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Views & Reviews

Mechanisms linking brain insulin 
resistance to Alzheimer’s disease

Maria Niures P.S. Matioli1, Ricardo Nitrini2

ABSTRACT. Several studies have indicated that Diabetes Mellitus (DM) can increase the risk of developing Alzheimer’s 

disease (AD). This review briefly describes current concepts in mechanisms linking DM and insulin resistance/deficiency to 

AD. Insulin/insulin-like growth factor (IGF) resistance can contribute to neurodegeneration by several mechanisms which 

involve: energy and metabolism deficits, impairment of Glucose transporter-4 function, oxidative and endoplasmic reticulum 

stress, mitochondrial dysfunction, accumulation of AGEs, ROS and RNS with increased production of neuro-inflammation 

and activation of pro-apoptosis cascade. Impairment in insulin receptor function and increased expression and activation 

of insulin-degrading enzyme (IDE) have also been described. These processes compromise neuronal and glial function, 

with a reduction in neurotransmitter homeostasis. Insulin/IGF resistance causes the accumulation of AβPP-Aβ oligomeric 

fibrils or insoluble larger aggregated fibrils in the form of plaques that are neurotoxic. Additionally, there is production 

and accumulation of hyper-phosphorylated insoluble fibrillar tau which can exacerbate cytoskeletal collapse and synaptic 

disconnection.
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MECANISMOS QUE LIGAM A RESISTÊNCIA INSULÍNICA CEREBRAL À DOENÇA DE ALZHEIMER: UMA BREVE REVISÃO

RESUMO. Atualmente, muitos estudos têm indicado que o Diabetes Mellitus (DM) pode aumentar o risco de desenvolver 

doença de Alzheimer (DA). Esta revisão tem o objetivo de descrever brevemente os conceitos atuais sobre os mecanismos 

que associam DM, resistência/deficiência de insulina à DA. Resistência à insulina/fator de crescimento similar à insulina (IGF) 

pode contribuir para a neurodegeneração através de vários mecanismos os quais envolvem: déficit metabólico e energético, 

prejuízo na função do transportador de glicose-4, estresse oxidativo e do retículo endoplasmático, disfunção mitocondrial, 

acúmulo de AGEs, ROS e RNS com aumento na produção da neuro-inflamação e ativação da cascata pró-apoptóptica. 

Prejuízo na função do receptor de insulina, aumento na expressão e ativação da enzima de degradação da insulina (EDI) 

também têm sido descritos. Esses processos comprometem a função neuronal e glial, com redução da homeostase de 

neurotransmissor. Resistência à insulina/IGF causa acúmulo de fibrilas de oligômeros de PPβA-βA e grandes agregados 

fibrilares insolúveis em forma de placas que são neurotóxicos. Adicionalmente, há produção e acúmulo de fibrilas insolúveis 

de tau hiperfosforilada que podem exacerbar o colapso do citoesqueleto e a desconexão sináptica.

Palavras-chave: doença de Alzheimer, diabetes mellitus, resistência insulínica, neurodegeneração, mecanismos.

INTRODUCTION 

Population aging is a global phenomenon 
leading to an increase in chronic diseases 

such as dementia and diabetes mellitus (DM), 
which pose an epidemic challenge to global 
health care systems. In 2012, the WHO pub-
lished that 35.6 million people had dementia 
worldwide and that this number is set to reach 

65.7 million by 2030.1 Alzheimer’s disease 
(AD) is the most common cause of dementia, 
especially in the elderly population.1 Recently, 
the International Diabetes Federation2 esti-
mated that 382 million people had diabetes 
in 2013, where this number may rise to 592 
million within less than 25 years.2 Moreover, 
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80% of the total number affected live in low- and mid-
dle-income countries and Type 2 diabetes (T2DM) is the 
most common type of DM.2 The prevalence of AD and 
T2DM increases with aging.3

The AD pathology is characterized by the accumula-
tion of the following in the brain: amyloid beta precursor 
protein (AβPP)-Aβ large insoluble fibrillar aggregates in 
the form of plaques, soluble neurotoxic oligomeric fi-
brils, hyper-phosphorylation of tau protein with neuro-
fibrillary tangles (NFTs) deposition, dystrophic neuritis, 
and neuropil threads.4,5 In familial forms of AD, the mu-
tations in AβPP, presenilin 1 (PS1) and 2 (PS2) genes, or 
inheritance of the Apolipoprotein E e4 (ApoE-e4) allele 
can cause increased synthesis and deposition of AβPP- 
Aβ.6,7 However, the cause of AβPP-Aβ accumulation in 
sporadic AD, the most common form of the disease, re-
mains unknown.5 However, evidence suggests that im-
pairment in insulin and insulin-like growth factor (IGF) 
compromises AβPP expression and protein processing 
which could be responsible for AβPP-Aβ accumulation.8

The association between DM and AD is controversial 
in literature.9,10 Many studies have demonstrated a posi-
tive association between DM and AD, especially in epide-
miological research, studies in animals and cells,11-17 but 
these findings have not been entirely confirmed in neu-
ropathological studies.3,18-23 Based on this positive asso-
ciation, researchers have studied DM treatments as a tar-
get to diminish or avoid AD onset and progression.24-28

The exact mechanisms by which DM affects the 
brain remain unclear, but this probably occurs through 
cerebrovascular and neurodegenerative changes.29 The 
aim of this article was to provide a brief review on the 
main mechanisms associating AD with DM due to insu-
lin resistance and deficiency. 

Insulin and insulin-like growth factor actions in the central ner-
vous system. The insulin produced by the pancreas can 
cross the blood brain barrier (BBB) from the circulation 
to the brain by a receptor-dependent mechanism,30 but 
the levels of insulin expression in the brain are modest 
compared to circulating levels.10 The transport of pe-
ripheral insulin across the BBB and the consequences 
of peripheral hyperinsulinemia or hypoinsulinemia are 
significantly important to cerebral insulin signaling.10 
Insulin binding activity has been identified in the brain 
in a number of species, including humans.31,32 Further-
more, insulin receptors (IR) are expressed in cerebral 
vasculature and can mediate insulin traffic across the 
BBB.33

Insulin and IGF play an important role in brain 
function and structure.5 Insulin, IGF-1 and IGF-2 poly-

peptides and receptor genes are expressed in neurons34 
and glia,35,36 particularly in structures that are targeted 
in neurodegenerative diseases.34,35,37 IGF and insulin 
are associated with regulating and maintaining cogni-
tive function,38 and participate in neuronal and glial 
functions such as growth, metabolism, survival, gene 
expression, protein synthesis, cytoskeletal assembly, 
neurotransmitter function, synapse formation and 
plasticity.34,39

Glucose transporter 4 (GLUT4) is very important 
for glucose uptake and utilization in the brain.38 Insulin 
stimulates GLUT4 gene expression and protein traffick-
ing from the cytosol to the plasma membrane, modulat-
ing glucose uptake and utilization.38 Consequently, the 
regulation of neuronal metabolism and the generation 
of energy needed for cognition and memory are linked 
to insulin stimulation of GLUT4.38 GLUT4 is abundant-
ly expressed along with insulin receptors, in medial tem-
poral lobe structures which are affected in AD pathol-
ogy. Nevertheless, post-mortem brain studies have not 
detected significant reductions in GLUT4 expression 
in AD.40 Deficits in brain glucose utilization and ener-
gy metabolism, and brain insulin/IGF resistance could 
be mediated by impairments in GLUT4 trafficking be-
tween the cytosol and plasma membrane.38

Insulin and IGF binding to their own receptors ac-
tivates some pathways, leading to phosphorylation and 
activation of intrinsic receptor tyrosine kinases. The 
phosphorylated receptors interact with IR substrate 
molecules and promote transmission of downstream 
signals that stimulate growth, survival, metabolism, 
plasticity and inhibit apoptosis.38

Brain insulin/IGF resistance and AD. AD has been associated 
with deficits in insulin/IGF signaling due to the effects 
of insulin/IGF resistance and deficiency.5 Deficits in ce-
rebral glucose utilization have been described in the ear-
ly stages of AD.41-44 Suzanne de la Monte and colleagues 
have proposed the concept of AD as “Type 3 diabetes”.40 
They observed an inverse correlation between IR abun-
dance and the Braak score of AD brains, with 80% re-
duced IR substrates levels in the most severe cases. They 
described reduced messenger RNA levels of IGF-1 and 
increased Tau protein levels regulated by IR.40,45 Stud-
ies with small interfering RNA molecules showed that 
molecular disruption of brain insulin and IGF recep-
tors was sufficient to cause cognitive impairment and 
hippocampal degeneration similar to AD molecular  
abnormalities.46

Brain insulin/IGF resistance/deficiency can appear 
independently of Type 1 and Type 2 diabetes.5 Neuro-
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degeneration can occur by several mechanisms such as 
the activation of kinases that aberrantly phosphory-
late tau, the expression of AβPP and accumulation of 
AβPP-Aβ in brain insulin/IGF resistance.38 Hypergly-
cemia leads to the accumulation of advanced glycation 
end products (AGEs) that disrupts removal of Aβ42 and 
induces Aβ and Tau glycation, promoting Aβ aggrega-
tion and NFTs formation in the brain.38,47,48 AGE pro-
duction is found in normal aging, but becomes highly 
accelerated in diabetes.49 Recent evidence suggests 
that glyceraldehyde-derived AGEs (glycer-AGE) are the 
predominant modification of the most toxic forms of 
AGEs, and Glycer-AGE-modified proteins are directly 
toxic to cultured neurons. Diabetic serum enriched with 
glycer-AGE modified proteins has shown toxic effects 
on neurons.10 AGEs are also linked to microvascular al-
terations in hyperglycemia and diabetes.50 Receptor for 
advanced glycation end products (RAGE) expression 
has been associated with pathological conditions such 
as diabetic vascular disease, chronic inflammation and 
AD.51,52 Studies with immunohistochemistry for RAGE 
in AD brains have demonstrated that RAGE increased 
expression in neurons, microglia, astrocytes and vascu-
lar endothelial cells.53,54 RAGE binds and interacts with 
AGEs and also with Aβ.49 RAGE interaction with AGE-
modified proteins in either diabetes or AD, or Aβ in 
AD, can produce damaging inflammatory responses55,56 
and be responsible for vascular complications in DM 
and AD.57-59 RAGE mediates the transport of plasma Aβ 
across the BBB60 and the migration of monocytes across 
the human brain endothelial cells in response to Aβ.61 

Microvascular disease is seen as a consequence of 
diabetes and can also be found in AD brains, possibly 
contributing to the cognitive impairment and neuro-
degeneration seen in AD.5,62 Decreased blood flow and 
impairment of oxygen and nutrient delivery exacerbate 
the adverse effects of insulin/IGF resistance.63 Con-
sequently, there is an increase in oxidative stress and 
activation of signaling mechanisms which promote ab-
errant tau phosphorylation, AβPP cleavage, AβPP-Aβ 
deposition, and mitochondrial dysfunction.38,63

IR function is compromised in brain insulin/IGF 
resistance, leading to many adverse effects. There is 
decreased signaling through IR substrate, phosphoino-
sitol-3-kinase (PI3K) and Akt, with reduced neuronal 
and oligodendroglial survival, neuronal plasticity and 
myelin maintenance.38 IR dysfunction increases acti-
vation of glycogen synthetase kinase 3β (GSK-3β) and 
phosphatases that negatively regulate insulin signaling, 
consequently producing increased tau phosphorylation, 
oxidative stress, neuro-inflammation and pro-apoptosis 

signaling.38 Reduced insulin-responsive gene expression 
seen in IR dysfunction can lead to deficits in acetylcho-
line and glucose metabolism.38

Impairment in GLUT4 functions in brain with in-
sulin/IGF resistance results in reduced glucose uptake 
and utilization, consequently compromising cell energy 
and homeostatic functions, disrupting neuronal cyto-
skeleton and synaptic connection.38 Deficits in energy 
metabolism lead to increased oxidative and endoplas-
mic reticulum (ER) stress, and mitochondrial dysfunc-
tion with the generation of reactive oxygen (ROS) and 
reactive nitrogen species (RNS).64-66 Increased oxida-
tive stress, ROS and RNS damage RNA, DNA, proteins, 
and lipid peroxidation production, energy deficits, cell 
death, increased AβPP expression, Aβ42 deposition and 
fibrillarization.38 There is activation of pro-inflammato-
ry and pro-death cascades and down-regulation of tar-
get genes that mediate cholinergic homeostasis linked 
to AD in brain with insulin/IGF resistance.5,67 Impair-
ment of myelin maintenance also occurs and can lead 
to increased neuro-inflammation, oxidative stress, pro-
apoptosis, and further insulin resistance, besides white 
matter atrophy.38

The insulin-degrading enzyme (IDE) has the proper-
ty of catabolizing insulin and Aβ, and may play a critical 
role in Aβ clearance in the brain as Aβ scavenger prote-
ase.68,69 IDE acts as a general regulator of amyloid bur-
den in the pancreas and brain.70 Insulin regulates IDE 
expression and can directly compete with Aβ for binding 
to IDE.71 In hyper-insulin states, IDE can be diverted to 
degrade insulin, consequently allowing AβPP-Aβ accu-
mulation.70 Mutations in the IDE gene in mice resulted 
in reduced activity of this enzyme, lower rates of Aβ and 
insulin degradation, additionally developing hyperinsu-
linaemia and accumulating Aβ species in their brains.72 
Chronic hyperglycaemia, hyperinsulinaemia, oxidative 
stress, accumulation of AGEs, increased expression and 
activation of IDE, increased production of pro-inflamma-
tory cytokines, and cerebral microvascular disease asso-
ciated with peripheral insulin resistance could result in 
mild cognitive impairment and neurodegeneration.38,73

Brain insulin/IGF resistance and Aβ pathology. Altered pro-
teolysis with increased AβPP gene expression results in 
the accumulation of 40 or 42 amino acid length Aβ pep-
tides that can aggregate and have been described in AD 
pathology. Dysregulated expression and processing of 
AβPP leads to the accumulation of AβPP-Aβ oligomeric 
fibrils or insoluble larger aggregated fibrils in the form 
of plaques that are neurotoxic.5 The interest in the role 
of impaired insulin/IGF signaling as either the cause or 
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consequence of dysregulated AβPP-Aβ expression and 
protein processing has grown in literature.38 Insulin can 
accelerate trafficking of AβPP-Aβ from the trans-Golgi 
network to the plasma membrane as well as its extra-
cellular secretion74 and also inhibits its intracellular 
degradation by IDE.75 Impaired insulin signaling can 
disrupt both the processing of AβPP and clearance of 
AβPP-Aβ.76 Simultaneously, AβPP-Aβ affects insulin sig-
naling by competing with insulin, or reducing the affin-
ity of insulin for binding to its own receptor.77 AβPP-Aβ 
oligomers desensitize and reduce the surface expression 
of IRs, consequently inhibiting neuronal insulin-signal-
ing.67 Additionally, intracellular AβPP-Aβ interferes with 
PI3k activation of Akt, leading to reduced signaling, 
increased activation of GSK-3β, and hyper-phosphory-
lation of tau. Increased levels of GSK-3 promote AβPP 
processing and AβPP-Aβ accumulation.78

Brain insulin/IGF resistance and Tau pathology. In AD, the 
main neuronal cytoskeletal lesions correlated with se-
verity of dementia, including NFTs and dystrophic neu-
rites, contain aggregated and ubiquitinated insoluble 
fibrillar tau.4,38,79 Tau gene expression and phosphoryla-
tion can be regulated by insulin/IGF stimulation.80,81 Re-
duced insulin/IGF signaling can impair tau gene expres-
sion and contribute to tau pathology.82 Brain insulin/IGF 
resistance results in decreased signaling through PI3K, 
Akt,80,81 and Wnt/β-catenin,83 and increased activation 

of GSK-3β.84,85 The hyper-phosphorylation of tau, which 
leads to tau misfolding and fibril aggregation in AD pa-
thology, can be partly due to GSK-3β overactivation.86 
Tau hyper-phosphorylation is mediated by increased 
activation of cyclin-dependent kinase 5 (cdk-5) and c-
Abl kinases,87,88 and inhibition of protein phosphatases 
1 and 2A.88,89 Tau protein misfolds and self-aggregates 
into insoluble fibrillar structures lead to neurofibrillary 
tangles, dystrophic neurites, and neuropil threads.38,90 
The results of generation and accumulation of hyper-
phosphorylated insoluble fibrillar tau are the exacer-
bation of cytoskeletal collapse, neurite retraction, and 
synaptic disconnection.38 Table 1 summarizes the main 
mechanisms linking brain insulin/IGF resistance to AD 
pathology.

Neurodegenerative process contributing to brain insulin resis-
tance in AD. Interestingly, the neuropathological process 
involved in AD can reinforce brain insulin resistance. Aβ 
toxicity, microvascular disease, oxidative stress, tran-
sition metal ion accumulations and hyperphosphory-
lated-ubiquitinated tau lead to increased brain insulin 
resistance.38 Aβ 42 toxicity competes with insulin and 
reduces the affinity of insulin binding to its receptor.77,91 
AβPP oligomers desensitize and reduce surface expres-
sion of insulin receptors, and interfere with PI3K activa-
tion of Akt.38,92 The Aβ toxicity disrupts insulin signal-
ing and impairs insulin stimulated neuronal survival 

Table 1. Summary of mechanisms linking brain insulin/IGF resistance to AD pathology.

Mechanisms Consequences 

Impairment of GLUT4 
function

• Energy deficits: memory and cognition impairment; disruption of neuronal cytoskeleton and synaptic connection.

Changes in insulin receptor 
functions

• Increased activation of GSK-3and phosphatases: tau phosphorylation, oxidative stress, neuro-inflammation, pro-
apoptosis signaling.

• Decreased IR substrate, PI3K-Akt activity: reduced neuronal and oligodendroglial survival, neuronal plasticity, myelin 
maintenance.

• Reduced insulin-responsive gene expression: deficits in acetylcholine and glucose metabolism.
• Impairment in tau gene expression: hyper-phosphorylation of tau leading to tau misfolding and fibril aggregation, 

NFTs.

Energy deficit and 
hypometabolism 

• Increased oxidative and endoplasmic reticulum stress, and mitochondrial dysfunction with ROS and RNS generation.

Increased oxidative stress, 
ROS and RNS

• Damaged RNA, DNA, proteins, and lipid peroxidation production, energy deficits, cell death, increased AβPP expres-
sion with Aβ42 deposition and fibrillarization.

hyperglycemia • Enhances AGE production and impairs RAGE expression: microvascular disease with brain hypoperfusion, inflamma-
tory responses, impairment in removal of Aβ42 leading to Aβ42 deposition.

AD: Alzheimer disease; GLUT4 Glucose transporter 4; IR: insulin receptor; PI3K: phosphoinositol-3-kinase; NFTs: neurofibrillary tangles; ROS: reactive oxygen species; RNS: reactive nitrogen species; 
AβPP: amyloid beta precursor protein; Aβ42: amyloid beta 42; AGE: advanced glycation end products; RAGE: receptor for advanced glycation end products.
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and plasticity.38 Oxidative stress can produce increases 
in neuro-inflammation and pro-inflammatory cytokine 
inhibition of insulin signaling.38 Transition metal ion ac-
cumulations produce mitochondrial dysfunction, oxida-
tive stress, tau and AβPP oligomer fibrillarization, which 
impair glucose uptake and utilization, and inhibit insu-
lin signaling.38 Hyperphosphorylated-ubiquitinated tau 
increases oxidative stress, promotes neuroinflamma-
tion which consequently enhances insulin resistance.38 
Microvascular disease exacerbates insulin resistance 
through cerebral hypoperfusion and hypoxic-ischemic 
injury.38

Conclusions. A body of evidence has shown that the 
structural and functional integrity of the CNS can be 

compromised in the presence of brain insulin and IGF 
resistance or deficiency. These changes can contribute 
to AD pathology and conversely, AD pathology can 
enhance brain insulin and IGF resistance, functioning 
as a positive feedback loop. However, it is necessary 
to bear in mind that the majority of studies have been 
conducted in the experimental field with animal or cell 
models. Elucidating the question of a connection among 
DM, brain insulin resistance/deficiency and AD is very 
important, especially for planning novel strategies to 
prevent and treat AD in the future. 
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manuscript.
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