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Abstract: Transcatheter aortic valve replacement (TAVR) has rapidly become a viable alternative to
the conventional isolated surgical aortic valve replacement (iSAVR) for treating severe symptomatic
aortic stenosis. However, data on younger patients is scarce and a gap exists between data-based
recommendations and the clinical use of TAVR. In our study, we utilized a machine learning (ML)
driven approach to model the complex decision-making process of Heart Teams when treating young
patients with severe symptomatic aortic stenosis with either TAVR or iSAVR and to identify the
relevant considerations. Out of the considered factors, the variables most prominently featured in
our ML model were congestive heart failure, established risk assessment scores, previous cardiac
surgeries, a reduced left ventricular ejection fraction and peripheral vascular disease. Our study
demonstrates a viable application of ML-based approaches for studying and understanding complex
clinical decision-making processes.

Keywords: TAVR; TAVI; iSAVR; aortic stenosis; machine learning; heart team

1. Introduction

The development of transcatheter aortic valve replacement (TAVR) over the last two
decades, and particularly its use in younger patients, have offered us a glance into the
complex interplay between the available study data and the gradual implementation of
the new technique into day-to-day practice. Over the last two decades, TAVR was often
performed in groups of patients that had not yet been definitively encompassed by the
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clinical guidelines of the time, and few posed as significant a challenge as young patients.
This inspired us to implement a novel approach to examining the factors that guided the
clinical decision-making process of heart teams for young patients with severe symptomatic
aortic stenosis (AS) during TAVR’s nascent stages.

In less than two decades, TAVR progressed from its inception in the first human patient
in 2002 to becoming a well-established widely performed alternative to the isolated surgical
aortic valve replacement (iSAVR) [1–3]. The first set of ECS valvular disease guidelines
published in 2007 merely mentioned TAVR as a promising new technique, without issuing
a single TAVR-related recommendation [4]. However, the following year the EACTS and
the ESC published a consensus statement listing TAVR as a feasible option for high-risk and
inoperable patients with severe symptomatic AS [5]. This recommendation was confirmed
by the 2012 ESC valvular heart disease guidelines [6]. These guidelines formalized the
requirement for the formation of interdisciplinary heart teams in institutions performing
TAVR [6]. The 2014 AHA/ACC guidelines largely echoed the recommendations made by
the 2012 ESC guidelines with regards to TAVR-suitable patient collectives [7]. In 2017, the
ESC guidelines expanded the TAVR patient collective to intermediate risk patients and
some low-risk patients who fulfill certain criteria that favor TAVR [8]. The 2020 ACC/AHA
guidelines represent the most extensive set of recommendations published thus far and
mark a paradigm shift from a pure risk-related assessment to age- and durability-related
considerations [9]. This reflects cumulative improvements in the transcatheter approach,
reductions in intervention-related complications and studies on progressively lower risk
patient groups. Whereas mechanical devices are still favored for patients younger than
50 years of age, and bioprosthetic valves are the treatment of choice for patients over
65 years of age, all other patients are candidates for both approaches [9]. TAVR has also
surpassed iSAVR as the treatment of choice for high-risk patients of any age with a high or
prohibitive surgical risk [9].

However, despite the detailed recommendations, there are still significant gaps in
evidence, especially pertaining to younger patients. Most studies comparing TAVR to
iSAVR have been conducted on older, frail patients, and it is difficult to make inferences
regarding survival, adverse events, and the choice of intervention in younger patients, and
younger high-risk patients in particular [10,11].

With the advent of machine learning (ML), new tools that expand past traditional
statistical models have been made available to make sense of large sets of data and to
predict clinical outcomes [12,13]. Once the learning process is complete, ML models should
be able to accurately predict outcomes, provided the model is sufficiently accurate and the
volume of data sufficient for reaching a given conclusion [14,15]. The surge of supervised
machine learning approaches, fueled in part by the increased availability of large sets
of data and increased computing power, have revealed a range of potential applications,
ranging from disease diagnosis to the identification of potential therapeutic targets and
drug development [15,16]. Iterations of ML that could improve or aid clinical decision-
making have been examined in areas ranging from infectious disease to emergency care,
neurosurgery and even the recent COVID-19 pandemic [17–20].

The aim of our study was to investigate the decision-making process within the
Heart Team in the years where TAVR, a comparatively new technique was progressively
developing into a viable alternative to the conventional surgical approach, but no elaborate
decision support in the form of guidelines or other scientific analyses existed for young
patients. The ML-based analysis was designed to identify features which contribute in
great measure to the building of a high-performing ML model predicting the allocation to
either TAVR or iSAVR for patients with severe symptomatic AS younger than 75 years of
age, as well as to explore how the identified features align with past and current clinical
consensus, in order to gain a better understanding of clinical decision-making processes in
emerging therapeutic areas. We postulated that these features could be identified with a
high accuracy even for a highly imbalanced cohort, such as the one used in our study.
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2. Materials and Methods
2.1. The TAVR Cohort

This study was approved by the regional Ethics Committee of the City of Vienna
(ethics approval code: EK18-028-VK). Initially, a total of 532 patients were enrolled in the
VIenna CardioThOracic Aortic Valve RegistrY (VICTORY) Registry. The data collection for
the VICTORY registry took place between June 2009 and December 2016. The VICTORY
registry data was collected in a prospective manner from patients who were set to undergo
TAVR at the Hietzing Heart Centre (1140 Vienna, Austria).

After applying the upper age limit of 75 years of age, 105 patients of 75 years of age
or less were selected. A further 17 patients had to be excluded from the analysis due
to absolute iSAVR contraindications (8 patients exhibited a prohibitive surgical risk, 9
patients were diagnosed with a porcelain aorta). This resulted in 88 patients who represent
the TAVR treatment cohort. Prior to the intervention, each patient was evaluated by the
institutional Heart Team. Whenever possible or reasonably clear, the Heart team specified
the factors in favor of TAVR. Patient preference, although naturally considered, was not
reported. The interventions were performed according to the institutional standards in
the presence of a cardiologist and a cardiac surgeon. The TAVR valves used across the
data collection period included devices from different valve generations developed by
Edwards Lifesciences (Edwards Lifesciences, Irvine, CA, USA), Medtronic (Medtronic,
Minneapolis, MN, USA), JenaValve (JenaValve Technology GmbH, Munich, Germany) and
Symetis (Symetis SA, a Boston Scientific Company, Ecublens, Switzerland).

2.2. The iSAVR Cohort

The iSAVR cohort was chosen from a collective of 732 patients younger than 75 years
of age who had undergone an isolated surgical valve replacement at the Department of
Cardiovascular Surgery of the Hietzing Heart Centre in Vienna, Austria between January
2005 and December 2016. A total of 54 patients had to beexcluded from the analysis due to
active endocarditis at the time of surgery. The patient data was collected retrospectively
from the institutional quality assurance registry. The data was then processed so that it
would correspond to the format of the data in the VICTORY registry. This allowedcompar-
isons between the cohorts. A total of 74 patients were excluded due to incomplete datasets.
Thus, the final size of the somparisiion cohort was reduced to 604 patients. The surgical
replacement of the aortic valve was completed according to institutional guidelines, with-
out modifications to the procedure, either via a full or a mini sternotomy (as chosen at
the discretion of the operating surgeon). The procedure involved aortic cross-clamping,
cardioplegic arrest and was conducted under moderate hypothermic cardiopulmonary
bypass (32 ◦C).

2.3. Baseline Parameters

The baseline parameters depicted in Table 1 were collected for all included patients
from both cohorts.

Table 1. Acquired baseline parameters.

Screening Parameter Parameter Description

Age Age in years

Sex Male/female

Weight Weight in kilograms

Height Height in metres

Body Mass Index

Body Surface Area

Additive EuroSCORE
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Table 1. Cont.

Screening Parameter Parameter Description

Logistic EuroSCORE

STS Score Society of Thoracic Surgeons Score

HAS-BLED-Score
Hypertension, Abnormal Kidney and Liver Function, Stroke,
Bleeding History or Predisposition, Labile INR, Elderly, Drugs or
Alcohol Concomitantly Score

CHADS-VASC-Score Congestive Heart Failure, Hypertension, Age, Diabetes mellitus,
Stroke, Vascular disease, Age, Sex Category Score

Arterial hypertension

Smoking Any period of smoking in lifetime

Active smoker At the time of intervention

COPD Presence of COPD according to the STS classification

COPD severity No symptoms, mild, moderate, severe symptoms

Dialysis Active dialysis

Creatinine in serum Creatinine in serum in mg/dL

Diabetes mellitus

No diabetes mellitus
Insulin dependent diabetes mellitus
Diabetes mellitus treated with dietary measures
Diabetes mellitus treated with oral medication
Diabetes mellitus diagnosed but not currently treated

Immunosuppression Active immunosuppression

Peripheral vessel disease

Cerebrovascular disease

Previous cerebrovascular
event

Surgery incidence First valve intervention or redo

Previous CABG

Previous valve surgery Previous surgery on any cardiac valve

Previous cardiac
surgery—other

Previous PCI Previous PCI with or without stent implantation

Myocardial infarction Previous myocardial infarction

Congestive heart failure

NYHA class

LVEF LVEF in percent

Rhythm

Physiological sinus rhythm
Atrial fibrillation
Atrial flutter
Active pacing

Permanent pacemaker Previous permanent pacemaker implantation

Mean pressure gradient In mmHg
Abbreviations: COPD—chronic obstructive pulmonary disease, CABG—coronary artery bypass grafting, PCI—
percutaneous coronary intervention, LVEF—left ventricular ejection fraction; STS—Society of Thoracic Surgeons
Risk Score; NYHA—New York Heart Association.

2.4. Statistical Analysis and the Machine Learning Model

All statistical analyses were performed using the IBM SPSS 26.0 statistic software
(SPSS Inc., Armonk, NY, USA). Depending on their distribution, continuous variables were
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expressed either as a median and interquartile range (IQR) or as mean and standard devia-
tion (±SD). Categorical variables were expressed as absolute numbers and percentages.
The means of normally distributed data were compared using the Student’s t-test, whereas
the Mann-Whitney U test was used for not normally distributed data. Categorical data
comparisons were conducted with Pearson’s Chi-Square test or Fisher’s exact test.

In order to build TAVR vs. iSAVR predictive models and to identify relevant features
for such predictors, automated machine learning (AutoML ver. 1.0, Dedicaid GmbH, 1090
Vienna, Austria) was utilized. The AutoML builder performed a 100-fold Monte Carlo
cross-validation with an 80–20% train-validation split ratio. In each fold, automated data
preprocessing including feature redundancy reduction combined with feature ranking
and selection as well as class imbalance reduction have been performed prior to machine
learning [21,22]. This step was followed by building a mixed, stacked ensemble of multiple
prediction models to establish the final prediction model per fold. See Supplemental for
details of the AutoML process.

Model performance was estimated by evaluating the validation cases of each fold after
model building. Confusion matrix analytics were utilized to calculate true positive (TP),
true negative (TN), false positive (FP) and false negative (FN) values in each fold [21]. Lastly,
validation sensitivity, specificity, negative and positive predictive values as well as accuracy
were calculated from TP, TN, FP and FN values to estimate the overall performance of the
machine learning prediction models.

The identification of prominent features as provided by the AutoML approach was
performed by calculating how many times each feature in the dataset was selected for
machine learning across the 100 cross-validation folds [23]. Feature ranks were normalized
to the sum of 1.0 and features with ranks higher than the half-maximum of all ranks were
considered as prominent for the classification of TAVR vs. iSAVR label.

3. Results
3.1. Baseline Characteristics

A total of 692 patients ≤ 75 years of age were included in the study. Of those, 604
(87.3%) received iSAVR and 88 (12.7%) received TAVR. The mean age of the overall cohort
was 64.1 years (±9.5 years). There was no significant difference between the age of the
TAVR and iSAVR cohort, although the TAVR patients tended to be older than iSAVR
patients (iSAVR 63.4 ± 9.8 years vs. TAVR 68.9 ± 5.2 years, p = 0.385). At baseline, iSAVR
patients had a significantly higher prevalence of dyslipidemia (iSAVR 62.9% vs. TAVR
60.2%, p = 0.026) and a significantly lower prevalence of diabetes (iSAVR 27.2% vs. TAVR
40.9%, p = 0.012). There were no significant differences in the prevalence of other relevant
comorbidities or preconditions, including previous cardiac surgery, atrial fibrillation and
the NYHA class. With regards to the operative risk profile, the only significant difference
was observed in the Logistic EuroSCORE, which was significantly higher in the iSAVR
cohort (iSAVR 21.6% vs. TAVR 17.4%, p = 0.032). In addition, these patients also had
a significantly higher CHADS-VASC Score (iSAVR 5.8% vs. TAVR 5.2%, p = 0.014). A
comprehensive overview of the baseline characteristics of our study cohort is shown in
Table 2.



J. Pers. Med. 2021, 11, 1062 6 of 14

Table 2. Baseline clinical characteristics of the TAVR and iSAVR cohort.

Overall
n = 692

iSAVR
< 75 Yrs
n = 604

TAVR
< 75 Yrs

n = 88
p Value

Demographics

Age, mean (±SD) 64.1 (9.5) 63.4 (9.8) 68.9 (5.2) 0.385

Female, n (%) 287 (41.5) 237 (39.2) 50 (56.8) 0.370

Body mass index kg/m2, median (IQR) 28.7 (5.5) 28.6 (5.4) 29.2 (6.5) 0.369

Risk profile

EuroSCORE, median (IQR) 2.7 (3.7) 1.7 (2.2) 5.9 (5.3) 0.103

Logistic EuroSCORE, median (IQR) 17.8 (20.4) 21.6 (28.9) 17.4 (19.6) 0.032

STS score, median (IQR) 4.5 (3.3) 5.8 (4.7) 4.6 (3.2) 0.288

Incremental risk score, median (IQR) 3 (8) 3 (9) 5 (11.5) 0.889

HAS-BLED score, median (IQR) 1 (1) 1 (1) 1 (1) 0.085

CHADS-VASC Score, mean (±SD) 5.3 (1.4) 5.8 (1.4) 5.2 (1.4) 0.014

Chronic health conditions and risk factors

Hypertension, n (%) 538 (77.7) 464 (76.8) 74 (84.1) 0.160

Dyslipidemia, n (%) 433 (62.6) 380 (62.9) 53 (60.2) 0.026

Diabetes mellitus, n (%) 200 (28.9) 164 (27.2) 36 (40.9) 0.012

Active smoker, n (%) 126 (18.2) 106 (17.5) 20 (22.7) 0.209

Serum creatinine mg/dL, mean (±SD) 1.1 (0.6) 1.0 (0.4) 1.5 (1.2) 0.433

Preoperative dialysis, n (%) 6 (0.9) 2 (0.3) 4 (4.5) 0.478

COPD, n (%) 217 (31.4) 168 (27.8) 49 (7.1) 0.908

Peripheral vascular disease, n (%) 67 (9.7) 43 (7.1) 24 (27.3) 0.891

Cerebrovascular disease, n (%) 111 (16.0) 87 (14.4) 24 (3.5) 0.478

Previous cerebrovascular event, n (%) 17 (2.5) 7 (1.2) 10 (11.4) 0.143

Atrial fibrillation, n (%) 119 (17.2) 101 (16.7) 18 (20.5) 0.841

Previous myocardial infarction, n (%) 54 (7.8) 37 (6.1) 17 (19.3) 0.298

NYHA class III/IV, n (%) 367 (53.1) 288 (47.7) 79 (90) 0.820

Previous PCI, n (%) 43 (6.2) 26 (4.3) 17 (19.3) 0.233

Previous pacemaker implantation, n (%) 32 (4.6) 17 (2.8) 15 (17) 0.558

Previous cardiac surgery, n (%) 64 (9.2) 26 (4.3) 38 (43.2) 0.256

Previous CABG, n (%) 34 (4.9) 11 (1.8) 23 (26.1) 0.569

Previous valve surgery, n (%) 34 (4.9) 16 (2.6) 18 (20.5)

Previous other cardiac surgery, n (%) 17 (2.5) 2 (0.3) 15 (17) 0.161

Preoperative echocardiographic data

Mean pressure gradient, mean (±SD) 48 (17.3) 48.6 (17.6) 46.3 (18.3) 0.565

LVEF in %, mean (±IQR) 52.7 (9.9) 53.4 (9.2) 46.5 (11.9) 0.368
Abbreviations: SD—standard deviation, IQR—interquartile range, Abbreviations: COPD—chronic obstructive
pulmonary disease, CABG—coronary artery bypass grafting, PCI—percutaneous coronary intervention, LVEF—
left ventricular ejection fraction; STS—Society of Thoracic Surgeons Risk Score; NYHA—New York Heart
Association.

3.2. Heart Team Decision—Stated Reasons for TAVR

The two most frequent individual reasons for choosing TAVR over iSAVR were the that
the surgery would represent a high-risk reoperation in 42 patients (47.7%) and significant
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respiratory impairment was present in 41 patients (46.6%). Further factors in favor of
TAVR that were present in more than a quarter of the patients, in the order of their relative
frequency were a severely reduced LVEF (38.6%), severe renal insufficiency (36.4%) and
any type ofsubstance abuse (26.1%). In the large majority of cases, i.e., in 74 cases (84.1%), 2
or more reasons were stated in favor of TAVR. A complete list of the leading stated reasons
for the choice of TAVR versus iSAVR is shown in Table 3.

Table 3. Determining factors forthe choice ofTAVR over iSAVR, as documented by the Heart Team.

TAVR < 75 Years (n = 88)

High-risk reoperation, n (%) 42 (47.7)

Significant respiratory impairment, n (%) 41 (46.6)

Severely reduced LVEF, n (%) 34 (38.6)

Severe renal insufficiency, n (%) 32 (36.4)

Substance abuse, n (%) 23 (26.1)

Adipositas per magna, n (%) 16 (18.2)

Valve-in-Valve procedure, n (%) 13 (12.5)

Neurological impairment, n (%) 12 (14.8)

Hepatopathy, n (%) 10 (11.4)

History of radiation to the chest, n (%) 9 (10.2)

Severe mental disorder, n (%) 9 (10.2)

Pulmonary hypertension, n (%) 7 (8.0)

Frailty, n (%) 3 (3.4)

Severe rhythm disorder, n (%) 2 (2.3)

History of severe bleeding, n (%) 1 (1.1)

Other, n (%) 17 (19.3)

Patients with 2 or more reasons listed above 74 (84.1)

Patients with 3 or more reasons listed above 35 (39.8)
Abbreviations: LVEF—left ventricular ejection fraction.

3.3. Machine Learning Model

Monte Carlo cross-validation revealed a 0.91 area under the receiver operator char-
acteristics curve with 90% accuracy, 92% sensitivity and 90% specificity to predict TAVR
vs. iSAVR within the dataset. See Figure 1 for the box plots of all confusion matrix cross-
validation performance values. Overall, eight features were identified as prominent to
differentiate TAVR vs. iSAVR (according to the top five relative weight values: 12%, 10%,
8%, 6%, 4%): Congestive heart failure (12%), the additive EuroSCORE (10%), the logistic
EuroSCORE (8%), the surgery incidence (6%), previous CABG (4%), LVEF (4%), peripheral
vascular disease (4%) and previous cardiac or great vessel surgery (4%). See Figure 2 for
the relative weights of the prominent features.
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A full description of the machine learning model, as well as a complete list of the fea-
ture ranking and the value distributions for the features can be found in the Supplementary
Materials.

4. Discussion

This study aimed to identify relevant clinical features that contribute to building of
a high-performing model for the prediction of the allocation to TAVR versus iSAVR in
a young high-risk cohort stratified in the absence of available scientific data or clinical
experience. Our cross-validation performance values support our hypothesis that such
features can be identified with a high predictive performance even with a highly imbalanced
dataset (87% iSAVR vs. 13% TAVR).

The landmark studies that helped establish TAVR in clinical practice were mostly
conducted on older patients [10]. The higher patient age in these studies is a natural
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consequence of a risk-related rather than age-focused approach to TAVR research that
was commonly applied over the last two decades, as TAVR indications expanded from
inoperable patients to progressively lower risk patient groups [24]. Although retrospective
analyses for patients as young as 65 years of age or younger have found similar survival
rates and a favorable adverse outcome profile for TAVR compared to iSAVR, extensive
prospective randomized controlled trials on younger patients are scarce [25,26]. As illus-
trated by the 2020 valvular heart disease guidelines, the focus of research is shifting to
accommodate age-related considerations [9]. Before TAVR can be deemed safe to use in all
age groups, concerns including prosthesis durability, the long-term consequences of TAVR-
induced conduction abnormalities, the challenges posed by bicuspid valves, the access to
the ostia of the coronary arteries and the long-term outcomes of valve-in-valve procedures
need to be addressed [10,24,26–28]. Thus, despite the increasing availability of data on
TAVR in lower risk patient groups, the young high-risk patients included in our study still
constitute a relatively underrepresented collective, making the major determinants of the
decision-making process as relevant now as they were then.

According to the official data provided by the institutional Heart Team, most decisions
to perform a transcatheter aortic valve replacement in lieu of the conventional surgical
approach were based on more than one single factor—in most cases a combination of at
least two primary factors. Overall, the most frequently used arguments in favor of TAVR
were that the surgery would be a high-risk reoperation, a respiratory impairment was
present, the patient had a severely reduced LVEF, renal insufficiency, a history of substance
abuse or was severely obese, in that order. For most of these items, these statements are
reflected by a higher prevalence or expression of the said item in the TAVR group. The
presence of a severe respiratory impairment was a notable exception—patients with COPD
were underrepresented in the TAVR cohort.

Our machine learning model boasts both a high accuracy and an exceptional positive
predictive value. The factors that seemed to push the Heart Team’s decision towards TAVR
according to the weighing of the individual clinical factors in the final model partially
reflected their frequency within the abovementioned clinical reasoning. However, the
ML model clearly demonstrated that the presence of congestive heart failure was the
single most important determinant. Other prominent factors, listed in the order of their
importance were the Additive and Logistic EuroSCORE, as well as whether the patient had
already received a previous aortic valve replacement. A set of five factors deemed equally
important by the ML model followed: previous CABG, a reduced LVEF, the presence of
peripheral vascular disease and previous cardiac, intrapericardial or great vessel surgery.
The distribution of these main parameters across the two cohorts were mostly uniform,
with a more prominent presence in the TAVR cohort. The main exception could be found
in the abovementioned risk assessment tools, which were, on average, higher in the iSAVR
cohort.

The most prominent factor in the final machine learning model was the presence of
congestive heart failure. Although not as highly ranked, a reduced LVEF was also assigned
one of the highest feature weights in the model. This seems reasonable in terms of the
inclusion and relative significance of the surrogate marker of heart failure—the NYHA
class, in commonly used operability assessment tools [29–31]. The EuroSCORE II attributes
one of the top 5 highest relative significance weights to a highly reduced left ventricular
ejection fraction, and a high functional NYHA class is also among the top half of the
considered parameters. The STS score similarly includes both parameters, whereas the
Logistic EuroSCORE only includes NYHA but not the ejection fraction [32]. In general, a
symptomatic left ventricular dysfunction in patients with severe aortic stenosis is present
in approximately one fourth of all cases [33]. In the setting of iSAVR, the presence of
heart failure is associated with a significantly worse outcome [34]. Similarly, patients with
heart failure with a reduced ejection fraction are particularly prone to a worse prognosis
following TAVR [35–37]. The negative impact of heart failure on the patient outcomes is
amplified in the setting of acute decompensated heart failure, with worse survival and
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overall outcomes for both TAVR and iSAVR [38]. In recent years, the use of TAVR for
treating heart failure patients with aortic stenosis has been on the rise, while the mortality
following the intervention has experienced a steeper decline compared to iSAVR [39].

A variety of surgical risk assessment scores have been developed to predict the
operative mortality of patients undergoing cardiac surgery, including the EUROSCORE—
now largely replaced by EuroSCORE II, the Logistic EuroSCORE and the STS Score. It
has been found that the Logistic EuroSCORE overestimates the surgical risk for AVR [40].
The STS Score also outperforms the Logistic EuroSCORE in high-risk patients with severe
aortic stenosis [41]. Thus, the STS score and EuroSCORE II seem to best predict the
mortality of isolated AVR [42]. The two scores used for the surgical risk evaluation in
our study that are highly ranked in our model have largely been rendered obsolete by
the guidelines, as shown by the clear preference for EuroSCORE II and the STS score [8].
However, EuroSCORE II was only introduced in 2012 and could thus not be retrospectively
calculated for the patient cohort in the setting of this study, because it was not considered
during the decision process for the entire cohort. The fact that a rigid surgical score seemed
to play such an important role in assigning the patients to the treatment groups points to
the high reliance of physicians on numerical parameters. However, the score could also
act as a surrogate composite marker that indicates the cumulative importance of all the
included conditions. In either case, our finding points towards the need for a TAVR/iSAVR
specific assessment tool that can be fine-tuned according to clinical findings over time.

An inherent downside of bioprostheses is their degeneration over time, an issue that
motivated the development of the TAVR redo technique—valve-in-valve interventions [43].
Our ML model found that whether the valve replacement would replace a native valve
with no preceding surgery conducted on the heart, or the patient had undergone a previous
valve surgery was a significant factor in choosing TAVR over iSAVR. Newly acquired data
seem to support this approach. TAVR has not only proven to be a viable alternative to redo
aortic valve surgery, but has also, according to some analyses, surpassed it in terms of early
mortality and length of hospital stay [44–48].

A patient collective that comes with a particular set of challenges are those who had
already undergone cardiac surgery in the past. This was also a prominent decision-driving
factor in our machine learning model. For patients who had undergone previous cardiac
surgery, including CABG and previous iSAVR, TAVR seems to perform as well as TAVR
in terms of mortality and have a similar adverse outcome distribution as in other patient
collectives [25,49–51]. Some studies even propose a potential benefit for TAVR in terms of
hospitalization time, adverse events, and mortality [44,47,52]. During the data collection pe-
riod, the 2012 guidelines named previous CABG as one of the few specific factors that could
make a patient less suitable for SAVR. This could explain why the heart team physicians
leaned towards TAVR in patients with previous cardiac surgery. The 2017 guidelines went
on to favor TAVR over SAVR for high-risk elderly patients if a transfemoral access point is
feasible, and expanded the TAVR indications to the intermediate risk collective [8]. These
guidelines renewed the recommendation for TAVR over SAVR in patients with previous
CABG and expanded it to all patients with previous cardiac surgery [8]. The consideration
of previous cardiac surgery in our model is therefore in line with this iteration of the
guidelines.

Finally, the presence of peripheral vascular disease seemed to speak in favor of TAVR.
This is an interesting finding, particularly because vascular complications were one of
the two main limitations of TAVR in its early stages. In all guidelines since 2012, the
feasibility of a good peripheral vascular access point was listed as one of the determining
prerequisites for a successful TAVR intervention. However, our cohort consists of a high
number of patients treated via a transapical access with TAVR. In this context, because a
vascular access point is not related to the difficulty of the procedure, its role as a surrogate
marker of overall poor vessel health and a reduced general condition could have stood at
the forefront of the decision-making process.
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Surprisingly, previous pacemaker implantation was not a highly significant factor
in choosing the appropriate intervention in our ML model. The need for permanent
pacemaker implantation, although different between devices, has been one of the most
commonly observed adverse events in TAVR patients when compared to their surgical
counterparts [52–55].

The novelty of the approach used in this study compared to conventional clinical
statistical analysis is that the output is focused on a different aspect of the collected data.
A conventional retrospective study most often focuses on finding the significance in the
difference between the distribution of data between multiple groups, and these factors are,
in turn, most often chosen based on their established or perceived clinical significance. The
ML-driven mode of analysis, however, as applied in this approach, provides us with the
relative weight of the chosen feature for the final constructed model.

In general terms, when using conventional statistical methods for clinical studies,
the process relies on the knowledge and clinical expertise of the physician in the specific
area, as well as previously published data and observed or presumed significance of
certain parameters to a set of outcomes to preselect a limited number of parameters. Then,
conventional statistical methods are used to examine the significance of the correlation
between multiple parameters or between a set of parameters and a given clinical outcome,
in order to establish causal relationships between these parameters. This approach works
well even with comparatively small amounts of data. Machine learning, on the other hand,
can examine vast amounts of data and train itself in order to learn from this data and be
able to make predictions. The main advantage of machine learning lies in fields where there
is either no substantial previous knowledge on the potentially relevant variables and where
complex non-linear inter-variable interactions in massive sets of data make it difficult for
an individual examiner to identify these complex relationships. However, the findings of
ML often have to be interpreted with caution in order to establish the true relevance of the
findings in the given field. A potential way to harness the advantages of both approaches
is using them in combination with one another, which should lead to significant leaps in
diagnostic and predictive capabilities in the medical field in the future [56].

The main limitations of this study arise from its (methodologically required) retro-
spective character and the disproportionate representation of the included interventions.
However, this must be seen in the light of our study being a retrospective analysis of a
historical cohort, as well as the patient preference and clinical center expertise not being
accounted for. Considering our findings, which most prominently include congestive heart
failure and a reduced LVEF, it might have been pertinent to include low-flow low-gradient
and paradoxical low-flow severe AS as individual parameters in the ML model.

5. Conclusions

Our final high-performing ML model that retrospectively modeled the allocation
to TAVR or iSAVR by the Heart Team physicians at a time when no scientific data or
clinical experience has not been available, identified a handful of relevant features, most
prominently congestive heart disease. The relevance of the identified factors for building
a high-performing ML model partially concurred with and partially deviated from the
recommendations of past and current clinical guidelines. The exceptional performance
parameters of our machine learning model support our hypothesis that machine learning
approaches can help identify factors of particular importance in real-life decision-making
processes in difficult clinical scenarios.
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.3390/jpm11111062/s1: supplementary file describing the machine learning model, as well as the
data processing steps.
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