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Abstract: This paper developed an adaptive backstepping fuzzy sliding control (ABFSC) approach
for a micro gyroscope. Based on backstepping design, an adaptive fuzzy sliding mode control was
proposed to adjust the fuzzy parameters with self-learning ability and reject the system nonlinearities.
With the Lyapunov function analysis of error function and sliding surface function, a comprehensive
controller is derived to ensure the stability of the proposed control system. The proposed fuzzy control
scheme does not need to know the system model in advance and could approximate the system
nonlinearities well. The adaptive fuzzy control method has self-learning ability to adjust the fuzzy
parameters. Simulation studies were implemented to prove the validity of the proposed ABFSMC
strategy, showing that it can adapt to the changes of external disturbance and model parameters and
has a satisfactory performance in tracking and approximation.
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1. Introduction

Micro gyroscopes are widely used in inertial navigation and guidance systems. However the
error and disturbances existing in micro gyroscopes may decrease the accuracy and sensitivity of the
system. With the advancement of microelectromechanical system (MEMS) technology, it is possible to
produce chip-based sensors such as accelerometers, gyroscopes, and magnetometers, in combination
with the miniaturization of electronic devices. Micro gyroscopes are small, lightweight, have low
energy consumption, long service life, and are extremely low cost.

Many control strategies have been investigated to compensate the error and disturbance from micro
gyroscopes [1–7]. Some intelligent controllers are widely used in dynamic systems because of their good
capacity to approximate any unknown smooth functions [8–12]. Adaptive sliding mode controllers
are combined with intelligent controllers for dynamic systems [13–17]. Thee backstepping method
is widely used in dynamic systems with pure feedback or strict feedback forms. The backstepping
adaptive fuzzy control method has received great interest in recent years [18]. Neural control and
fuzzy control have the capacity to approximate unknown smooth functions and have been widely
used in identification and control [19–30].

The universal approximation theorem indicates that the fuzzy system is a new universal
approximator in addition to polynomial function approximators and neural network approximators.
As the universal approximation theory of fuzzy system can approximate any nonlinear model and
realize arbitrary nonlinear control law, it is widely used in control systems. Adaptive sliding mode
control with a neural estimator and adaptive control with fuzzy compensator for a micro gyroscope
was investigated in [31,32]. In [33], a fuzzy system was used to approximate the system nonlinearities
and a finite time convergent sliding mode controller was designed. Backstepping design is a powerful
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tool for dynamic systems with pure or strict feedback forms. In recent years, the backstepping control
techniques have received great attention due to their systematic and recursive design methodology for
nonlinear feedback control. The key idea of the backstepping technique is to recursively select some
appropriate functions of state variables as fictitious control inputs for lower dimension subsystems of
the overall system. Lin et al. [34] and Lee et al. [35] introduced an adaptive fuzzy backstepping control
method for uncertain nonlinear systems. Lin et al. [36] proposed an adaptive fuzzy sliding-mode
control for linear ultrasonic servomotor systems.

However, the fuzzy control strategy is not combined with an adaptive backstepping controller in
the application of micro gyroscope and a backstepping controller has not been incorporated into a
fuzzy sliding mode control system for a micro gyroscope. As such, the adaptive backstepping fuzzy
sliding mode control approach has not been proposed in the control of a micro gyroscope. Motivated by
the above research, this paper presents an adaptive backstepping fuzzy sliding controller to adjust
the fuzzy parameters with self-learning ability and reject the system nonlinearities. Comparing other
existing methods, the main contributions of this article can be summarized as follows:

(1) Backstepping is a nonlinear control approach by means of the recursion process. A major
advantage of a backstepping controller is its flexibility to avoid cancellations of useful nonlinearities
and achieve regulation and tracking properties. The gyroscope equations are transformed into an
analogically cascade system where the backstepping approach can be implanted.

(2) Backstepping design and adaptive fuzzy sliding mode control were applied to a micro
gyroscope. The proposed adaptive fuzzy controller not only does not rely on the system model, but also
makes the algorithm adjust the fuzzy parameters with self-learning ability.

(3) The proposed sliding mode control adds additional compensators to improve the stability,
hence obtaining desired system characteristics. Thus, the entire closed-loop system meets the dynamic
and static performance indicators and achieves accurate tracking performance.

2. Dynamics of Micro Gyroscope

In this section, the dynamic model of a micro gyroscope is presented. The characteristics of micro
gyroscopes are similar to traditional gyroscopes, mainly through the Coriolis force to achieve the
miniaturization of equipment. The dynamics model of the micro gyroscope can be regarded as a
damping-spring-mass system, as shown in Figure 1.
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Figure 1. Schematic diagram of a micro gyroscope. 

The driving electrode generates electrostatic force to drive the base mass block back and forth to 
maintain stable oscillatory momentum. The induction device is used to sense the movement of the 
base mass block in the vertical driving direction, and to extract the external angular velocity from the 
vibration information. Referring to Park [1], with some assumptions, the dynamic model of 
gyroscope can be expressed as 
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base mass block in the vertical driving direction, and to extract the external angular velocity from the



Micromachines 2020, 11, 968 3 of 14

vibration information. Referring to Park [1], with some assumptions, the dynamic model of gyroscope
can be expressed as

m
..
x + dxx

.
x + dxy

.
y + kxxx + kxyy = ux + 2mΩz

.
y

m
..
y + dxy

.
x + dyy

.
y + kxyx + kyyy = uy − 2mΩz

.
x

(1)

The asymmetric spring and damping terms, kxy and dxy, are generated from fabrication
imperfections. kxx, kyy, dxx, and dyy are the x and y axes spring and damping terms. ux and uy

are the control forces.
Dividing both sides of Equation (1) by the mass m, reference length q0, and the square of the

resonance frequency w2
0 yields

dxx

mw2
0

→ Dxx,
dxy

mw2
0

→ Dxy,
dyy

mw2
0

→ Dyy,
kxx

mw2
0

→ w2
x,

kxy

mw2
0

→ wxy,
kyy

mw2
0

→ w2
y,

Ωz

w2
0

→ ΩZ

Define x1 =
[

x y
]
, Equation (1) can be rewritten as{ .

x1 = x2
.
x2 = −(D + 2Ω)x2 −Kbx1 + u

(2)

where the dimensionless quantities are

D =

[
Dxx Dxy

Dxy Dyy

]
, Kb =

[
w2

x wxy

wxy w2
y

]
, u =

[
ux

uy

]
, Ω =

[
0 −ΩZ

ΩZ 0

]
Taking into account the system nonlinearities, Equation (2) can be expressed as:

.
x2 = [−(D + 2Ω) + ∆A1]x2 + (−Kb + ∆A2)x1 + (I + ∆B)u + η

= −(D + 2Ω)x2 −Kx1 + u + H(t)
(3)

where ∆A1, ∆A2, ∆B are the model uncertainties; and η is external disturbances of micro gyroscope.
H(t) includes lumped system nonlinearities, H(t) = ∆A1x2 + ∆A2x1 + ∆Bu + η. We assume ‖H(t)‖ is
bounded by a positive constant Hmax.

3. Adaptive Backstepping Control Design

Motivated by the research results in [17–21,28], in this section, a backstepping controller
was designed to meet the objective of tracking and stabilization by a recursive design procedure.
The schematic block diagram of the proposed approach of a micro gyroscope is described in Figure 2.
The target of ABFSMC is to achieve real-time compensation for fabrication imperfections.
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Figure 2. Block diagram of the proposed adaptive backstepping fuzzy sliding control (ABFSMC). Figure 2. Block diagram of the proposed adaptive backstepping fuzzy sliding control (ABFSMC).
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The reference model is defined as r. The tracking error is defined as{
e1 = x1 − r

e2 = x2 − α1
(4)

where r is the trajectory of the reference model virtual control volume and α1 is the virtual control
volume, defined as

α1 = −c1e1 +
.
r (5)

In Equation (5), c1 is a positive constant.
We selected the first Lyapunov function as:

V1 =
1
2

eT
1 e1 (6)

The time derivative of the V1 is

.
V1 = eT

1
.
e1 = eT

1 (x2 −
.
r) = eT

1 (e2 − c1e1) = −c1eT
1 e1 + eT

1 e2 (7)

when e2 = 0, it is easy to see that
.

V1 = −c1eT
1 e1 ≤ 0.

Define a function of sliding surface as

s = ce1 + e2 (8)

where c is a positive constant.
Define the second Lyapunov function as

V2 = V1 +
1
2

sTs (9)

From Equation (9), we can get

e1 =
1
c
(s− e2) (10)

Then, substituting Equation (10) into the time derivative of V2 becomes

.
V2 = −c1eT

1 e1 + eT
1 e2 + sT(c

.
e1 +

.
e2)

= −c1eT
1 e1 + eT

1 e2 + sT[c(x2 −
.
r) +

.
x2 −

.
α1]

= −c1eT
1 e1 −

1
c eT

2 e2 + sT[(c + 1
c )e2 + c(α1 −

.
r) + u + H(t) −

.
α1 + f (x1, x2)]

(11)

where f (x1, x2) = −(D + 2Ω)x2 −Kx1.
In the controller design, we used exponential reaching law as

.
s = −ρs−Hmaxsgn(s) (12)

where ρ > 0.
By Equations (11) and (12), we designed a comprehensive controller as

u = −[(
1
c
+ c)e2 + c(α1 −

.
r) −

.
α1] − f (x1, x2) − ρs−Hmaxsgn(s) (13)

Substituting Equation (13) into Equation (11) yields

.
V2 = −c1eT

1 e1 − ceT
2 e2 + sT(H(t) −Hmaxsgn(s)) − ρsTs

≤ −c1eT
1 e1 − ceT

2 e2 + ‖s‖(‖H(t)‖ −Hmax) − ρsTs
≤ 0

(14)
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However, since the system model f (x1, x2) is unknown in practical situations, the controller (13)
cannot be implemented. Then, a fuzzy system is used to approximate the unknown model of the
micro gyroscope.

The singleton fuzzifier mapping was used, where gi and f̂ have the same member functions as
Gaussian membership functions

µAl
i
(gi) = exp

− (gi − ci)
2

2σ2
i

 (15)

where ci and σi are the center and width of the ith fuzzy set Al
i, respectively.

The output of the fuzzy system is written by a center-average defuzzifier, product inference, and
singleton fuzzifier as:

f̂ T(g) =

M∑
l=1

hl

(
n∏

i=1
µAl

i
(gi)

)
M∑

l=1

(
n∏

i=1
µAl

i
(gi)

) = θTξ(g) (16)

where µAl
i
(gi) is the membership function value of the fuzzy variable gi; dl is the point at which the

membership function of Bl achieves its maximum value; θT =
(
θ1, θ2, · · · , θM

)
is the adaptive

parameter, and ξ(g) =
(
ξ1(g), ξ2(g), · · · , ξM(g)

)T
are the fuzzy basis functions.

We defined the optimal approximation constant θ∗. We made an assumption that for a given
small arbitrarily positive constant ε, the following inequality expression (17) holds.

‖ f − ξT(g)θ∗‖ ≤ ε (17)

Since the system model f (x1, x2) is unknown, a fuzzy controller can be proposed as

u = −[(
1
c
+ c)e2 + c(α1 −

.
r) −

.
α1] − f̂ − ρs−Hmaxsgn(s) (18)

where a fuzzy system f̂ = ξT(x)θ is used to approximate the f (x1, x2) in (13).

4. Adaptive Estimator

In this section, the stability analysis of the proposed control system is discussed. First, we chose a
Lyapunov function candidate as

V =
1
2

eT
1 e1 +

1
2

sTs +
1

2τ
θ̃Tθ̃ (19)

where τ > 0, θ̃ = θ∗ − θ.
Then, the time derivative of V becomes

V = eT
1

.
e1 + sT .

s +
1
τ

.

θ̃
T
θ̃ (20)

From the derivation in (11),

.
V2 = −c1eT

1 e1 + eT
1 e2 + sT(c

.
e1 +

.
e2) −

1
τ θ̃

T
.
θ

= −c1eT
1 e1 + eT

1 e2 + sT[c(x2 −
.
r) +

.
x2 −

.
α1] −

1
τ θ̃

T
.
θ

= −c1eT
1 e1 −

1
c eT

2 e2 + sT[(c + 1
c )e2 + c(α1 −

.
r) + u + H(t) −

.
α1 + f (x1, x2)] −

1
τ θ̃

T
.
θ

(21)

Substituting (18) into (21) yields
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.
V = −c1eT

1 e1 − ceT
2 e2 + sT(H(t) −Hmaxsgn(s)) + sT( f (x, y) − f̂ ) − ρsTs− 1

τ θ̃
T

.
θ

= −c1eT
1 e1 − ceT

2 e2 + sT(H(t) −Hmaxsgn(s)) + sT( f (x, y) − ξT(x)θ) − ρsTs− 1
τ θ̃

T
.
θ

= −c1eT
1 e1 − ceT

2 e2 + sT(H(t) −Hmaxsgn(s)) + sT( f (x, y) − ξT(x)θ∗) + sT(ξT(x)θ∗ − ξT(x)θ) − ρsTs− 1
τ θ̃

T
.
θ

(22)

Since ‖H(t)‖ is bounded by a positive constant Hmax, and making using of ab ≤ 1
2 a2 + 1

2 b2 and
(17), (22) becomes

.
V ≤ −c1eT

1 e1 − ceT
2 e2 + ‖s‖(Hmax −H(t)) + sT( f (x, y) − ξT(x)θ∗) + sT(ξT(x)θ∗ − ξT(x)θ) − ρsTs− 1

τ θ̃
T

.
θ

≤ −c1eT
1 e1 − ceT

2 e2 + sT( f (x, y) − ξT(x)θ∗) + sT(ξT(x)θ∗ − ξT(x)θ) − ρsTs− 1
τ θ̃

T
.
θ

≤ c1eT
1 e1 − ceT

2 e2 +
1
2 ‖s‖

2 + 1
2ε

2
− ρsTs− θ̃T

[(
sTξT(x)

)T
−

1
τ

.
θ
] (23)

To make
.

V2 ≤ 0, we chose a parameter updating law

.
θ = τ(sTξT(x))

T
+ 2γθ (24)

Substituting Equation (24) into Equation (23) yields

.
V ≤ −c1eT

1 e1 − ceT
2 e2 +

1
2‖s‖

2 + 1
2ε

2
− ρsTs− 2γ

τ θ̃
Tθ

= c1eT
1 e1 − ceT

2 e2 +
1
2‖s‖

2 + 1
2ε

2
− ρsTs− γ

τ (2θ
∗Tθ− 2θTθ)

(25)

According to the Inequality (θ− θ∗)T(θ − θ∗) ≥ 0, we can get 2θ∗Tθ − 2θTθ ≤ −θTθ+ θ∗Tθ∗.
Substituting this condition into Equation (25) yields

.
V ≤ c1eT

1 e1 − ceT
2 e2 +

1
2‖s‖

2 + 1
2ε

2
− ρsTs− γ

τ (−θ
Tθ+ θ∗Tθ∗)

= c1eT
1 e1 − ceT

2 e2 +
1
2‖s‖

2 + 1
2ε

2
− ρsTs + γ

τ (θ
Tθ+ θ∗Tθ∗) −

2γ
τ θ
∗Tθ∗

(26)

According to the inequality (θ+ θ∗)T(θ+ θ∗) ≥ 0, that is −θ∗Tθ−θTθ∗ ≤ θ∗Tθ∗+ θTθ, we can get

−
1
2 θ̃

Tθ̃ = − 1
2 (θ

∗
− θ)T(θ∗ − θ)

= − 1
2 (θ

∗Tθ∗ + θTθ− θ∗Tθ− θTθ∗)
≤ θ∗Tθ∗ + θTθ

(27)

Substituting Equation (27) into Equation (26) yields

.
V ≤ c1eT

1 e1 − ceT
2 e2 +

1
2‖s‖

2 + 1
2ε

2
− ρsTs− γ

τ (
1
2 θ̃

Tθ̃) −
2γ
τ θ
∗Tθ∗

= − 2
2 c1eT

1 e1 −
2
2 (ρ−

1
2 )s

Ts− γ
2τ θ̃

Tθ̃− 1
c eT

2 e2 +
1
2ε

2
−

2γ
τ θ
∗Tθ∗

(28)

where ρ > 1/2.
Define c0 = min

{
2c1, 2(ρ− 1/2),γ

}
, Equation (28) becomes

.
V ≤ −

c0
2 (e

T
1 e1 + sTs + 1

τ θ̃
Tθ̃) − 1

c eT
2 e2 +

1
2ε

2
−

2γ
τ θ
∗Tθ∗

= −c0V − 1
c eT

2 e2 +
1
2ε

2
−

2γ
τ θ
∗Tθ∗

= −c0V + cVmax

(29)

where cVmax = − 1
c eT

2 e2 +
1
2ε

2
−

2γ
τ θ
∗Tθ∗.

Solving Equation (29) yields

V(t) ≤ V(0) exp(−c0t) + cVmax
c0

(1− exp(−c0t))
≤ V(0) + cVmax

c0
(∀t ≥ 0)

(30)
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where V(0) is the initial value of V. If we define a closely collection as Ω0 =
{
X
∣∣∣∣V(X) ≤ V(0) + cVmax

c0

}
,

we can get
{
e1, s, θ̃

}
∈ Ω0.

.
V is a negative semi-definite that ensures that V, e1, s, θ̃ are all bounded.

Then, the stability of the designed closed-loop control system can be guaranteed.

Remark 1. In order to overcome this problem, a proper adaptation law can be proposed to estimator the upper
bound Hmax to realize the adaptive upper bound control, weakening the chattering and ensuring the stability of
the control system.

Remark 2. Since there is a switching functions sign in the proposed controller (13), we can use saturation
function or hyperbolic function to replace sign function to decrease chattering.

5. Simulation Study

In this section, the proposed ABFSMC scheme was evaluated on the lumped model of a
micro gyroscope sensor. The simulation experiment of the proposed scheme was carried out on
a MATLAB/SIMULINK software platform. Meanwhile, the superiority of the proposed can be further
confirmed by comparing it with the adaptive backstepping controller [7].

The parameters of the micro gyroscope were selected as in Table 1.

Table 1. Parameters of micro gyroscope.

Parameters Values

m 1.8× 10−7 kg
kxx 63.955 N/m
kyy 95.92 N/m
kxy 12.779 N/m
dxx 1.8× 10−6 N s/m
dyy 1.8× 10−6 N s/m
dxy 3.6× 10−7 N s/m

The angular velocity of micro gyroscope was assumed to be Ωz = 100 rad/s. The dimensionless
procedure was implemented. The reference length and frequency were chosen as q0 = 1 µm
and ω0 = 1000 Hz. The unknown angular velocity was assumed to be Ωz = 100 rad/s, and the
dimensionless parameters can be calculated. The reference trajectory r1 = sin(4.17t), r2 = 1.2 sin(5.11t),
was close to their natural frequencies. Random variable signal with zero mean and unity variance was
regarded as external disturbance H(t). As for model uncertainties, we assumed there existed ±30%
parameter variations for the spring and damping coefficients, and ±30% magnitude changes held in
the coupling terms with respect to their nominal values.

Initial conditions were q(0) =
[

1 1
]T

, other parameters were selected as c = 15, c1 = 10,
Hmax = 1000, τ = 2, γ = 1.5, ρ = 20. The membership functions were selected as

µ1
Fi
= exp[−0.5((xi + Ai/2)/(Ai/4))2], µ2

Fi
= exp[−0.5(xi/(Ai/4))2],

µ3
Fi
= exp[−0.5((xi −Ai/2)/(Ai/4))2], (i = 1, 2, 3, 4).

where Ai is the amplitude of the reference trajectory as
[

1 1.2 4.17 6.132
]
.

Figures 3–8 show the simulation results using the proposed ABFSMC approach. Figure 3 shows
the output of micro gyroscope in the x− y axis to track the trajectory. Figure 4 shows the tracking error.
It was demonstrated that the trajectory of the control system could track the reference trajectory in
0.2 s. The control input using the ABFSMC approach is drawn in Figure 5. It shows that the control
input was stable between −1000 and 1000. Figure 6 shows the function of the sliding mode surface.
The parameters of the fuzzy adaptive control are plotted in Figures 7 and 8, showing that the fuzzy
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control method combined with the adaptive control method has the ability to learn and adjust the
fuzzy parameters. It is observed that the fuzzy parameters can be adjusted to the optimal value
quickly and keep stable, which shows that the self-regulation fuzzy system has better stability and
self-tuning performance.

An adaptive backstepping control (ABC) technique for a microscope was presented in [7]. In order
to more clearly demonstrate the advantages of the proposed method, the performance of our proposed
ABFSMC strategy was compared with the ABC method in [7] and the case without a controller.
Figures 9 and 10 show the tracking property using the adaptive controller in [7] and without using
the controller, with the same nominal gyroscope parameters under the same model uncertainties.
From Figure 10, due to the modeling error, the “dull” controller relied on the nominal parameters,
which led to a stable system, but the tracking errors were obvious. The tracking errors with the
adaptive backstepping controller displayed quite a large overshoot at the beginning, as did the control
efforts. The settling time of the tracking errors was also worse than our proposed ABFSMC controller.
The advantages of our proposed controller over the adaptive backstepping controller and the case
without controller were obvious.

For the quantity discussion, the root mean square errors (RMSE) of the tracking error of the two
axes of the micro gyroscope using these three difference controllers are compared in Table 2.

In summary, the introduction of the ABFSMC approach can adapt to the changes in the
external disturbance and model parameters and maintain a satisfactory performance in tracking
and approximation.
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6. Conclusions

The ABFSMC strategy was investigated in a micro gyroscope through theoretical discussion
and numerical simulation. The mathematical model of the micro gyroscope was transformed for the
handiness of the backstepping control design. A backstepping approach was adopted to deal with
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