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Abstract

Given the complexity and diversity of the cancer genomics profiles, it is challenging to iden-

tify distinct clusters from different cancer types. Numerous analyses have been conducted

for this propose. Still, the methods they used always do not directly support the high-dimen-

sional omics data across the whole genome (Such as ATAC-seq profiles). In this study,

based on the deep adversarial learning, we present an end-to-end approach ClusterATAC

to leverage high-dimensional features and explore the classification results. On the ATAC-

seq dataset and RNA-seq dataset, ClusterATAC has achieved excellent performance.

Since ATAC-seq data plays a crucial role in the study of the effects of non-coding regions on

the molecular classification of cancers, we explore the clustering solution obtained by Clus-

terATAC on the pan-cancer ATAC dataset. In this solution, more than 70% of the clustering

are single-tumor-type-dominant, and the vast majority of the remaining clusters are associ-

ated with similar tumor types. We explore the representative non-coding loci and their linked

genes of each cluster and verify some results by the literature search. These results suggest

that a large number of non-coding loci affect the development and progression of cancer

through its linked genes, which can potentially advance cancer diagnosis and therapy.

Author summary

A few methods have been developed to leverage omics data (e.g., iCluster) to solve cancer

classification. However, these omics data always focus on the coding regions (2% of the

human genome). Cancer classification methods based on the high-dimensional raw data

across the whole genome are rare. Our approach addressed crucial and fundamental limi-

tations in existing approaches. ClusterATAC used adversarial learning to handle the lim-

ited but high-dimensional omics data. Feature selection techniques are used to analyze the

essential non-coding loci and their regulatory genes for each cluster. The outcome can

lead to a deeper understanding of the regulatory mechanisms that lead to cancer develop-

ment and progression. We successfully obtained 22 cancer subgroups form the ATAC-seq
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profiles of 401 TCGA samples. We observed that most subgroups follow the ’Cell-of-Ori-

gin’ pattern, consistent with the recent study. There were significant differences between

the 22 clusters. More than 70% of the subgroups were homogeneous for a single cancer

type. We identified the representative loci and the corresponding regulatory genes of each

cluster. We found that these loci and genes are always tumor-specific and responsible for

the occurrence and development of the related tumor.

Introduction

Cancer is a heterogeneous complex disease that poses a severe threat to human health and can

occur in most organs of the human body [1]. The character of cancer is the infinite proliferation

of cells, invasion of normal tissues, and transfer to distant organs [2]. It is essential to determine

the cancer types of patients in cancer treatment and select clinical and drug treatment options

based on the classification results [3]. The traditional cancer pathology classification method is

based on the tissue-histology information and has achieved great success. However, this classifi-

cation method ignores the commonality of molecular profiles in different types of cancer

patients, causing challenges to interpret the molecular mechanisms on some individual tumors

and limiting the development of new treatment modalities [4]. Recently, to more accurately

diagnose cancer and formulate treatment plans, with the rapid accumulation of cancer omics

profiles, molecular classification based on individual molecular platforms across tissues has

become critical [5]. Accurate classification results can lead to the discovery of pathogenic mech-

anisms, cancer driver genes, or deleterious mutations. They can help with the development of

precision medical therapy, which has become a hot issue in cancer treatment.

With the rapid development of next-generation genome sequencing technology, large can-

cer research projects, such as The Cancer Genome Atlas (TCGA) [6] and the International

Cancer Genome Consortium (ICGC) [7], have published numerous different types of genomic

data, which exceedingly promote the development of cancer genomics research. With these

molecular profiles, several analyses achieve meaningful results. In 2014, based on the integra-

tion of TCGA multi-omics data, the multiplatform study across 12 cancer types (Pan-Cancer-

12) suggested that the molecular classification results are significantly different from the patho-

logical classification results [5]. In 2018, TCGA published multiple genomic data from more

than 10,000 patients across 33 different types of cancer [8–14]. These data include 3.6 million

somatic mutation data from various cancer centers and other massive omics data (such as

gene expression, methylation, protein expression, copy number). An integrative classification

analysis reported 28 different clusters (28-iClusters solution). The study found that the ‘Cell-

of-Origin’ pattern determines the main results. Other factors influence the clustering results

(such as the copy-number aberrations and immune features), which led to partially mixed

tumor groups in the clustering (including pan-kidney, pan-squamous, and immune-related

mixture category). At the same time, another study collected the assay for transposase accessi-

ble chromatin with sequencing (ATAC-seq) data from 410 TCGA samples and conducted the

clustering analysis [15]. This study focused on the effects of chromatin accessibility in the

genome-wide regions on various types of tumors and found 18 distinct molecular clusters

(highly consistent with the 28-iClusters solution). These analyses explore the molecular classi-

fication across multiple tumor types and suggest future directions for cancer therapy.

The ATAC-seq technology is introduced into cancer profiles analysis since it can mark the

open chromatin sites and predict transcription factor (TF) binding sites across the whole genome

[16]. However, the bottleneck of using ATAC-seq data in clustering is that the data sample size is
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small, and the dimension of data is very high. The current clustering methods (such as iCluster

[17], NEMO [18], MultiNMF [19]) are mainly developed for integrating different types of geno-

mic data but not focus on processing the high-dimensional complex data. The DensityPeakClus-

ter method used in the previous study [15] can handle ATAC-seq profiles. However, it requires

manual setting of model parameters based on the distribution of input to determine the number

of clusters, which causes inconvenience for large-scale analyses. The development of clustering

algorithms for high-dimensional omics data remains a challenge [20]. They are required to

address the following requirements: automatically handle high-dimensional input data and deter-

mine the number of clusters; achieve stable clustering performance; explain the results thor-

oughly; revealed the influence of non-coding regulatory factors on the clustering results.

Recent advances in the artificial intelligence (AI) field allows deep learning applied to a large

number of research fields. With the development of novel modeling techniques, more and more

types of neural networks have been proposed, such as multilayer perceptron, convolutional neu-

ral network, auto-encoder, recurrent neural network, and generative adversarial network. Deep

learning has not only gained enormous success in image recognition, object detection, speech

recognition, natural language understanding but also gradually began to be applied creatively in

molecular biology-related studies (such as population genetic inference [21], microRNA targets

prediction [22], drug discovery [23]). Recently, deep learning technology has been utilized to

computer-aided diagnosis (CAD) and has made a tremendous breakthrough in the major cancer

types (such as breast cancer, lung cancer, skin cancer, pancreatic cancer, brain cancer, colon can-

cer) [24]. However, the applications of deep learning for the cancer molecular profiles analyses

are relatively rare. It is mainly because most deep learning networks are based on supervised

learning and require a large number of accurately labeled samples for the model training. Due to

the heterogeneity and complexity of cancer, many molecular mechanisms are mysterious.

Entirely accurate annotation of the molecular data is very scarce. Moreover, the collection of

molecular data is costly. Although high-throughput sequencing technologies are rapidly develop-

ing, it is complicated to collect large-scale samples for sufficient neural network training. The

results obtained are often tough to understand and explain due to the nonlinearity and complex-

ity of neural networks. These bottlenecks limit the use of deep learning for the analysis of molec-

ular cancer data. In particular, the use of the neural networks in the cancer classification task is

challenging since it is an unsupervised learning task with no known labels.

To solve the challenges of deep learning in the cancer classification, and explore the rela-

tionship between the non-coding regulatory elements and distinct clusters, we develop the

ClusterATAC framework based on the ATAC-seq data. ClusterATAC consists of two modules,

Encoder-GAN and Gaussian Mixture Model (GMM) (Fig 1). Encoder-GAN uses the Genera-

tive Adversarial Network (GAN) [25] architecture for the model training process, and GMM

is applied to the outputs of Encoder-GAN for the clustering process. To prove that ClusterA-

TAC can handle high-dimensional omics data, we collected ATAC-seq data of 401 pan-cancer

samples and RNA-seq data of 1031 breast cancer samples and constructed two benchmark

data sets. On these two datasets, ClusterATAC obtained stable and interpretable clustering

results. Next, to reveal our approach has excellent performance, we compared the performance

of ClusterATAC with four state-of-art methods on the two data sets. Then, to explore the asso-

ciation between non-coding regions and the clustering schemes derived by ClusterATAC, we

focused on the ATAC-seq data set and performed the heatmap analysis of ClusterATAC and

other approaches to fully understand the clustering schemes of ClusterATAC. We further use

feature selection techniques to analyze the essential non-coding loci for each subgroup and the

regulatory genes they linked and conducted literature searches to support our findings. Based

on the above, we believe that the 22-cluster solution generated by ClusterATAC can expand

our understanding of the role of non-coding loci in tumor development.
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Results

Interpretation of the clustering results of ClusterATAC

To illustrate that ClusterATAC can achieve stable and reasonable results in the clustering of

ultra-high dimension data, we constructed two tumor datasets. The first dataset comprised

401 TCGA samples with complete ATAC-seq data and clinical profiles (data dimension is

about 500,000). The ATAC-seq profiles were obtained from the previous analysis [15]. The

second dataset included RNA-seq profiles of 1031 BRCA samples in the TCGA database [6]

(data dimension is about 20,000).

We applied ClusterATAC on the ATAC-seq data to discover the distinct patterns of sam-

ples across 23 cancer types. During the clustering process, we used the normalized ATAC-seq

Fig 1. Overview of the ClusterATAC framework. (A) Features extracted from the original ATAC-seq data. (B) GMM identified

subgroup-solutions with different cluster number K. (C)Use the Davies-Bouldin index to choose the most suitable solution.

https://doi.org/10.1371/journal.pcbi.1008405.g001
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peak scores as the feature to represent the samples. Since each sample’s feature dimension is

very high (562,709 peaks), to avoid overfitting, we developed the Encoder-GAN to handle the

ATAC-seq and obtained the latent variables corresponding to the individual. We introduced

GAN since it can enhance the representation ability of the deep learning approach. After the

GAN training, the model successfully extracted the features from the original data as the input

of the clustering process (S1 Text). Based on the nonlinearly encoded features, we performed

molecular subtyping with GMM clustering. The Davies-Bouldin index [26] was applied to

facilitate the selection of the appropriate number of clusters (S2 Text). We run the GMM with

a range of different values of cluster number K (from 18 to 23) and revealed 22 distinct groups

(while K is set to 22, the Davies-Bouldin index reaches the minimum value, S1 Fig).

We denoted the 22 clusters as C1-C22 and arranged samples according to the cluster labels.

We evaluated the similarities of samples by calculating the correlation of the features generated

by Encoder-GAN and performed the heatmap to achieve the visualization of the clusters (Fig

2A). We observed that each identified cluster exhibited a block boundary. Simultaneously,

there is a certain correlation between some of the clusters (such as C2 and C21, C3 and C19),

which implies that some clusters are related while others are quite different. To have a direct

view of the features over clusters C1-C22, we used t-distributed stochastic neighbor embed-

ding [27] (t-SNE) to reduce the vectors from our approach into two dimensions. We visualized

the 401 samples with their clustering labels (Fig 2B). Based on the t-SNE map, we observed

that samples from the same cluster are always gathered, while samples from different clusters

can be distinguished. Furthermore, to demonstrate that there is a significant difference in the

survival time of samples corresponding to these different clusters, we performed Kaplan–

Meier survival analysis to the overall survival of the 401 TCGA samples (Fig 2C). We found

that clusters C1-C22 show significant different survival patterns (log-rank P-value = 1.1e-16).

Among all the clusters, C4 (N = 9, dominated by GBM) has the shortest average survival time

(712.8 days) while C5 (N = 14, dominated by THCA) and C8 (N = 25, dominated by PRAD)

have the longest average survival time (2981.0 days). For all the 22 clusters, over 70% of them

are dominated by a single cancer type (C9: ACC; C1, C15: BRCA; C2: COAD; C4: GBM; C19:

KIRC; C3: KIRP; C16: LGG; C10: LIHC; C6: LUAD; C17: MESO; C18: PCPG; C8: PRAD;

C20: SKCM; C11: TGCT; C5: THCA; C14: UCEC). Most of the remaining clusters contain

similar tissue or organ samples (C7, C13, C22: Squamous histology cancers; C21: gastrointesti-

nal cancers). The cluster C12 contains six types of tumors. It exhibits regulatory effects on

important cancer-related PI3K genes, suggesting that the molecular subtyping method and

histopathology-based method are sometimes different. Based on the above observations, we

characterized the cluster labels with cancer cell types (Fig 2D).

Next, we explored the rationality of ClusterATAC’s results on the RNA-seq dataset. Cluster-

ATAC achieved five clusters (labeled C1~C5) on the BRCA tumors. We use the heatmap to

visualize the similarity matrix of the low-dimensional features of ClusterATAC (S2 Fig). There

are block boundaries of all the clusters, while C2, C3, C4, and C5 have a certain degree of cor-

relation. We performed the survival analysis (S3A Fig) on the subtyping results and found that

the survival curves of C1 to C5 have significant differences (Log-rank P-value = 4.31e-4). The

subtype with the longest average survival time is C1, followed by C5 and C3. The prognosis of

the samples in C2 and C4 is poor. Finally, we use TSNE to visualize all the tumors’ features

and explore the characteristics of each cluster (S3B Fig). Samples belonging to the same sub-

type are always grouped, while samples belonging to different subtypes are far apart. The

unique cluster is C1, which is located on the lower side of the coordinate plane. We also

observed that C3 and C5 are in the center of the coordinate plane, while C2 and C4 are located

on the coordinate plane’s upper side.
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Fig 2. Different patterns of ClusterATAC-clusters in 401 tumor samples from the TCGA. (A) heatmap of the sample similarity matrix showing clear block

boundaries. (B) t-SNE visualization on the extracted 200 features from the ClusterATAC. (C) Kaplan Meier survival curve showing that clusters significantly have

different survival patterns. (D) heatmap of the cluster residence showing the percent of each cluster that overlaps with each cancer type.

https://doi.org/10.1371/journal.pcbi.1008405.g002
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Evaluate the performance of ClusterATAC on benchmark data sets

We used the constructed ATAC-seq data set and RNA-seq data to benchmark clustering meth-

ods. On the ATAC-seq data set, according to the previous analysis result [15], we set the clus-

tering number to 18. On the RNA-seq data set, based on the last subtyping results [28], we set

the number of clusters to 5. On these data sets, we compared ClusterATAC with four state-of-

art clustering algorithms: K-means, spectral clustering (Spectral), autoencoder (AE), varia-

tional autoencoder (VAE). K-means and Spectral are the two most stable and effective cluster-

ing algorithms, while AE and VAE are two deep learning algorithms applied to omics data

clustering [29–31]. Especially, VAE has been proven by previous work to handle high-dimen-

sional ATAC-seq data [20]. On the ATAC-seq data set, to illustrate that the 22-cluster solution

of ClusterATAC is also reasonable, we appended ClusterATAC (k = 22) and DensityPeakClus-

ter method [15] for the performance comparison (S3 Text). When classifying tumors, the

molecular classification may be more accurate than cancer type (for example, samples belong-

ing to the same cancer type may have different subtypes). Previous studies consider that at

least 10% of patients might be classified (and perhaps treated) using molecular classification

[12]. Based on the above reasons, we adopted the criteria from the previous study [32] to evalu-

ate the clustering methods’ performance: for all the data sets, we reported the p-values of the

log-rank test of the clustering results; for the BRCA data set, we also reported the number of

significant clinical features (including age, stage, ER status, HER status, tumor’s size, number

of lymph nodes, metastasis) of each clustering approach.

On the ATAC-seq data set, each method found the clustering with a significantly different

survival (Fig 3, S1 Table). ClusterATAC achieved the best performance (K = 22, P-

value = 1.11e-16; K = 18, P-value = 6.71e-14), next was VAE (P-value = 1.06e-9), the third was

Spectral (P-value = 3.90e-09), followed by K-means (P-value = 2.76e-08), DensityPeakCluster

(4.88e-08), and AE (4.91e-08). On the RNA-seq data set, there were only ClusterATAC, AE,

and K-means obtained clustering schemes with significant differences in survival (S2 Table).

ClusterATAC achieved the best prognostic value (P-value = 4.31e-04), the second was AE

(1.87e-02), the third was K-means (2.51e-02). The survival differences between the clusters

obtained by Spectral and VAE are not significant. After the enrichment analyses across the

Fig 3. Comparison of ClusterATAC and other clustering methods on A) the ATAC-seq data of 401 samples across 23 tumors. B) the RNA-seq data of 1031 BRCA

samples.

https://doi.org/10.1371/journal.pcbi.1008405.g003
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seven clinical parameters, we observed that all methods obtained significant results, while

ClusterATAC achieved the smallest p-value in each analysis (S3 Table). Overall, for all the

methods, ClusterATAC obtained the most distinct clusters across the two benchmark datasets.

To estimate the performance of different algorithms more accurately, on the two bench-

mark datasets, we also used permutation tests [32] to calculate the significance of the difference

in survival between the clustering solutions and reported the empirical P-values of all the

methods across the two benchmark dataset. We found that although the calculation methods

of P-values are different, ClusterATAC still outperforms other comparison methods.

Explore the concordance and difference between clustering schemes

On the ATAC-seq data set, two independent large-scale clustering analyses have been done,

and the clustering schemes are found to be highly consistent [12,15]. However, they used

utterly different omics data as input. It is essential to see whether the clustering schemes are

stable across distinct clustering approaches with the same input data. For this purpose, we

focus on exploring the concordance and differences between ClusterATAC and other cluster-

ing approaches (DensityPeakCluster, iCluster, K-means clustering, AE, and VAE).

To measure the similarity of distinct clustering methods, we used the variation of informa-

tion (VI) analysis (Fig 4). Of all the approaches, only iCluster used multi-omics data instead of

ATAC-seq data for the clustering, making it the farthest from other methods. The distance

matrix suggests that the feature input has more influence on the clustering result than the clus-

tering algorithm. Simultaneously, Fig 4 shows that while using different algorithms, the clus-

tering results of all the methods are stable and consistent with the labels of cancer type (VAE,

K-means, and DensityPeakCluster even show a smaller deviation from the cancer type labels

than ClusterATAC). The clustering results of ClusterATAC (k = 18) and ClusterATAC

(k = 22) indicate that the number of clusters within a reasonable range does not significantly

affect the clustering results. It is worth noting that ClusterATAC’s clustering scheme is not the

same as AE and VAE (Although they all belong to deep learning methods). For example, AE

and VAE do not distinguish the brain tumor samples, while both ClusterATAC (k = 18) and

ClusterATAC (k = 22) can identify the GBM samples from the LGG samples.

To illustrate that ClusterATAC identified diverse patterns of the TCGA pan-cancers, we

analyzed the clustering results of ClusterATAC (C1~C22) and DensityPeakCluster (D1~D18).

We found that there are two distinct differences between the results of ClusterATAC and Den-

sityPeakCluster. First, for brain cancer and kidney cancer, the clustering scheme of ClusterA-

TAC is more detailed than the clustering scheme of DensityPeakCluster. The density method

classifies all brain cancer patients into one category (D5), while ClusterATAC can more accu-

rately distinguish between GBM (C4) and LGG (C16) in brain cancer. Although both diseases

belong to brain cancer, the five-year survival rate of LGG is 59.9%, while GBM is already very

serious, and the average survival time of patients is no more than 15 months [33]. Our cluster-

ing results indicate that the regulatory elements of the non-coding regions can distinguish

GBM and LGG of the brain tissue. The density method classifies all kidney cancers into one

category (D1), while ClusterATAC more accurately distinguishes be-tween KIRC (C19) and

KIRP (C3) in kidney cancer. Both KIRC and KIRP are histological clusters of renal cell carci-

noma (RCC), but KIRP patients are more likely to experience significantly worse clinical out-

comes [34]. Distinguish KIRC and KIRP from the perspective of ATAC peak data will help to

understand how the non-coding regions contribute to the prognosis assessment of them.

Moreover, ClusterATAC has a heterogeneous cluster (C12), and the DensityPeakCluster does

not get a mixed category. We found that in the ClusterATAC clusters, almost all patients with

C12 correspond to the D17 (mesothelium) of density clusters. Patients with D17 are
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concentrated in C17 and C12 (S4 Fig). However, C12 does not contain any patients with

MESO, and the patients of MESO are mainly in the C17. The cluster C12 contains six different

cancer categories, which are significantly different from C17. All of this makes it reasonable to

separate C12 and C17 from the same cluster.

Besides, we analyzed the clustering results of ClusterATAC with the 28-iClusters solution

[12]. Although the cancer cell types influence the clustering results of the two methods, most

Fig 4. Variation of information analysis of clustering results derived by ClusterATAC and other cancer classification methods (DensityPeakCluster,

iCluster, K-means, AE, VAE, and cancer type) on the ATAC-seq data set.

https://doi.org/10.1371/journal.pcbi.1008405.g004
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of the heterogeneous clusters of ClusterATAC (C7, C12, C13, C21, C22) are entirely different

from the previous 28-cluster solution. More interestingly, the ClusterATAC-C12 and iCluster-

I20 are both mixed clusters, but they do not have any similarities (S5 Fig). These results illus-

trate that cancer classification based on ATAC peak data also followed the cell-of-origin pat-

terns. Moreover, the deep learning approach can also find some heterogeneous clusters that

correspond to multiple cancer types. The heterogeneous clusters found by different methods

are challenging to map to each other.

Identify cluster-specific loci and genes of tumors

The clustering results of ClusterATAC suggested that different types of cancer have different

biomarkers in the non-coding regions, and some biomarkers of the mixed clusters are associ-

ated with multiple types of tumors. Based on the clustering solution of ClusterATAC, we

explored the biomarkers corresponding to different clusters across the whole genome,

obtained their corresponding genes, and analyzed their regulatory mechanisms. For each of

the 22 clusters, we marked the target cluster samples with positive labels, and the other individ-

uals are labeled as negative labels. We used the random forest as the feature selection algorithm

to identify its corresponding biomarkers. The random forest method input is the ATAC peaks

of the samples, and the output is the 0 or 1 labels. The Gini importance of the random forest is

used for the selection of candidate biomarkers. After the model fitting, we reported the five

most critical non-coding regions and their associated genes for each cluster (S4 Table).

Based on these findings, we conducted a literature search to obtain reliable cluster-specific

biomarkers (Table 1). Firstly, we investigated the clusters that follow the "cell-of-origin

Table 1. The representative cluster-specific non-coding loci (chromosome, start, end) and their linked genes and the Gini Importance

Subgroup Chromosome Start End Linked Gene Gini Importance

C1 chr8 94405202 94405703 NDUFAF6 0.01781

chr1 85215748 85216249 SYDE2 0.00941

C2 chr13 52155104 52155605 NEK3 0.01460

chr2 199942283 199942784 SATB2 0.00966

C3 chr13 48154309 48154810 ITM2B 0.01684

C4 chr18 77521941 77522442 GALR1 0.01920

C5 chr8 132933462 132933963 TG 0.01000

C6 chr2 85660680 85661181 SFTPB 0.00704

C7 chr10 47483847 47484348 ANXA8 0.00873

C8 chr11 4636027 4636528 OR51E1 0.01726

C9 chr19 49790844 49791345 SIGLEC11 0.01000

C10 chr9 114078164 114078665 ORM1 0.02000

C11 chr10 68553162 68553663 TET1 0.01000

C12 chr10 96642909 96643410 PIK3AP1 0.00597

C13 chr1 3473515 3474016 TP73 0.00716

C14 chr1 206061893 206062394 C1orf186 0.00274

C15 chr16 54647149 54647650 IRX5 0.00662

C16 chr1 156422205 156422706 BCAN 0.01000

C17 chr15 83286947 83287448 BNC1 0.01000

C18 chr9 133627172 133627673 DBH 0.01000

C19 chr5 151014839 151015340 GPX3 0.00606

C20 chr15 31102405 31102906 TRPM1 0.01000

C21 chr20 22619200 22619701 FOXA2 0.00715

C22 chr18 63586359 63586860 SERPINB5 0.00736

https://doi.org/10.1371/journal.pcbi.1008405.t001
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patterns" (C1~ C6, C8~C11, C14~C18, C20). For the C1 (BRCA), the most critical region is at

8q22.1. Copy number enhancement occurring in this locus is thought to increase the likeli-

hood of metastatic recurrence of breast cancer [35]. At the same time, the linked gene of this

region is NDUFAF6, which acts as the coactivator and facilitator of TP53 activity [36]. The

1p22.3 locus is also critical for C1. The variant rs12118297 in this region has been found to

increase the risk of breast cancer [37]. For the C2 (COAD), the representative region is at

13q14.3. The previous study showed that chromosomal alterations in this region could signifi-

cantly affect the survival time of colorectal cancer patients [38]. The 2q33.1 locus is also related

to C2. The lower expression of SATB2 is correlated with the clinical diagnoses and the recur-

rence rate of the colorectal tumor [39]. For the C3 (KIRP), the most representative region is at

13p14.1, and its corresponding gene is ADAMTS9. Recent studies showed that the lncRNA

ENSG00000241684 is closely related to clear cell renal cell carcinoma (CCRCC) prognosis

[40]. The essential region of C4 (GBM) is 18q23, which is the risk loci of GBM [41]. Among

the genes corresponding to the Top5 critical regions of C5 (THCA), the TG gene is found to

be closely related to thyroid cancer. Statistical analysis indicated that somatic mutations that

occurred on the TG gene were associated with a poor clinical outcome in patients with thyroid

cancer [42]. SFTPB is one of the representative genes for C6 (LUAD). A recent study suggested

using the expression of SFTPB as a prognostic marker for lung cancer patients [43]. The most

critical region of C8 (PRAD) is 11p15.4, which is proved to be a susceptibility locus for prostate

cancer [44]. The representative region of C9 (ACC) is 19q13.33, and previous studies showed

that copy number aberrations in this locus directly lead to the poor survival of adrenal [45].

The representative gene of C10 (LIHC) is ORM1, which is considered as a prognostic bio-

marker for hepatocellular carcinoma [46]. The most representative gene of C11 (TGCT) is

TET1 (regulated by 10q21.3). Previous work showed that in some TGCT samples, methylation

of TET1 deregulated [47]. The representative locus of C14 (UCEC) is 1q32.1. Previous work

showed that somatic copy number amplifications occurring in this locus lead to poor progno-

sis of endometrial cancers [48]. C15 is another subgroup of BRCA, and the most representative

gene corresponding to it is IRX5 (regulated by 16q12.2). Experiments showed that knocking

down the IRX5 gene in the breast cancer cell leads to a decrease in cell survival [49]. Three rep-

resentative regions of C16 (LGG) were located at 1q22, and one of them was linked to the

BCAN gene, which is considered a central factor in promoting glioma progression [50]. Three

representative regions of C17 (MESO) were located at 15q22.2 and regulate BNC1. The study

found that Epigenetic alterations occurred in the BNC1 gene in the mesothelioma cell line and

may be involved in mesothelioma progression [51]. Two representative regions of C18

(PCPG) were located at 9q34.2, and both of them regulated the DBH gene, suggesting a corre-

lation between the DBH gene and PCPG. Indeed, DBH had been used as a marker to identify

PCPG [52]. GPX3 is one of the representative genes of C19 (KIRC). There is already evidence

that the expression of GPX3 is significantly downregulated in primary renal tumors [53]. For

C20 (SKCM), the most representative gene is TRPM1 (regulated by 15q13.3), which is consid-

ered to be a metastasis-related important gene of skin cancer. The expression of TRPM1 is

directly related to the clinical prognosis of SKCM patients [54].

Next, we explored the heterogeneous clusters and their corresponding critical loci. For

squamous histology cancers, three clusters were corresponding to them: C7, C13, C22. Among

them, the representative region of C7 corresponds to the gene ANXA8. Studies have shown

that ANXA8 is a molecular marker associated with lymph node metastasis in oral squamous

cell carcinoma [55]. The representative gene of C13 is TP73 (p53 family of transcription fac-

tors), is a tumor suppressor. TP73 is considered to be associated with head and neck squamous

cell carcinoma [56]. SerpinB5 is one of the relevant regulatory genes of C22. The expression of

SerpinB5 is significantly down-regulated in patients with esophageal squamous cell carcinoma
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[57]. C21 is responsible for gastrointestinal cancers. The representative gene of C21 is FOXA2,

which is a suppressor in a wide range of tumors. For gastric cancer, the clinical prognosis of

patients is related to the expression of FOXA2 [58]. PIK3AP1 (one of the PI3K pathway genes)

is one of the regulatory genes of the mixed cluster C12. Since the PI3K pathway is one of the

most common signaling pathways of cancer, among all the clusters, C12 contained the most

types of cancer patients. Above all, for each cluster, we found that there were limited regulatory

genes in the cancer signaling pathways (only the mixed cluster C12 associated with the PI3K

pathway). The representative loci and genes of different clusters are always distinct.

Discussion

Currently, deep learning methods are gradually being used for the analysis of cancer geno-

mic data. In this work, we proposed ClusterATAC, a deep-learning-based clustering model

for the cancer classification. The central component of ClusterATAC is the Encoder-GAN,

which can learn the nonlinear representation of the complex raw data and transfer them to

the coded low dimensional features. With these extracted features, GMM is another compo-

nent responsible for the unsupervised clustering. Moreover, we used the Davies-Bouldin

index to determine the appropriate number of clusters from a reasonable range of values.

ClusterATAC successfully obtained 22 clusters form the ATAC-seq profiles of 401 TCGA

samples. We observed that most of the clusters follow the ‘Cell-of-Origin’ pattern, which is

consistent with the recent study. There were significant survival differences between the 22

clusters. More than 70% of the clusters were homogeneous for a single cancer type. On the

ATAC-seq dataset and RNA-seq dataset, ClusterATAC has achieved excellent performance.

We used the random forest to select the representative loci and the corresponding regula-

tory genes on each cluster of the Pan-cancer data set. These loci and genes are always

tumor-specific and responsible for the occurrence and development of the related tumor.

These findings indicated that the ClusterATAC clustering results have the potential oppor-

tunity to develop cancer therapeutics.

The 22-cluster solution of ClusterATAC reveals the critical role of regulatory elements in

non-coding regions for cancer classification. The input of the model is the ATAC peak score

of the non-coding loci so that each cluster can finally link to representative non-coding loci

and regulatory genes. Since most of the clusters link to a specific tumor type, we can indicate

that a significant number of genomic loci and regulatory genes are tumor-specific. For exam-

ple, C5 refers to thyroid cancer, whose representative locus is 8q24.2, and the regulatory gene

is TG. They are closely related to thyroid cancer since the corresponding protein of the TG

gene is produced by the thyroid gland. For another example, the representative region of C16

is 1q22, and its regulatory gene BCAN is essential in promoting the progression of glioma.

An essential component of ClusterATAC is Encoder-GAN, a model based on the generative

adversarial network. Recently, GAN architecture has become the most popular generation

model. To the best of our knowledge, ClusterATAC is the first to introduce GAN for the

modeling of ATAC-seq data. The GAN architecture has many extensions and improvements,

depending on the scenario of applications. Most GAN-based models focus on sampling from

random distributions and generating high-quality samples. These models combine the dis-

criminator with the generator and improve the quality of the generated data. In contrast,

Encoder-GAN introduces adversarial learning of the discriminator and the encoder and per-

forms a nonlinear representation of raw data accurately. At the same time, we downgrade the

decoder network structure and minimize the reconstruction error to maximize the description

of the encoder in the autoencoder architecture. These innovative network designs enhance the

representation ability of the approach.
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ClusterATAC has limitations. Currently, it only supports the clustering of single omics

data. Since most methods of molecular classification are based on the multi-omics data inte-

gration, to obtain more accurate clustering results, our future work is to collect somatic muta-

tion, gene expression, DNA methylation, protein expression, and other omics data, and

introduce GAN into integrative clustering analysis to expect more meaningful results.

Methods

Overview of ClusterATAC

The ClusterATAC framework took the genome-wide high-dimensional omics data as the

input and predicted the cluster labels of each sample across the 23 TCGA cancer types. The

first component of the ClusterATAC framework is Encoder-GAN, which reduces features to

low-dimensional space for running clustering algorithms. In deep learning, autoencoder is fre-

quently used for nonlinear dimensionality reduction in an unsupervised manner. Autoencoder

is composed of multiple coding layers (encoder) and decoding layers (decoder). The encoder

is corresponding to the learning of efficient nonlinear data representation. Similar to the PCA,

the encoder provides a low-dimensional representation of sophisticated features. The decoder

maps the low dimensional space to the original data space. The combination of Encoder and

Decoder completes the reconstruction of the data. We proposed Encoder-GAN as a Deep

architecture based on the WAE framework [59]. It accurately represented nonlinear high-

dimensional input features by solving the min-max problem between two adversarial net-

works. The second component of ClusterATAC is GMM-clustering, which uses the latent vari-

ables from the Encoder-GAN as the input. The probabilistic model is based on GMM and

focuses on discovering different patterns across different cancers. Based on the identified sub-

groups, we can also obtain the class labels corresponding to each sample.

Dimensionality reduction using Encoder-GAN

Encoder-GAN was developed based on autoencoder architecture. It made two improvements.

Firstly, since the goal is to learn the accurate representation of the raw data and then perform

robust cluster analysis, but not to reconstruct the raw data, the decoder of Encoder-GAN

responsible for data generation is simplified to the linear regression model. By downgrading

the decoder structure and minimizing the reconstruction error, the representation capability

of the encoder achieved maximum enhancement. Secondly, we introduced a discriminator to

the encoder of the network (different from the design of most GANs which enhance the ability

of the decoder). In the related research of GAN, the min-max game is usually between discrim-

inator and decoder to strengthen the decoder’s ability to generate samples from the random

distribution. However, since our model does not need the data generation, but aim to improve

the low-dimensional representation with the encoder, inspired by the idea of the WAE frame-

work, we lead a min-max game between discriminator and encoder. The role of the discrimi-

nator in Encoder-GAN is to distinguish whether the latent distribution matches the prior.

Encoder-GAN emphasizes that the latent variable’s distribution should close to the prior,

thereby improving the accuracy of the coding network.

The encoder takes the input signal of x and transfers them to the latent representation z. At

the same time, the decoder uses the input of z and transfer it to the reconstructed signal x’:

zeQðzjxÞ

x0eGðx0jzÞ
ð1Þ
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Where Q(z|x) is the density function of the encoder, and G(x’|z) is the decoder’s density

function. We used the squared loss LREC to minimize the Euclidean distance between x and x’

and enhance the representation performance of the encoder:

LREC ¼
1

n

Xn

i¼1

kx � x0k2

2
ð2Þ

Next, we structured the latent variable z and assumed that it follows to the prior distribution

P(z). Let D() be the discriminator function, z’ be the positive points that sampled from the P
(z), and z be the negative points from the output of encoder Q(z|x). The discriminator is

trained with encoder together to distinguish z and z’. We used the min-max game-based

adversarial training to update the parameters of encoder Q and discriminator D simulta-

neously:

min
Q

max
D

Ez0�PðzÞðlogðDðz
0ÞÞÞ þ Ez�QðzjxÞðlogð1 � DðzÞÞÞ ð3Þ

The discriminator D is learned to distinguish the samples from the prior distribution P(z)

and the encoder outputs from the posterior distribution Q(z|x). The encoder Q is learned to

make the encoded output as close as possible to the prior P(z). With the adversarial learning,

the performance of the encoder and the discriminator was improved. We used the loss func-

tions of the two networks to facilitate the solution using the gradient algorithm and combined

them as the loss function of the GAN. This training process aims to minimize adversarial loss:

LD ¼ � Ez0�PðzÞðlogðDðz0ÞÞÞ � Ez�QðzjxÞðlogð1 � DðzÞÞÞ

LG ¼ � Ez�QðzjxÞðlogðDðzÞÞÞ

LGAN ¼ LD þ LG

ð4Þ

Where LD is the loss of the discriminator, LG is the loss of the decoder, and LGAN is the loss

of the GAN. Next, the GAN process is combined with the reconstruction process:

LALL ¼ l1LGAN þ l2LREC ð5Þ

Where λ1 is the weight of LGAN, and λ2 is the weight of LREC. For each iteration of the train-

ing. The model parameters of the discriminator are updated based on LD by descending:

1

n

Xn

i¼1

l1ð� logDðziÞ � logð1 � Dðz0iÞÞÞ ð6Þ

Since the encoder network participates in the two modules: reconstruction and prior regu-

larization, we combined LGAN and LREC to update the model parameters of Q and G by

descending:

1

n

Xn

i¼1

ð� l1logDðz
0

iÞ þ l2kxi � Gðz0iÞk
2

2
Þ ð7Þ

The network structure of Q, G, and D are shown in S5 Table. During the model training

process, the three networks’ parameters are updated in turn until the model achieves converge

(S1 Text). After the model fitting is completed, we took all the ATAC-peak data as input and

used the encoder’s output as the input of the GMM clustering component.
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Clustering using Gaussian mixture model

We used the latent factors extracted from the Encoder-GAN as the input for the clustering com-

ponent of our framework. The clustering procedure is based on the Gaussian Mixture Model

(GMM). The model can be thought of as a generalized form of the k-means clustering. Relative to

the hard decision of the K-means, it supports to generate the probability that each patient belongs

to a different subgroup. Let H ¼ fhng
N
n¼1

be the input matrix of the latent space of the original

ATAC-peak data, where N is the number of samples. The model describes the latent space H

with a mixture of finite Gaussian distributions. For the patient with index n, the feature input for

the model is denoted as hn. Let M be the number of mixture components, and pi() be the density

function of the ith Gaussian distribution. The density function of the model takes the form:

pðhnÞ ¼
XM

i¼1

pipiðhnÞ ¼
XM

i¼1

piNðhnjμi;ΣiÞ ð8Þ

Where μ and S are the mean and covariance of the Gaussian distributions, π = (π1, π2,. . .,

πM) is the weight of the Gaussian component of the model. In the training process of the

model, the parameters θ ¼ fpi;μi;Σigi¼1;...;M need to be updated. We used the EM algorithm to

update the parameters with the training data (S2 Text). After the model training is completed,

the cluster labels of the samples can be predicted based on calculating the posterior probabili-

ties of the different clusters.

Compilation of the data set

We collected ATAC-seq data and RNA-seq data from the TCGA project. The ATAC-seq data

set includes 23 types of cancer of the TCGA Pan-Cancer Atlas[12] (ACC, BLCA, BRCA,

CESC, CHOL, COAD, ESCA, GBM, HNSC, KIRC, KIRP, LGG, LIHC, LUAD, LUSC, MESO,

PCPG, PRAD, SKCM, STAD, TGCT, THCA, UCEC). The RNA-seq data set includes all the

TCGA BRCA tumors. The clinical information (such as ‘vital status’, ‘days to death’, ‘days to

last followup’) are used to evaluate the clustering results. To analyze these results more com-

prehensively, we collected iCluster analysis results (28 clusters) and DensityPeakCluster results

(18 clusters) from previous studies [12,15].

Supporting information

S1 Fig. Summary of the training process of the Encoder-GAN Model. A) The change of the

discriminative loss and generative loss of GAN in each cluster during the training process. B)

The change of the Davis-Bouldin index during the training process.

(TIF)

S2 Fig. Heatmap of the correlation matrix of the ClusterATAC low-dimensional features

on the 1031 TCGA BRCA data set.

(TIF)

S3 Fig. Different patterns of ClusterATAC-clusters on the TCGA BRCA data set. (A)

Kaplan Meier survival plot showing that clusters significantly have different survival patterns.

(B) t-SNE visualization on the extracted 200 features from the model.

(TIF)

S4 Fig. Heatmap of the cluster residence shows the percent of ClusterATAC clusters

(C1~C22) that overlap with the density clusters of DensityPeakCluster (D1~D18).

(TIF)
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S5 Fig. Heatmap of the cluster residence shows the percent of each ClusterATAC-cluster

(C1~C22) that overlaps with each iCluster (I1~I28).

(TIF)

S1 Table. Benchmark results of the clustering methods on the ATAC-seq dataset.

(XLSX)

S2 Table. Performance comparison of ClusterATAC and other algorithms on the RNA-seq

dataset.

(XLSX)

S3 Table. Enrichment tests for the clinical features of ClusterATAC and other algorithms

on the RNA-seq dataset.

(XLSX)

S4 Table. The representative non-coding loci (chromosome, start, end) and their linked

genes of the 22 clusters.

(XLSX)

S5 Table. Deep architectures of ClusterATAC, autoencoder, and variational autoencoder.

(XLSX)

S1 Text. The model training of ClusterATAC.

(DOCX)

S2 Text. Details of the comparison of the clustering approaches.
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S3 Text. The implementation details of GMM and random forest.
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