
RESEARCH Open Access

The gut microbial composition in polycystic
ovary syndrome with insulin resistance:
findings from a normal‐weight population
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Abstract

Background: Limited studies have reported the relationship between intestinal flora dysbiosis and clinical
characteristics in polycystic ovary syndrome (PCOS). However, the structure and characteristics of gut microbiota in
PCOS have not been fully elucidated.

Objective: To analyze the composition of the Intestinal flora population in normal-weight women with PCOS and
insulin resistance(IR) compared to PCOS alone and healthy women.

Methods: A total of 14 PCOS patients with insulin resistant(PCOS-IR) and 12 PCOS alone (PCOS-NIR), and 10 age-
and body mass index-matched healthy control women (HC). BMI: 18.5–23.9 kg/m2. The bacterial 16 S rDNA V3-V4
fragment was amplified and sequenced. Then, the sequencing data were analyzed for species annotation,
community diversity, and inter-group differences, to explore gut microbial characteristics of the subjects and their
correlation with clinical parameters.

Results: No significant difference in diversity was observed between PCOA and sample cluster analysis among the
three groups (Beta-diversity) and Alpha-diversity. The relative abundance of Rothia, Ruminococcus, and Enterococcus
was significantly higher in the PCOS-IR group than in the other two groups (P < 0.05), while that of Prevotella was
dramatically decreased (P < 0.05). The abundance of Enterococcus was positively correlated with waist
circumference, hip circumference, diastolic blood pressure, and insulin resistance index. Meanwhile, Rothia
abundance is positively associated with waist circumference and free fatty acids.

Conclusions: The gut microbial composition of PCOS patients with insulin resistance is different from that of PCOS
alone and healthy women. The difference is correlated with the clinical characteristics of PCOS, with regards to
insulin resistance, abdominal obesity, free fatty acids, and other indicators. PCOS-IR patients have an increased
abundance of Enterococcus which potentially the intestinal environment of the host by enriching the metabolic
pathways related to insulin resistance, causing the occurrence and development of PCOS.
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Introduction
Polycystic ovary syndrome (PCOS) is a common endo-
crine and metabolic disease in women, related to hirsut-
ism, hyperandrogenism, ovulation dysfunction, menstrual

disorders, and infertility [1]. About 50-70 % of cases of
anovulatory infertility in patients are linked to PCOS [2],
specifically those accompanied by low ovulation induction
rate, low pregnancy rate, and high abortion rate. PCOS is
associated with several metabolic disorders, including
insulin resistance (IR), obesity, cardiovascular disease,
diabetes, and other long-term metabolic syndromes. At
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present, the etiology and pathogenesis of PCOS are still
unknown, which may involve lifestyle, neuroendocrine,
genetic factors, immune and metabolic dysfunction [3].
Insulin resistance is considered to be the main patho-
logical basis of reproductive dysfunction in polycystic
ovary syndrome,independent of obesity [4–8]. Notably,
insulin resistance and hyperinsulinemia affect testosterone
synthesis and secretion, while hyper androgen levels can
lead to hirsutism, acne, ovulation disorders, and menstrual
disorders. On the other hand, insulin resistance exhibits a
long-term and severe effect on metabolism in patients
with polycystic ovary syndrome [9].
Intestinal flora,the “second genome” obtained by the

human body, co-evolves with the host to promote
metabolism and immune response [10]. Evidence indi-
cates that gut microbiome disorders are closely related
to the occurrence and development of metabolic dis-
eases, including PCOS [11, 12]. Also, several studies
have attributed the appearance of IR to gut microbiota
dysbiosis [13, 14]. The changes of intestinal flora poten-
tially affect insulin sensitivity by regulating chronic in-
flammation mediated by lipopolysaccharide, branched
chain amino acid, short chain fatty acid (SCFA), and bile
acid metabolism, and stimulating the secretion of enter-
ocerebral peptides, resulting in insulin resistance and
hyperinsulinemia [15–17]. The structure and character-
istics of intestinal microbiota in patients with PCOS
have not been comprehensively elucidated [18–22].
Besides, only limited studies have explored the relation-
ship between intestinal flora dysbiosis, clinical character-
istics and metabolism in patients with PCOS.
Intestinal flora imbalance causes IR, which is closely

linked to the occurrence of PCOS. Herein, excluding the
influence of obesity, we conducted a pilot study to
examine the correlation between gut microbiota, insulin
resistance, and clinical characteristics of PCOS patients.
These findings might provide novel insights on the
mechanism of occurrence and development of PCOS,
thus, accelerating the formulation of new approaches for
the prevention and treatment of PCOS.

Materials and methods
Participants
A total of 26 women with polycystic ovary syndrome
(PCOS) aged 18–35 years who visited the Department of
Assisted Reproduction (Xiangya Hospital, Central South
University) between August and December 2019 were
recruited. Additionally, we recruited 10 normal women
visiting a similar department during the same period for
assisted reproduction due to the “male-factor” or “fallo-
pian tube factor” were enrolled as the control group.
This study was approved by the Ethics Committee of the
Department of Assisted Reproduction (Xiangya Hospital,
Central South University)and China Registered Clinical

Trial Ethics Review Committee (Ethical Review No.:
CHiECRT1900028223). All participants provided written
informed consent. The participants were non-obese
women (BMI 18.5–23.9 kg/m2) [23, 24]. PCOS diagnosis
was conducted as per the Rotterdam criteria revised dur-
ing the 2003 Conference; PCOS was diagnosed if two
out of the following three features were present: Oligoo-
vulation or amenorrhea; clinical manifestations of andro-
gen and/or biochemical hyperandrogenism (HA);
polycystic ovary: ultrasound reports show that the folli-
cles of unilateral or bilateral ovaries with a diameter of
2-9mm are larger than 12, and/or the volume of the
ovary ≥ 10ml [7]. Individuals excluded from one of the
following conditions: Cushing syndrome, congenital
adrenocortical hyperplasia, androgen-secreting tumors.
None of the subjects were treated with hormone drugs,
insulin sensitizers, antibiotics, probiotics and prebiotics,
traditional Chinese medicines, and immunosuppressants
less than three months before the study. Based on the
Rotterdam criteria, women in the control group had no
history of menstrual disorder, endocrine diseases, or
diagnosed PCOS. The HOMA-IR index was calculated
as follows: fasting insulin (FINs, mIU/L) fasting plasma
glucose (FPGs, mmol/L)/22.5. Insulin resistance was
defined as fasting insulin > 10mU/ml, or HOMA-IR >
1.66, or abnormal insulin release curve (insulin peak
more than ten times the basic value; insulin peak
delayed to 1 h after taking sugared water; area under the
insulin curve increased; insulin level not returning to the
normal fasting level 3 h after taking sugared water), but
with normal fasting blood glucose and glucose tolerance
levels [25].

Sampling
Data regarding anthropometry and metabolic parameters
were collected for all participants, including: (1) mea-
surements, including height, weight, waist circumfer-
ence, hip circumference, and blood pressure, (2)
detection of biochemical indicators, such as the sex
hormone levels, including progesterone (P4), prolactin
(PRL), testosterone(T), luteinizing hormone (LH),
follicle-stimulating hormone (FSH), oestradiol (E2), sex
hormone binding globulin (SHBG), Anti-Mullerian
hormone (AMH), and glucose and insulin levels during
an oral glucose tolerance test on the third day of the
menstrual cycle (In the case of amenorrhea patients,
blood samples were collected on any day of the
menstrual cycle). Meanwhile, biochemical indices,
including triglyceride (TG), total cholesterol (TC), low-
density lipoprotein (LDL), high-density lipoprotein
(HDL), total bile acid, free fatty acid, and inflammatory
markers such as C-reactive protein (CRP), interleukin-6
(IL-6), and tumor necrosis factor (TNF-α) were mea-
sured. (3) Feces samples were collected from all patients
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after menstruation, and the samples were immediately
frozen and stored at -80℃ until analysis.

DNA extraction and PCR amplification
Following the manufacturer’s instructions, microbial
DNA was extracted from stool samples using a TIANgen
stool DNA kit. The 16 S rDNA V3 + V4 region of the
ribosomal RNA gene was amplified by polymerase chain
reaction (PCR). The V3–V4 variable region of the bac-
terial 16sRNA was amplified via PCR using (5′-CCTA
CGGRRBGCASCAGKVRVGAAT-3′) and (5′-GGACTA
CNVGGGTWTCTAATCC-3′) primers under the fol-
lowing conditions: denaturing at 94 °C for 3 min
followed by 24 cycles of 94 °C for 5 s, 57 °C for 90 s, and
72 °C for 10 s, then a final extension at 72 °C for 5 min.
Each PCR reaction mix (25 µL) included 2.5 µL Trans-
Start Buffer, 2 µL dNTPs, 1 µL primer (2 µM), 0.5 µL
TransStart Taq DNA and 20 ng of DNA template. The
PCR products were assessed using 1.5 % agarose gel elec-
trophoresis, quantified by Qubit3.0 Fluorometer (Invitro-
gen, Carlsbad, CA), then pair-end sequenced on
Illumina Miseq PE250 platform (Illumina, San Diego,
CA, USA).

Next-generation sequencing
Filtration of raw tags was performed using QIIME
(V1.9.1) to dislodge the noisy sequences [26]. The fil-
tered clean tags were searched against the Gold database
to identify chimeric tags, which were then removed
using the UCHIME algorithm to obtain Effective Tags.
Based on the Effective Tags of each sample, the OUT
(Operational Taxonomic Units) were clustered using
QIIME software (Version 1.9.1) based on the GreenGene
database [26–28]. Alpha diversity was reflected by
Chao1, Observed OTUs,Simpson, and Shannon indexes.
Beta diversity was presented on principal coordinates
analysis (PCoA) charts created using PCoA statistical
analysis method with R language(version 3.3.3). Based
on the species abundance table, the P-value was ob-
tained by Kruskal–Wallis H test analysis and then modi-
fied by Benjamini and Hochberg False Discovery Rate
method to obtain the Q value. The species with signifi-
cant differences between groups were obtained with Q
value < 0.05 as the threshold [29]. Linear discriminant
analysis (LDA) effect size (LEfSe) was used to identify
the bacterial taxa and metabolism-associated clinical
parameters with significant differences between groups.
Logarithmic LDA values > 2.0 and P < 0.05 were set as
the threshold for differential flora identification.

Statistical analysis of clinical data
Data were analyzed using SPSS 22.0. Quantitative demo-
graphic and clinical data with normal distribution were
presented as the mean ± standard deviations (SD).

Unpaired t-test was used to determine the difference
between two groups. Qualitative demographic and
clinical data were expressed as percentages and analyzed
using the chi-square test. The Kolmogorov-Smirnov test
of normality was applied to all data sets. Data with non-
conformance to normal distribution were analyzed using
the Mann-Whitney test. A probability (p) value of < 0.05
was considered statistically significant.

Results
Clinical characteristics of the participants
Table 1 summarizes the clinical, hormonal and meta-
bolic data of the recruited participants. There were no
significant differences(P > 0.05) in age, height, or BMI
among the three groups among the three groups. The
menstrual cycle, waist circumference, and waist-to-hip
ratio of the PCOS group were significantly higher than
those of the healthy control group(HC). The waist-to-
hip ratio of the PCOS-IR group was higher than that of
the other two groups (IR VS NIR: 0.85 ± 0.04 VS 0.82 ±
0.03, IR VS HC:0.85 ± 0.04 VS 0.77 ± 0.03 P < 0.05).
Regarding sex hormones, patients with PCOS exhibited
higher levels of T, LH, LH/FSH, and lower levels of
estradiol, relative to the control patients (P < 0.001).
Nonetheless, no significant difference was observed the
PCOS-IR and the PCOS-NIR group. Concerning glucose
and plasma lipid levels, although fasting glucose was not
different among the three groups, women with PCOS
had higher fasting insulin, glycosylated hemoglobin, and
homeostasis model assessment of insulin resistance
(HOMA-IR). Notably, the PCOS-IR group had higher
HOMA-IR values(P < 0.05). In contrast healthy individ-
uals, the plasma levels of pro-inflammatory cytokines in
PCOS patients, including IL-6 and TNF-a, were signifi-
cantly higher. The PCOS-IR group showed higher levels
of C-reactive protein, Il-6, TNF-α, and free Fatty acid
(FFA)(P < 0.05).

Effect of PCOS on gut microbiota diversity
These sequences comprised 297 OTUs clustered at a
97 % similarity level. The dilution curve and Shannon-
Wiener curve were used to establish whether the
sequencing quantity was sufficient and estimate the
species richness (Fig. 1 a). The curve seemingly flat-
tened, indicating that the sequencing depth was suffi-
cient to reflect the species diversity of the samples.
The Venn diagram of OTU number distribution of
the three groups of samples was drawn to intuitively
reflect the common and unique characteristics be-
tween the groups (Fig. 1b). Alpha diversity analysis
showed that, compared with the HC group, observed
OTUs and Chao1 index were decreased in the PCOS-
IR group and the PCOS-NIR group, but the differ-
ences were not statistically significant (Fig. 1 c and
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d). The Beta diversity analysis showed that the princi-
pal coordinate analysis (PCoA analysis) and sample
clustering analysis were similar among the three
groups of samples (Fig. 1e, f).

Gut microbiota composition among PCOS patients
At the phylum level, Fig. 2 shows the phylum abun-
dance distribution in the bacterial kingdom of the 36

samples, among which Firmicutes were the most
abundant, followed by Proteobacteria, then Actino-
bacteria. The overall abundance of other bacteria
was about 1 %. The abundance of Fusobacteria and
Verrucomicrobia differed between the PCOS and the
HC groups, but the difference was not significant
(P > 0.05) (Fig. 2). At the family level, significant
differences were observed in the abundance of

Table 1 Clinical, biochemical and hormonal features of participants

PCOS

Parametes HC(n = 12) NIR(n = 10) IR(n = 14)

Age(years) 28.25 ± 1.22 26.4 ± 3.41 26.71 ± 2.43

Menstrual cycle(days) 29.67 ± 2.02AB 82.7 ± 26.61B 75.43 ± 27.91 A

BMI(Kg/m2) 21.28 ± 1.34 21.32 ± 1.22 21.91 ± 1.4

Waist 67.42 ± 4.4AB 71.8 ± 3.29BC 77.79 ± 5.73AC

Hip 88 ± 5.31 87.8 ± 3.33 91.54 ± 4.43

Waist to hip ratio 0.77 ± 0.03AB 0.82 ± 0.03BC 0.85 ± 0.04AC

FPG (mmol/L) 5 ± 0.27 A 5.09 ± 0.47 5.42 ± 0.59 A

FINs(uU/mL) 6.91 ± 1.82 A 6.95 ± 2.52 C 14.81 ± 3.88AC

HOMA-IR 1.54 ± 0.45 A 1.61 ± 0.64 C 3.57 ± 1.07AC

HbA1-C 5.04 ± 0AB 5.37 ± 0.21B 5.26 ± 0.28 A

FSH (IU/L) 6.8 ± 2.18 5.92 ± 2.16 6.43 ± 1.42

LH(IU/L) 6.25 ± 2.88AB 15.55 ± 8.03B 15.37 ± 7.31 A

LH/FSH 0.96 ± 0.4AB 2.53 ± 0.89B 2.42 ± 1.2 A

T (nmol/L) 0.75 ± 0.21AB 1.93 ± 0.57B 1.81 ± 0.82 A

P(nmol/l) 0.54 ± 0.16B 0.93 ± 0.52B 0.74 ± 0.43

E2(pmol/L) 183.51 ± 100.9B 281.47 ± 164.67B 194.25 ± 55.9

AMH 4.99 ± 3.74 A 7.99 ± 2.79 9.28 ± 5.12 A

TBA (umol/l) 4.7 ± 2.22 5.51 ± 4.77 5.26 ± 2.4

ALT (U/L) 13.18 ± 2.7 21.02 ± 15.13 20.81 ± 11.77

AST(U/L) 18.22 ± 5.91 22.03 ± 6.72 21.64 ± 6.4

Lithic (umol/L) 243.43 ± 37.04B 320.21 ± 56.66B 283.65 ± 105.62

TG( mmol/L) 0.88 ± 0.25 A 1.14 ± 0.84 1.29 ± 0.41 A

TC( mmol/L) 4.29 ± 1.11 4.39 ± 0.68 4.77 ± 0.88

HDL(mmol/L) 1.47 ± 0.31 1.36 ± 0.26 1.33 ± 0.23

LDL(mmol/L) 2.67 ± 0.59 2.6 ± 0.53 2.9 ± 0.6

APO-a 93.13 ± 71.68 120.14 ± 126.97 194.49 ± 220.43

ApoA/ApoB 2.47 ± 0.48 2.31 ± 0.56 2.22 ± 0.62

FFA(mmol/L) 0.47 ± 0.11 A 0.48 ± 0.31 0.66 ± 0.24 A

hsCRP(mg/L) 0.69 ± 0.56 A 0.8 ± 0.75 C 1.63 ± 1.27AC

IL-6(pg/ml) 1.13 ± 0.46AB 2.12 ± 0.26B 2.56 ± 1.28 A

TNF 3.76 ± 1.43AB 4.86 ± 1.07B 4.54 ± 0.51 A

A: P < 0.05 for HC vs. IR-PCOS group
B: P < 0.05 for HC vs. NIR-PCOS group
C: P < 0.05 for IR vs. NIR-PCOS group
Abbreviation: PCOS polycystic ovary syndrome; PCOS-IR PCOS with insulin resistance; PCOS-NIR PCOS withoutinsulin resistance; BMI body mass index; WHR the
ratio of waist to hip; FSH follicular stimulating hormone; LHluteinizing hormone; TNF-a tumor necrosis factor-a; FPG fasting plasma glucose; FINS fasting plasma
insulin;HOMAIR homeostasis model assessment of insulin resistance; PPG 3h postprandial plasma glucose; TC totalcholesterol; HDL-C high density lipoprotein-
cholesterol; LDL-C low density lipoprotein-cholesterol; ALT alanine aminotransferase; AST aspartate aminotransferase
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Lactobacillus, Enterococcaceae, Peptostreptococcaceae,
and Micrococcaeae among the three groups. In the
PCOS-IR group, the abundance of Peptostreptococca-
ceae, Enterococcaceae, and Micrococcaeae was higher
than that of the other two groups. Lactobacillaceae
was the highest in the PCOS-NIR group (Fig. 3).
Compared with the HC group, PCOS patients
exhibited a higher abundance of Enterococcus. The

relative abundance of Rothia, Ruminococcus,
Lachnospira, and Enterococcus was significantly
higher in the PCOS-IR patients than in the other
two groups (P < 0.05), whereas the abundance of the
Prevotella was dramatically decreased (P < 0.05).
Lactobacillus and Akkermansia were more abundant
in the PCOS-NIR group than in the PCOS-IR and
HC groups (P < 0.05) (Fig. 4).

Fig. 1 Alpha and beta diversity of the gut microbial communities from participants (n = 36). a: Shannon–Wiener curves, showing that the amount
of sequencing data is large enough to reflect the vast majority of microbial information in the samples. b: Venn diagram, displaying the number
of common and unique OTUs, and the similarity and overlap of OTUs among groups. c: Comparison of observed OUT Numbers between the
three groups(P > 0.05). d: Comparisons of Chao1 indexes among the three groups(P > 0.05). e: Principal coordinate analysis (PCoA) of fecal
microbiota based on weight UniFrac metric, each dot represents the bacterial community composition of one individual stool sample, and the
axis titles indicates the percentage variation explained (62.52 and 9.56 % respectively). f: Dendrogram showing hierarchical cluster analysis based
on weight UniFrac distance matrix to measure the closeness between individual samples
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Next, to further identify species bacterial taxa with
significant differences among the three groups, we
used LEfSe multilevel species discrimination and
LDA. Rothia and Lactobacillus were identified as the
characteristic microbiota in the PCOS-IR and the
PCOS-NIR groups, respectively, while the dominant
bacteria in the HC group was Prevotella(LDA score >
2.0 and P < 0.05)(Fig. 5).

Correlations between gut microbiota and metabolic
parameters or sex hormones
At the genera level, Enterococcus was positively corre-
lated with waist circumference, hip circumference, dia-
stolic blood pressure, and HOMA-IR index. Rothia

positively correlated with waist circumference and free
fatty acid (FFA) (P < 0.05) (Fig. 6).

Discussion
Gut microbial plays a vital role in regulating energy
storage and human metabolism. As such, substantial
focus has been directed to microbiota-targeted agents as
novel targets for the treatment of polycystic ovary syn-
drome (PCOS) and related metabolic diseases. Several
studies have found variations in gut microbiota compos-
ition between PCOS patients and healthy people.
Besides, obese PCOS patients have been shown to
exhibit more severe gut dysbiosis. However, the precise
mechanism underlying the relationship between gut
microbiota and the occurrence and development of

Fig. 2 Species analysis of phylum-level differences. a: thermal maps of phylum-level flora of each sample (b) : Thermal maps of three groups of
phylum-level flora
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PCOS remains significantly unreported. Insulin
resistance (IR) is critical pathological basis of reproduct-
ive dysfunction in patients with PCOS [4–7]. Exactly
50 % of patients with PCOS have IR, independent of
obesity [30, 31]. However, there is limited information
on the roles played by intestinal flora in the development
of IR and its link with PCOS. Herein, our results

revealed that gut dysbiosis was more severe in PCOS pa-
tients with insulin resistance than in the PCOS-NIR and
HC groups. Furthermore, several taxa at the phylum
level were related to the clinical characteristics of PCOS
and were significantly correlated with metabolic bio-
markers, including HOMA-IR, abdominal obesity, free
fatty acids, and other indicators.

Fig. 3 Analysis of different bacterial flora at the family level (a): Bar chart of bacterial colony composition between family-level groups (b) Thermal
chart of bacterial colony abundance at family level differences
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Moreover, we showed that the composition of gut
microbiota of PCOS patients with normal BMI was
changed, but there was no significant difference in
α-diversity among the three groups. Noteworthy,
several studies demonstrated conflicting results
regarding the composition and function of the

intestinal flora in PCOS patients. According to a re-
cent meta-analysis, decreased intestinal microbiome
diversity and changes in diversity are closely associ-
ated with obesity in humans [32, 33]. Previous re-
search reported a significant decrease in gut
microbiota diversity in PCOS patients or letrozole-

Fig. 4 Analysis of bacterial flora with difference in genera level (a): Bar chart of bacterial colony composition between genera level groups (b):
Thermal chart of bacterial colony abundance with difference in genera level groups
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induced mouse models [19, 20, 34]. Liu et al. found
that obese PCOS patients had the lowest diversity of
gut microbiota [19]. Meanwhile, studies have shown
that sex hormones are related to changes in gut
microbiom [16, 35]. Torres et al. found that PCOS

patients exhibited a lower diversity of gut microbiota
than healthy controls, and that total testosterone
levels were associated with reduced diversity [20].
However, Insener et al. did not find a decrease in
the diversity of gut microbiota in all PCOS patients
with hyperandrogenemia, whether obese or not. and
diversity may be different from PCOS diagnostic cri-
teria [21]. Similarly, in this study, β- diversity of gut
microbiota did not significantly differ among the
three groups of samples based on weighted and un-
weighted clustering analysis. In a recent study,
weighted UniFrac range-based hierarchical clustering
and PCoA analysis indicated a clear distinction be-
tween the HC and the IR groups, whereas the NIR
group could not be distinguished from the HC and
IR groups [22]. Despite the absence of standard
selecting sample size in microbiome studies, a study
estimated that a sample size of 10 subjects per un-
weighted group (total sample size of 30) and 20 sub-
jects per weighted group (total sample size of 60)
might provide accurate statistical results for
weighted analysis [36]. Besides, the α and β diversity
of intestinal flora may be influenced by sex, sex
hormones, and obesity. In this study, the BMI of all
the subjects was within the normal range, and thus
the effect of obesity itself on the gut microbiota
composition of the PCOS patients could not be con-
sidered. Maybe due to the small sample size, a more
definite answer should be given after increasing the
sample size in the future.
According to the analysis of the structural composition

of gut microbiota conducted in this study, the three
groups were mainly composed of Bacteroidetes and
Firmicutes at the phylum level. At the genus level, the

Fig. 5 Identification of the bacterial taxa with statistically significant difference between groups using LEfSe software and LDA. Taxa enriched in
HC, NIR-PCOS, and IR-PCOS group are colored by red, green, and blue respectively (LDA > 2.0 and P < 0.05), the relative abundance of these
biomarkers are shown in the histogram (mean and standard deviation values are plotted) under the corresponding cladogram

Fig. 6 Spearman correlation heat map between clinical parameters
and flora. The color of spots represents the Spearman correlation R-
value between each bacterial taxa and clinical parameters. + and
+ + are respectively 0.01 < P < 0.05, 0.001 < P < 0.01
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relative abundance of Enterococcus in the PCOS group
increased significantly (P < 0.05) and was highest in the
IR group. Enterococcus is a common gram-positive
bacteria and can be divided into five categories accord-
ing to phylogenetic similarity. Among them, Entero-
coccus faecalis and Enterococcus faecium are the major
pathogenic bacteria in humans [37, 38]. Although the
causal role of genus Enterococcus in the occurrence and
development of metabolic diseases has not been fully re-
vealed, previous studies have found that Enterococcus is
more abundant in the gut microbiota of obese children
and adolescents [39], as well as in mice under a high-fat/
high-sugar “Western” diet [40]. A recent study found
that Enterococcus can regulate the level of incretin hor-
mone glucagon-like peptide-1 (GLP-1). GeIE secreted by
E. fasecalis can degrade GLP-1 (GLP-1), causing abnor-
mal insulin secretion[41]. At the same time, GeIE can
degrade intestinal gastric inhibitory peptides (just like
leptin), and thereby interfere with the metabolism of the
host. Similarly, in our study, Enterococcus was the most
abundant genera in the PCOS-IR group, and its abun-
dance was positively correlated with insulin resistance
index. GLP-1 plays a role in regulating glucose homeo-
stasis and reducing appetite in the body. Considering the
vital role of GLP-1 in the development of type 2 diabetes
and other metabolic diseases, we speculated that Entero-
coccus could influence the occurrence and development
of PCOS by regulating the GLP-1 signaling pathway,
specifically in patients with IR. Studies have shown that
after oral glucose tolerance tests, GLP-1 activity in lean
PCOS patients is usually lower than in healthy women
[42]. The use of GLP-1 receptor agonists in the treat-
ment of PCOS patients enhances symptoms and reduces
metabolic complications by reducing weight and insulin
resistance [43, 44]. Insulin secretion and gastric
emptying are affected by the intestinal flora environment
and intestinal flora imbalance. Estelle et al. proved the
important role of intestinal flora in controlling GLP-1-
induced insulin secretion and gastric emptying in mice
[45]. Therefore, the role of Enterococcus in the regula-
tion of GLP-1 level in PCOS patients should be explored
further.
The critical bacterial genus in the intestinal tract

of patients with PCOS was identified using LEfSe
multilevel species discrimination and LDA. Conse-
quently, Rothia played vital roles in the PCOS-IR
group, whereas Prevotella was the dominant bacterial
group in the HC group. Rats fed a high-fat diet
exhibited significantly increased fat, reduced insulin
sensitivity, increased abundance of esophageal
Rothia, and Rothia were associated with fasting
blood glucose and insulin. These observations were
linked the expression of inflammatory genes and
fatty acid transport and metabolism in the esophagus

[46]. Changes in Rothia flora in the adolescent oral
cavity were associated with obesity [47]. Women
with gestational diabetes have also shown an in-
crease in Rothia abundance, relative to women with
normal blood sugar [48]. In this study, Rothia had
significant advantages in the PCOS-IR group, and its
abundance was positively correlated with waist cir-
cumference and free fatty acid (FFA). Previous stud-
ies have shown that non-obese PCOS patients with
insulin resistance have a more remarkable centra dis-
tribution of fat [37]. In our research, PCOS patients
with normal BMI exhibited abdominal fat accumula-
tion. Besides, Rothia abundance in the PCOS-IR
group was related to abdominal obesity. Intestinal
flora may participate visceral fat metabolism, release
excess too much free fatty acids, increase lipotoxi-
city, and reducing insulin sensitivity. Prevotella is a
bacterium that produces short-chain fatty acids
(SCFA), regulates the uptake of nutrients and hor-
mone levels in the gut. Also, it participates in energy
metabolism, and its decreased abundance is signifi-
cantly associated with increased testosterone and
pro-inflammatory cytokines [22]. In this study, the
HC group had the highest abundance of Prevotella,
maintaining the balance of intestinal flora, while the
NIR and IR groups had a reduced abundance of Pre-
votella. However, there was no correlation between
the decreased abundance of the Prevotella and the
sex hormones and biochemical indicators, potentially
due to a small sample size used. The relationship be-
tween PCOS and intestinal flora is complex and
could be related to genetic, lifestyle, and environ-
mental factors [49, 50]. We excluded the influence
of smoking, taking antibiotics and probiotics on in-
testinal flora in the included subjects. However, dis-
tinct backgrounds (including region, race, lifestyle,
and diet habit) of the subjects could be responsible
for the differences in the PCOS-related intestinal
flora [51].

Conclusion
In conclusion, we analyzed the composition of the intes-
tinal microbiota in PCOS patients with normal BMI
combined with insulin resistance and its relationship
with clinical characteristics. Notably, no significant dif-
ference was found in intestinal microbial diversity
among the three groups of patients. Nonetheless, the
abundance of Enterococcus and Rothia significantly in-
creased in the PCOS-IR group and correlated with insu-
lin resistance, suggesting that the bacterium potentially
plays a key role in the pathogenesis of PCOS by regulat-
ing the glucagon-like peptidin-1 (GLP-1) level and other
mechanisms. The altered intestinal flora might affect the
intestinal environment of the host by enriching different
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metabolic functions and promoting the development of
PCOS insulin resistance and disease in women. This ex-
perimental cross-sectional study involved participants
from different regions, RACES, and eating habits, which
might have brought heterogeneity. Considering the vari-
ations in human intestinal microbiota, many clinical
population and animal experiments are essential to val-
idate our findings. Also, further studies are imperative to
elucidate the precise function of various flora and the
mechanism underlying their roles in the pathogenesis of
multiple diseases. Therefore our next task will involve
performing a metabolomic analysis to explore further
the relationship between insulin resistance and intestinal
flora among PCOS patients. These findings will provide
a theoretical basis for drug design and subsequent clin-
ical treatment of PCOS.
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