〉, 〈7, 0.3, 0.5〉, 〈8, 0.5, 0.5〉, 〈9, 0.9, 0〉, 〈10, 1, 0〉}.

Through the operation shown in Equation (21), the following AIFSs related to B can
be generated:

B0.5 = {〈6, 0.316, 0.553〉, 〈7, 0.548, 0.293〉, 〈8, 0.707, 0.293〉, 〈9, 0.949, 0〉, 〈10, 1, 0〉},
B2 = {〈6, 0.010, 0.960〉, 〈7, 0.090, 0.750〉, 〈8, 0.250, 0.750〉, 〈9, 0.810, 0〉, 〈10, 1, 0〉},
B3 = {〈6, 0.001, 0.992〉, 〈7, 0.027, 0.875〉, 〈8, 0.125, 0.875〉, 〈9, 0.729, 0〉, 〈10, 1, 0〉},

B4 = {〈6, 0.0001, 0.998〉, 〈7, 0.008, 0.938〉, 〈8, 0.062, 0.938〉, 〈9, 0.656, 0〉, 〈10, 1, 0〉}.

According to the entropy and knowledge measures listed in Table 1, we obtain the
comparative results as shown in Table 3.

Table 3. Comparative results of all AIFSs with respect to B (counter-intuitive results are in bold type).

B 0.5 B B 2 B 3 B 4

EZL 0.4291 0.4400 0.2160 0.1364 0.1082
EZA 0.3310 0.3072 0.1868 0.1193 0.0859
EZB 0.4291 0.4400 0.2160 0.1364 0.1082
EZC 0.3608 0.3600 0.1400 0.0612 0.0283
EZD 0.2960 0.2517 0.1188 0.0562 0.0271
EZE 0.3950 0.4000 0.1780 0.0988 0.0683
EBB 0.0683 0.0800 0.0760 0.0752 0.0800
ESK 0.3518 0.4073 0.1677 0.1101 0.0950
EHC 0.3355 0.3280 0.2328 0.1708 0.1379
ES 0.5494 0.5374 0.3929 0.2905 0.2295

EVS 0.5640 0.5233 0.3369 0.2212 0.1612
EZJ 0.3042 0.3450 0.0927 0.0349 0.0151

ELDL 0.5191 0.5120 0.3279 0.2290 0.1791
KSKB 0.7899 0.7563 0.8782 0.9074 0.9125
KN 0.8680 0.8641 0.8950 0.9108 0.9133
KG 0.7633 0.7600 0.8828 0.9230 0.9337
KI 0.7038 0.7182 0.8272 0.8804 0.8992

It can be seen that AIFS B still has more entropy than AIFS B0.5 when entropy measures
EZL, EZB, EZE, EBB, ESK, and EZJ are considered. The ordered results obtained based on
these entropy measures are

EZL(B) > EZL(B0.5) > EZL(B2) > EZL(B3) > EZL(B4),
EZB(B) > EZB(B0.5) > EZB(B2) > EZB(B3) > EZB(B4),
EZE(B) > EZE(B0.5) > EZE(B2) > EZE(B3) > EZE(B4),
EBB(B) > EBB(B0.5) > EBB(B2) > EBB(B3) > EBB(B4),
ESK(B) > ESK(B0.5) > ESK(B2) > ESK(B3) > ESK(B4),
EZJ(B) > EZJ(B0.5) > EZJ(B2) > EZJ(B3) > EZJ(B4).

It can be seen that these ranked orders do not satisfy intuitive analysis in Equation (22),
while other entropy measures can induce desirable results. In this example, EHC and ES
perform well, but the measure EZE performs poorly. This illustrates that these entropy
measures are not robust enough.



Entropy 2021, 23, 1119 14 of 26

Moreover, the results produced by knowledge measures KSVB, KN, and KG are also
not reasonable, shown as:

KSVB(B) < KSVB(B0.5) < KSVB(B2) < KSVB(B3) < KSVB(B4),
KN(B) < KN(B0.5) < KN(B2) < KN(B3) < KN(B4),
KG(B) < KG(B0.5) < KG(B2) < KG(B3) < KG(B4).

However, our proposed knowledge measure KI indicates that:

K I(B0.5) < K I(B) < K I(B2) < K I(B3) < K I(B4).

Thus, the knowledge measures KSVB, KN, and KG are still not suitable for differen-
tiating the knowledge amount conveyed by AIFSs. The effectiveness of the proposed
knowledge measure KI is once again indicated by this example.

From the above examples, we conclude that entropy measures EZL, EZB, EZE, EBB, EHC,
ES, ESK, and EZJ perform poorly because of their lack of robustness and discriminability.
The proposed knowledge measure performs much better than knowledge measures KSVB,
KN, and KG. The performances of entropy measures EA, EZC, EZD, EVS, ELDL, and the
proposed knowledge measure KI in Table 3 seem to show that less entropy indicates
more knowledge amount. Nevertheless, the relationship between entropy and knowledge
measure is limited and conditional, as was discussed previously.

The above analysis indicates an effective way to define knowledge measure for AIFSs
based on a metric distance measure dAIFS for AIFSs.

5. New Method for Solving MAGDM Problems

Since the inception of AIFSs, many researchers have been dedicated to exploring
applications of AIFSs along with their mathematical mechanism. One important application
area of AIFSs is multi-attribute group decision making (MAGDM) [28,30,36,38,62,63]. In
the MAGDM problem, because of the limitation of experts’ knowledge and time pressure,
uncertain or incomplete information may be provided in the evaluation of each alternative.
Therefore, a suitable model should be constructed to depict the incomplete information. By
introducing hesitancy degree, AIFSs can describe the uncertainty caused both by fuzziness
and by lack of knowledge. Moreover, incomplete information can be aggregated in a
direct way with the help of intuitionistic fuzzy aggregation operators. Thus, AIFSs are
accepted by many researchers as one effective tool for solving MAGDM problems. The
application of AIFSs in solving MAGDM problems has attract many researchers because
of a series of open topics in this area, such as the determination of attribute weights,
effective aggregation operators for AIFSs, ranking of alternatives based on IFVs, and the
construction of intuitionistic fuzzy model from incomplete information.

Here, we put forth a new method with which to solve intuitionistic fuzzy MAGDM
problems. We develop the approach according to the proposed intuitionistic fuzzy dis-
tance measure and distance-based knowledge measure. The intuitionistic fuzzy MAGDM
problem is depicted as follows.

G = {G1, G2, · · · , Gm} is the set consisted of all threat levels. A = {A1, A2, · · · , An}
is the set containing all attributes which will be considered to evaluate the threat level.
E = {E1, E2, · · · , Es} is the set of all decision makers to evaluate threat levels. The weight

of attribute Ai is wi, i = 1, 2, · · · , n, with
n
∑

i=1
wi = 1. All weights are expressed by weight

vector w = (w1, w2, · · · , wn)
T . Each decision maker is assigned a weighting factor λj,
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j = 1, 2, · · · , s, with
s
∑

j=1
λj = 1. Decision maker Ek (k = 1, 2, · · · , s) gives the decision matrix

expressed by IFVs as:

A1 A2 · · · An

Rk =

G1
G2

...
Gm



〈
µk

11, vk
11

〉 〈
µk

12, vk
12

〉
· · ·

〈
µk

1n, vk
1n

〉〈
µk

21, vk
21

〉 〈
µk

22, vk
22

〉
· · ·

〈
µk

2n, vk
2n

〉
...

...
. . .

...〈
µk

m1, vk
m1

〉 〈
µk

m2, vk
m2

〉
· · ·

〈
µk

mn, vk
mn

〉


(24)

where rk
ij =

〈
µk

ij, vk
ij

〉
is an IFV representing the evaluation result of alternative Gi according

to attribute Aj.
If the attribute weights are unknown, this MAGDM problem should be solved by

steps as following.
Step 1. Determine attribute weights
In most cases, the weighting factor of each attribute is partly known or completely

unknown due to limited time and expert knowledge. Thus, determining the weighting
vector of all attributes is necessary. Several approaches have been put forward to assess the
importance of all attributes in decision making.

Li et al. [62] developed the TOPSIS-based method to obtain the interval-valued weight
factor for all attributes, which may cause information loss in the process of decision making.
Wei [64] proposed an optical model to derive the attribute weighting vector, which was
implemented by maximizing the deviation between all evaluation results under an attribute.
Regarding the hesitance degree as an entropy measure, Ye [10] developed an entropy-based
method to evaluate the attribute weight vector.

Note that Wei’s method [64] is based on the idea of maximizing the deviation, while
Ye’s method [10] is based on the idea of minimizing the entropy. Combining Wei’s [64]
and Ye’s ideas [10], Xia and Xu [9] proposed an entropy-/cross-entropy-based model to
determine the attribute weighting vector, in which they utilize the cross-entropy to describe
the deviation between IFVs. Borrowing the idea of Xia and Xu [9], we develop a model
using the proposed distance measure DI and the knowledge measure KI to determine
attribute weights.

For decision maker Ek, the average divergence of alternative Gi from all other alterna-
tives under attribute Aj can be measured as

DIVk
ij =

1
m− 1

m

∑
p=1

DI
(

rk
ij, rk

pj

)
(25)

Based on distance measure DI and knowledge measure KI, the average divergence and
knowledge amount of all information provided by Ek under attribute Aj can be measured,
respectively, as

DIVk
ij =

1
m− 1

m

∑
p=1

DI
(

rk
ij, rk

pj

)
(26)

Kk
j =

m

∑
p=1

K I
(

rk
pj

)
(27)

Considering the weighting factor of each decision maker, we can obtain the total
difference among all alternatives and the total amount of knowledge with respect to
attribute Aj as

DIVj =
s

∑
k=1

λk
1

m− 1

m

∑
p=1

m

∑
q=1

DI
(

rk
pj, rk

qj

)
, (28)
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Kj =
s

∑
k=1

λk

m

∑
p=1

K I
(

rk
pj

)
, (29)

Generally, if the evaluation information of all alternatives under an attribute is quite
different from each other, it means that this attribute provides much discriminative in-
formation, and thus it should be more important. Conversely, if there is little difference
among the evaluation results of all alternatives obtained with respect to one attribute, then
this attribute is less important. We also have the sense that a greater amount of knowledge
conveyed by the information under an attribute indicates that the information provided is
more helpful for decision making. Therefore, this particular attribute is more important.
Based on the above analysis, we establish an optimal model with which to calculate the
weighting vector w of all attributes as

max T =
n
∑

j=1
wj

s
∑

k=1
λk

m
∑

p=1

(
K I
(

rk
pj

)
+ 1

m−1

m
∑

q=1
DI
(

rk
pj, rk

qj

))

s.t.


w ∈ H,

n
∑

j=1
wj = 1,

wj ≥ 0, j = 1, 2, · · · , n.

(30)

where H is a set that contains all of the incomplete information of an attribute weight.
In particular, if there is no additional information about the weighting vector, i.e.,

each attribute’s weighting factor is totally unknown, the weighting factor of attribute Aj
(j = 1, 2, · · · , n) can be calculated as

wj =

s
∑

k=1
λk

(
Kk

j + DIVk
j

)
n
∑

j=1

s
∑

k=1
λk

(
Kk

j + DIVk
j

) =

s
∑

k=1
λk

m
∑

p=1

(
K I
(

rk
pj

)
+ 1

m−1

m
∑

q=1
DI
(

rk
pj, rk

qj

))
n
∑

j=1

s
∑

k=1
λk

m
∑

p=1

(
K I
(

rk
pj

)
+ 1

m−1

m
∑

q=1
DI
(

rk
pj, rk

qj

)) , (31)

Step 2. Use the intuitionistic fuzzy weighted averaging (IFWA) operator proposed
in [38] and the weighting vector λ = (λ1, λ2, · · · , λs)

T to collect the individual intuitionistic
fuzzy decision matrices rk

ij =
〈

µk
ij, vk

ij

〉
(k = 1, 2, · · · , s) into an aggregated decision matrix

with intuitionistic fuzzy information, denoted R = (rij)mxn.
Step 3. Use the aggregation operator IFWA and attribute weighting vector w to

aggregate the evaluation results ri1, ri2, · · · , rin of each alternative Gi (i = 1, 2, · · · , m)
under all attributes to get an IFV Zi (i = 1, 2, · · · , m) denoting the aggregated evaluation
result of alternative Gi (i = 1, 2, · · · , m).

Step 4. Calculate both the score function and accuracy function of IFVs Z1, Z2, · · · , Zm.
Step 5. Rank all alternatives according to the score function and accuracy function of

IFVs Z1, Z2, · · · , Zm to obtain the priority order.

6. Application on Evaluation of Malicious Code Threat

Here, the method proposed in Section 5 for solving the MAGDM problems is applied
on evaluation method of malicious code threat degree.

Example 6. In a battle of cyber defense, the cyber-defense unit aims to choose a target with the
highest threat to attack. In cyberspace security, cyber security researchers need to evaluate the
threats caused by malicious code. In the way, the most dangerous threat can be addressed first, and
then the other threats can be addressed.

The threat degrees of five malicious codes (G1, G2, G3, G4, G5) are evaluated by four
experts (E1, E2, E3, E4) with respect to the following five attributes:
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(1) A1, the resource consumption;
(2) A2, the destruction ability;
(3) A3, the anti-detection ability;
(4) A4, the self-starting ability;
(5) A5, the diffusion ability.

The weighting vector of four experts is λ = (0.3, 0.2, 0.3, 0.2)T . The associated weight-
ing factor for the hybrid aggregation of the four experts is η = (0.155, 0.345, 0.345, 0.155)T ,
which is derived by the method based on normal distribution, as shown in [63]. The threat
degree of each malicious code evaluated by four experts is expressed by the following four
intuitionistic fuzzy decision matrices:

A1 A2 A3 A4 A5

R1 =

G1
G2
G3
G4
G5


〈0.4, 0.5〉 〈0.5, 0.2〉 〈0.6, 0.2〉 〈0.8, 0.1〉 〈0.7, 0.3〉
〈0.6, 0.2〉 〈0.7, 0.2〉 〈0.3, 0.4〉 〈0.5, 0.1〉 〈0.8, 0.2〉
〈0.7, 0.3〉 〈0.8, 0.1〉 〈0.5, 0.5〉 〈0.3, 0.2〉 〈0.6, 0.3〉
〈0.4, 0.3〉 〈0.7, 0.1〉 〈0.6, 0.1〉 〈0.4, 0.3〉 〈0.9, 0.1〉
〈0.8, 0.1〉 〈0.3, 0.4〉 〈0.4, 0.5〉 〈0.7, 0.2〉 〈0.5, 0.2〉

 ,

A1 A2 A3 A4 A5

R2 =

G1
G2
G3
G4
G5


〈0.5, 0.3〉 〈0.6, 0.1〉 〈0.7, 0.3〉 〈0.7, 0.1〉 〈0.8, 0.2〉
〈0.7, 0.2〉 〈0.6, 0.2〉 〈0.4, 0.4〉 〈0.6, 0.2〉 〈0.7, 0.3〉
〈0.5, 0.3〉 〈0.7, 0.2〉 〈0.6, 0.3〉 〈0.4, 0.2〉 〈0.6, 0.1〉
〈0.5, 0.4〉 〈0.8, 0.1〉 〈0.4, 0.2〉 〈0.7, 0.2〉 〈0.7, 0.3〉
〈0.7, 0.3〉 〈0.5, 0.4〉 〈0.6, 0.3〉 〈0.6, 0.2〉 〈0.5, 0.1〉

 ,

A1 A2 A3 A4 A5

R3 =

G1
G2
G3
G4
G5


〈0.6, 0.3〉 〈0.5, 0.2〉 〈0.6, 0.4〉 〈0.8, 0.1〉 〈0.7, 0.3〉
〈0.8, 0.2〉 〈0.5, 0.3〉 〈0.6, 0.4〉 〈0.5, 0.2〉 〈0.6, 0.3〉
〈0.6, 0.1〉 〈0.8, 0.2〉 〈0.7, 0.3〉 〈0.4, 0.2〉 〈0.8, 0.1〉
〈0.6, 0.3〉 〈0.6, 0.1〉 〈0.5, 0.4〉 〈0.9, 0.1〉 〈0.5, 0.2〉
〈0.8, 0.1〉 〈0.6, 0.2〉 〈0.7, 0.3〉 〈0.5, 0.2〉 〈0.7, 0.1〉

 ,

A1 A2 A3 A4 A5

R4 =

G1
G2
G3
G4
G5


〈0.3, 0.4〉 〈0.9, 0.1〉 〈0.8, 0.1〉 〈0.5, 0.5〉 〈0.4, 0.6〉
〈0.7, 0.1〉 〈0.7, 0.3〉 〈0.4, 0.2〉 〈0.8, 0.2〉 〈0.3, 0.1〉
〈0.4, 0.1〉 〈0.5, 0.2〉 〈0.8, 0.1〉 〈0.6, 0.2〉 〈0.6, 0.3〉
〈0.8, 0.2〉 〈0.5, 0.1〉 〈0.6, 0.4〉 〈0.7, 0.2〉 〈0.7, 0.2〉
〈0.6, 0.1〉 〈0.8, 0.2〉 〈0.7, 0.2〉 〈0.6, 0.3〉 〈0.8, 0.1〉


Case 1. First, we suppose that the weight of each attribute is totally unknown.

We then use the proposed method shown in Equation (31) to establish the weighting
vectors of five attributes. We solve this problem according to the next steps:

(1) Using the distance measure DI and knowledge measure KI to get the average diver-
gence and the amount of knowledge under all attributes for all decision makers, we
obtain the divergence and knowledge matrix, respectively, as

DIV =


1.0067 0.9763 0.9274 0.9013 0.7288
0.5312 0.7012 0.5487 0.4928 0.4707
0.6048 0.5614 0.8524 0.9013 0.6275
0.9661 0.7473 0.8370 0.7270 1.1840

,

K =


2.7112 2.8317 2.4047 2.4629 3.1393
2.5628 2.9237 2.3939 2.6850 2.9527
3.0721 2.6788 2.8276 2.4629 2.9745
2.6547 3.0779 3.0100 2.8944 2.6928

,
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The elements divij in matrix DIV represents the whole average divergence provided by
Di under Aj, and kij in matrix K represents the knowledge amount provided by Di under Aj.

(2) Given the weight vector λ = (0.3, 0.2, 0.3, 0.2)T , we obtain the attribute weight vector
based on Equation (31):

w = (0.2011, 0.2036, 0.1955, 0.1908, 0.2090)T .

(3) Collecting all decision makers’ decision matrices based on the proposed IFWA opera-
tor, we can get the aggregated decision matrix as:

A1 A2 A3 A4 A5

R =

G1
G2
G3
G4
G5


〈0.4717, 0.3704〉 〈0.6534, 0.1516〉 〈0.7330, 0.1534〉 〈0.7395, 0.1380〉 〈0.6822, 0.3178〉
〈0.7104, 0.1741〉 〈0.6296, 0.2449〉 〈0.4050, 0.2828〉 〈0.6019, 0.1320〉 〈0.6569, 0.2132〉
〈0.5839, 0.1732〉 〈0.7395, 0.1625〉 〈0.5795, 0.2486〉 〈0.3931, 0.2000〉 〈0.6751, 0.1732〉
〈0.5888, 0.2930〉 〈0.6660, 0.1000〉 〈0.7138, 0.1516〉 〈0.5453, 0.2551〉 〈0.7485, 0.1762〉
〈0.7509, 0.1246〉 〈0.5963, 0.2828〉 〈0.5440, 0.2855〉 〈0.6634, 0.2169〉 〈0.6429, 0.1231〉

 .

(4) Based on the vector w = (0.2011, 0.2036, 0.1955, 0.1908, 0.2090)T , we aggregate the
threat degree of each target under all attributes using the IFWA operator to obtain

Z1 = 〈0.6666, 0.2085〉, Z2 = 〈0.6141, 0.2031〉, Z3 = 〈0.6132, 0.1886〉,
Z4 = 〈0.6622, 0.1812〉, Z5 = 〈0.6421, 0.1920〉.

(5) The score function of Z1, Z2, Z3, Z4, Z5 can be calculated as:

S(Z1) = 0.4581, S(Z2) = 0.4111, S(Z3) = 0.4246, S(Z4) = 0.4810, S(Z5) = 0.4501.

(6) According to the score grades, we obtain the ranking order R of all malicious codes’
threat degree as

G4 � G1 � G5 � G3 � G2.

Based on the method proposed in [9], when E1.5
M and CE1.5

M are used, the attribute
weights are obtained as wa = (0.1940, 0.2238, 0.1330, 0.2117, 0.2375)T , and the final ranking
order is Ra: G4 � G5 � G1 � G3 � G2. When E1

N and CE1
N are used, the attribute weights

are obtained as wb = (0.1931, 0.2219, 0.1325, 0.2133, 0.2392)T , and the final ranking order is
Rb: G4 � G5 � G1 � G3 � G2. It is notable that the final ranking order obtained using the
method proposed in Section 5 is not completely identical to that obtained in [9]. However,
all methods can be used to obtain the same optimal alternative, G4. Since the solving the
MAGDM problem is aimed at obtaining the best choice, the order of other alternatives
may not be of concern. We can use the similarity between two weighting vectors, which is
defined as the cosine value of the angle between them, denoted Sim:

Sim(w1, w2) =
wT

1 w2√(
wT

1 w1
)(

wT
1 w2

) , (32)

The consensus level between two ranking orders R1 and R2 is calculated by Spearman’s
rank correlation coefficient [65]:

ρ(R1, R2) = 1− 6
p

∑
i=1

(
r(1)i − r(2)i

)2
/p(p2 − 1), (33)

where p is the number of alternatives; r(1)i and r(2)i are the positions of alternative Gi in
respective ranking order R1 and R2.

We then obtain

Sim(w, wa) = 0.9863; Sim(w, wb) = 0.9859; ρ(R, Ra) = ρ(R, Rb) = 0.9.
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These results indicate that the attribute weights obtained by the proposed method
are quite similar to those yielded in [9]. Moreover, the ranking orders are at a high
consensus level. It is demonstrated that the proposed method is effective for solving
MAGDM problems.

Case 2. We suppose that the attribute weights are partially known by some relations as following:

H = {w1 ≥ 0.1; 0.2 ≤ w2 ≤ 0.3; w3 ≥ 0.15; 0.2 ≤ w4 ≤ 0.3; 0.3 ≤ w5 ≤ 0.4}.

We can then use the following optimal model to get the attribute weighting vector:

max T = (3.5614, 3.6045, 3.4614, 3.3783, 3.7011)w

s.t.


w ∈ H,

5
∑

j=1
wj = 1,

wj ≥ 0, j = 1, 2, · · · , 5.

,

and we obtain the weighting vector as w = (0.1, 0.2, 0.15, 0.2, 0.35)T .
Using the weighting vector w, we obtain the aggregated threat grades of each mali-

cious code by the IFWA operator:

Z1 = 〈0.6815, 0.2110〉, Z2 = 〈0.6168, 0.2036〉, Z3 = 〈0.6247, 0.1858〉,
Z4 = 〈0.6791, 0.1743〉,Z5 = 〈0.6334, 0.1849〉,

and their scores are calculated as

S(Z1) = 0.4704, S(Z2) = 0.4131, S(Z3) = 0.4389, S(Z4) = 0.5048, S(Z5) = 0.4484,

respectively. Then, we obtain the ranking order as

G4 � G1 � G5 � G3 � G2.

If there is only one expert in MAGDM problems, we do not need to fuse the results of
different experts. Thus, we can deal with such cases by evaluating attribute weight vector
and then aggregating all the results under different attributes. We will use another example
to compare the proposed methods with other methods.

Example 7. The cyber-defense unit will attack the malicious code with the maximum threat grade.
In cyberspace security, cyber security researchers evaluate their own protection capabilities by
evaluating malicious codes, and can judge the order in which malicious codes are difficult to be
discovered in the system.

There are pieces of five malicious code for their choice. The following five types of
malicious code include:

Five malicious code are presented as:

G1, a backdoor;
G2, a Trojan-PWS;
G3, a Worm;
G4, a Trojan-Spy;
G5, a Trojan-Downloader.

The cyber security researchers evaluates these five malicious code based on four
attributes, which are the following:

A1, the resource consumption;
A2, the self-starting ability;
A3, the con-cealment ability;
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A4, the self-protection ability.

The results of evaluation using intuitionistic fuzzy information are

A1 A2 A3 A4

R =

G1
G2
G3
G4
G5


〈0.5, 0.4〉 〈0.6, 0.3〉 〈0.3, 0.6〉 〈0.2, 0.7〉
〈0.7, 0.3〉 〈0.7, 0.2〉 〈0.7, 0.2〉 〈0.4, 0.5〉
〈0.6, 0.4〉 〈0.5, 0.4〉 〈0.5, 0.3〉 〈0.6, 0.3〉
〈0.8, 0.1〉 〈0.6, 0.3〉 〈0.3, 0.4〉 〈0.2, 0.6〉
〈0.6, 0.2〉 〈0.4, 0.3〉 〈0.7, 0.1〉 〈0.5, 0.3〉

 .

Case 1. There is no information available for all attributes’ weights.

(1) Using the distance measure DI and knowledge measure KI to get the average diver-
gence and the amount of knowledge under all attributes, we obtain the divergence
and knowledge matrix, respectively, shown as

DIV = (0.7468, 0.5484, 1.2190, 1.1117),
K = (2.8798, 2.4825, 2.5963, 2.5674)

The elements divi and ki in vector DIV and K represent the average divergence degree
and knowledge quantity under attribute Ai, respectively.

(2) The weight factor of attribute Ai can be calculated as

wi =
divi + ki

n
∑

i=1
(divi + ki)

, i = 1, 2, · · · , 5

We then obtain the weighting vector as w = (0.2563,0.2142,0.2696,0.2600)T.

(3) Aggregate the evaluation results of each target under all attributes based on the
weighting vector w and the IFWA operator. The final threat grades of five malicious
code are:

Z1 = 〈0.4102, 0.4852〉, Z2 = 〈0.6408, 0.2816〉, Z3 = 〈0.5544, 0.3435〉,
Z4 = 〈0.5337, 0.2930〉, Z5 = 〈0.5722, 0.2011〉.

(4) The score grades of all alternatives are computed as

S(Z1) = −0.0750, S(Z2) = 0.3592, S(Z3) = 0.2109, S(Z4) = 0.2407, S(Z5) = 0.3711.

(5) Thus, we rank all alternatives in order R as G5 � G2 � G4 � G3 � G1.

For further analysis, we compare these results with the solutions for Xia and Xu’s
method [9]. The weighting vector that they obtained is wc = (0.2659, 0.2486, 0.2370, 0.2486)T

and the ranking order is Rc: G5 � G2 � G3 � G4 � G1. We note that these ranking orders
are slightly diverse due to the distinction between intuitionistic fuzzy measures used, but
they obtain the same optimal alternative G5.

We also obtain Sim(w, wc) = 0.9975 and ρ(R, Rc) = 0.9, indicating that the results
achieved based on the method proposed in Section 5 are quite close to the results in [9].

Case 2. Suppose that partially information on the attribute is available as:

H = {0.15 ≤ w1 ≤ 0.2; 0.16 ≤ w2 ≤ 0.18; 0.3 ≤ w3 ≤ 0.35; 0.3 ≤ w4 ≤ 0.45},



Entropy 2021, 23, 1119 21 of 26

we then can build an optimal model to calculate the attribute weight:

max T = (3.6266, 3.0310, 3.8153, 3.6791)w

s.t.


w ∈ H,

4
∑

j=1
wj = 1.

and can obtain the weight vector:

w = (0.20, 0.16, 0.34, 0.30)T .

Aggregating the threat grades of each target under all attributes using the IFWA
operator, we obtain

Z1 = 〈0.3371, 0.5186〉, Z2 = 〈0.6307, 0.2855〉, Z3 = 〈0.5528, 0.3327〉,
Z4 = 〈0.4814, 0.3270〉, Z5 = 〈0.5862, 0.1904〉.

The score grades of these IFVs representing each target’s threat degree can be obtained
as

S(Z1) = −0.1415, S(Z2) = 0.3451, S(Z3) = 0.2201, S(Z4) = 0.1545, S(Z5) = 0.3958.

By comparing the score grades of five IFVs, the ranking order of these five malicious
codes’ threat degree can be obtained as: G5 � G2 � G3 � G4 � G1.

Using the method proposed in [9], the attribute weights can be yielded as wd =

(0.19, 0.16, 0.35, 0.30)T , and the corresponding ranking order is Rd: G5 � G2 � G3 � G4 � G1.
It is shown that the weighting vector obtained by the proposed method is much close

to that obtained by Xia and Xu in [9] when partial information on the attribute weight
is provided. We calculate the similarity degree between them as Sim(w, wc) = 0.9996.
It can also be seen that the order yielded by our proposed method is identical to Rd, a
phenomenon that appears to be caused by the incomplete information.

These illustrative examples reveal the necessity of utilizing distance and knowledge
measures to establish the attribute weights. They further demonstrate that our method
proposed here reasonably and effectively handles intuitionistic fuzzy MAGDM problems.
The applicability of our proposed knowledge measure is also illustrated. In the method
proposed in [9], we note that they used more complex entropy/cross-entropy measures
with additional parameters, but without specific physical meaning. Moreover, the hybrid
aggregation operator used in [8] needs an associated weight vector to aggregate intuitionis-
tic fuzzy information. Compared with these entropy/cross-entropy measures in [9], our
developed distance and knowledge measures with relatively concise simple expressions
and specific physical meaning can also obtain reasonable solutions with the help of the
original IFWA operator. Thus, our proposed method seems to be more practical and easier
to implement to solve MAGDM problems.

7. Conclusions

In this paper, we propose a knowledge measure based on our proposed intuitionistic
fuzzy distance measure for the purpose of measuring the knowledge amount of AIFSs
more accurately. The axiomatic definition of knowledge measure is refined from a more
general view, after which we investigate the properties of the new distance-based knowl-
edge measure. Mathematical analysis and numerical examples are provided to illustrate
the proposed knowledge measure’s properties. To demonstrate the applicability of the pro-
posed distance-based knowledge measure, we apply it to develop a new method of solving
MAGDM problems with intuitionistic fuzzy information. Application examples combined
with comparative analysis illustrate the effectiveness and rationality of our method.
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We only present a knowledge measure based on our proposed distance measure in this
paper. The main feature of the proposed knowledge measure lies in its succinct expression,
good properties, and evident physical significance. This is a new perspective to considering
knowledge measure and uncertainty measure. There must be other kinds of knowledge
measures used if other distance measures are applied. Exploration on the reasonable
distance measure is critical for the definition of knowledge measure. Conversely, based
on the relation on distance measure and uncertainty measure, we can also develop new
distance measure based on some reasonable knowledge measures. Furthermore, syncretic
research on distance measure, similarity measure, knowledge measure, and uncertainty
measure is also attractive and worthy.
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Appendix A

Proof of Theorem 1.
(1) Given DI(A, B) = 0, we obtain µA(xi)−vA(xi)

2 − µB(xi)−vB(xi)
2 = 0 and µA(xi)+vA(xi)

2 −
µB(xi)+vB(xi)

2 = 0 ∀i ∈ {1, 2, · · · , n}, which can be written identically as

µA(xi)− vA(xi) = µB(xi)− vB(xi), µA(xi) + vA(xi) = µB(xi) + vB(xi).

We then obtain µA(xi) = µB(xi) and vA(xi) = vB(xi) by adding and subtracting the
above equations, respectively, i = 1, 2, · · · , n. Hence, for all elements x ∈ X, µA(x) = µB(x)
and vA(x) = vB(x) hold simultaneously, which indicates that A=B.

For two AIFSs, A and B, defined in X = {x1, x2, · · · , xn}, we have the following relation:

A = B⇒ ∀i ∈ {1, 2, · · · , n}, µA(xi) = µB(xi), vA(xi) = vB(xi)⇒ DI(A, B) = 0.

We can conclude from the above analysis that DI(A, B) = 0⇔ A = B .
(2) It is straightforward that DI(A, B) = DI(B, A).
(3) Three AIFSs, A, B, and C defined in X = {x1, x2, · · · , xn}, can be expressed as A =

{〈x, µA(x), vA(x)〉|x ∈ X }, B = {〈x, µB(x), vB(x)〉|x ∈ X }, and
C = {〈x, µC(x), vC(x)〉|x ∈ X }, respectively. Considering the condition A ⊆ B ⊆ C,
we have the relations µA(xi) ≤ µB(xi) ≤ µC(xi) and vA(xi) ≥ vB(xi) ≥ vC(xi).

The distance between AIFSs A and B can be written as
DI(A, B) =

1
n

n
∑

i=1

√(
µA(xi)−vA(xi)

2 − µB(xi)−vB(xi)
2

)2
+ 1

3

(
µA(xi)+vA(xi)

2 − µB(xi)+vB(xi)
2

)2 . The distance

between AIFSs A and C can be written as
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DI(A, C) =

1
n

n
∑

i=1

√(
µA(xi)−vA(xi)

2 − µC(xi)−vC(xi)
2

)2
+ 1

3

(
µA(xi)+vA(xi)

2 − µC(xi)+vC(xi)
2

)2 . The dis-

tance between AIFSs B and C can be written as
DI(B, C) =

1
n

n
∑

i=1

√(
µB(xi)−vB(xi)

2 − µC(xi)−vC(xi)
2

)2
+ 1

3

(
µB(xi)+vB(xi)

2 − µC(xi)+vC(xi)
2

)2 . We then con-

struct a function f (x, y) with two variables as

f (x, y) = ((x− y)− (a− b))2 +
1
3
((x + y)− (a + b))2,

where 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ a ≤ 1, and 0 ≤ b ≤ 1.
The partial derivatives for variables x and y can be obtained as follows:

∂ f
∂x = 2((x− y)− (a− b)) + 2

3 ((x + y)− (a + b))
= 8

3 (x− a) + 4
3 (b− y)

= 4
3 (2(x− a) + (b− y))

,

∂ f
∂y = −2((x− y)− (a− b)) + 2

3 ((x + y)− (a + b))
= 8

3 (y− b) + 4
3 (a− x)

= 4
3 (2(y− b) + (a− x))

.

(i) Given the conditions 0 ≤ a ≤ x ≤ 1 and 0 ≤ y ≤ b ≤ 1, we obtain that ∂ f /∂x ≥ 0
and ∂ f /∂y ≤ 0. Thus, f (x, y) is an increasing function of variable x and a decreasing
function of variable y.

Letting a = µA(xi) and b = vA(xi) then a = µA(xi) ≤ µB(xi) ≤ µC(xi) and b =
vA(xi) ≥ vB(xi) ≥ vC(xi), i ∈ {1, 2, · · · , n}. Considering the monotonicity of f (x, y), we
have f (µB(xi), vB(xi)) ≤ f (µC(xi), vC(xi)), i ∈ {1, 2, · · · , n}.

Under the conditions a = µA(xi), b = vA(xi), and ∀i ∈ {1, 2, · · · , n}, the following
expressions hold:

DI(A, C) =
1

2n

n

∑
i=1

√
f (µC(xi), vC(xi)), DI(A, B) =

1
2n

n

∑
i=1

√
f (µB(xi), vB(xi)).

Therefore, we have DI(A, B) ≤ DI(A, C).
(ii) In the conditions 0 ≤ x ≤ a ≤ 1 and 0 ≤ b ≤ y ≤ 1, we have ∂ f /∂x ≤ 0 and

∂ f /∂y ≥ 0. Thus, f (x, y) is a decreasing function of variable x and an increasing function
of variable y.

Setting a = µC(xi) and b = vC(xi), then µA(xi) ≤ µB(xi) ≤ µC(xi) = a and vA(xi) ≥
vB(xi) ≥ vC(xi) = b, i ∈ {1, 2, · · · , n}. Considering the monotonicity of f (x, y), we have
f (µB(xi), vB(xi)) ≤ f (µA(xi), vA(xi)), ∀i ∈ {1, 2, · · · , n}.

For a = µC(xi), b = vC(xi), ∀i ∈ {1, 2, · · · , n}, the following expressions hold:

DI(A, C) =
1

2n

n

∑
i=1

√
f (µA(xi), vA(xi)), DI(A, B) =

1
2n

n

∑
i=1

√
f (µB(xi), vB(xi)).

Thus, we have DI(B, C) ≤ DI(A, C).
Taking (i) and (ii) into account, we conclude that DI(A, B) ≤ DI(A, C) and DI(B, C) ≤

DI(A, C) in the condition of A ⊆ B ⊆ C.
(4) The expression of DI(A, B) indicates that DI(A, B) ≥ 0 and DI(A, B) = 0 if A = B.
Defining two AIFSs in X = {x1, x2, · · · , xn} as F∗ = {〈x, 0, 1〉|x ∈ X } and F∗ =

{〈x, 1, 0〉|x ∈ X }, for two AIFSs A = {〈x, µA(x), vA(x)〉|x ∈ X } and
B = {〈x, µB(x), vB(x)〉|x ∈ X }, we have F∗ ⊆ A ⊆ B ⊆ F∗ based on the basic relation
between AIFSs.
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The condition F∗ ⊆ A ⊆ B ⊆ F∗ implies that DI(A, B) ≤ DI(F∗, F∗). Since AIFSs A
and B are arbitrary, the relation DI(A, B) ≤ DI(F∗, F∗) holds in the set of all AIFSs defined
in X.

By Equation (9), the distance between F∗ and F∗ can be calculated as DI(F∗, F∗) = 1.
Hence, DI(A, B) ≤ 1.

From the above analysis, we obtain 0 ≤ DI(A, B) ≤ 1.
Therefore, the above analysis indicates that the distance DI(A, B) satisfies all axiomatic

conditions of a distance measure, and thus DI(A, B) is a distance measure for AIFSs. �

Appendix B

Proof of Theorem 3.
To be a knowledge measure of AIFSs, K I(A) defined in Equation (19) must satisfy all

axiomatic properties defined in Definition 7.
(KP1) Let A be a crisp set. We then have µA(xi) = 1, vA(xi) = 0 or µA(xi) = 0,

vA(xi) = 1,i = 1, 2, · · · , n, which implies that µA(xi)+ vA(xi) = 1 and |µA(xi)− vA(xi)| =
1. Thus, K I(A) = 1.

In the condition of 0 ≤ µA(xi) ≤ 1, 0 ≤ vA(xi) ≤ 1, and 0 ≤ µA(xi) + vA(xi) ≤ 1,
K I(A) = 1 can only be obtained in the case of µA(xi)+ vA(xi) = 1 and |µA(xi)− vA(xi)| =
1, ∀i ∈ {1, 2, · · · , n}. This indicates that ∀i ∈ {1, 2, · · · , n}, µA(xi) = 1, vA(xi) = 0 or
µA(xi) = 0, vA(xi) = 1, which means that A is a crisp set.

Hence, K I(A) = 1 if and only if A is a crisp set.
(KP2) In the case where ∀i ∈ {1, 2, · · · , n}, πA(xi) = 1, we have µA(xi) = vA(xi) = 0,

∀i ∈ {1, 2, · · · , n}. Then, K I(A) = 0 can be obtained by Equation (19).
The form of Equation (19) indicates that only in the case of (µA(xi)− vA(xi))

2 = 0
and (µA(xi) + vA(xi))

2 ∀i ∈ {1, 2, · · · , n} can we obtain K I(A) = 0. This implies that
µA(xi) − vA(xi) = 0 and µA(xi) + vA(xi) = 0, ∀i ∈ {1, 2, · · · , n}. Therefore, we have
µA(xi) = vA(xi) = 0, πA(xi) = 1, ∀i ∈ {1, 2, · · · , n}.

Thus, K I(A) complies with the property of KP2.
(KP3) The expression of K I(A) can be rewritten as

K I(A) =

√
3

2n

n

∑
i=1

√
|µA(xi)− vA(xi)|2 +

1
3
(1− πA(xi))

2.

It is explicit that K I(A) is monotonously increasing with |µA(xi)− vA(xi)| if πA(xi)
is fixed.

By 0 ≤ πA(xi) ≤ 1 and 0 ≤ 1 − πA(xi) ≤ 1, we can easily prove that K I(A) is
monotonously decreasing with πA(xi) when |µA(xi)− vA(xi)| remains unchanged.

Then, K I(A) complies with the property of KP3.
(KP4) By the definition of AC, it is evident that K I(AC) = K I(A).
We note that K I(A) defined in Equation (19) complies with all properties in the

axiomatic definition of a knowledge measure, so it is a knowledge measure for AIFSs. �
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