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Abstract 
Spinal meningiomas (SM) are lesions with a mostly favorable oncological and surgical prognosis and a low inci-
dence of tumor recurrence. SM account for approximately 1.2–12.7% of all meningiomas and 25% of all spinal cord 
tumors. Typically, SM are located in the intradural extramedullary space. SM grow slowly and spread laterally into 
the subarachnoid space, stretching and sometimes incorporating the surrounding arachnoid but rarely the pia. 
Standard treatment is surgery with the primary aims of achieving complete tumor resection as well as improving 
and recovering neurologic function. Radiotherapy may be considered in case of tumor recurrence, for challenging 
surgical cases, and for patients with higher-grade lesions (World Health Organization grade 2 or 3); however, radi-
otherapy is mostly used as an adjuvant therapy for SM. New molecular and genetic profiling increases the under-
standing of SM and may uncover additional treatment options.
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Spinal meningiomas (SM) account for approximately 1.2–
12.7% of all meningiomas and 25% of all spinal cord tumors.1–5 
In 1938, Cushing and Eisenhardt performed the first surgical 
resection of a spinal meningioma and described it as “one of 
the most satisfying of all surgical procedures.” From a surgical 
and oncological perspective, SM are lesions with a mostly fa-
vorable prognosis. Primary surgical resection is the therapy of 
choice with a favorable outcome and with a lower incidence of 
tumor recurrence than intracranial meningiomas. Here, we re-
view the current knowledge of managing spinal meningiomas.

Epidemiology

Spinal intradural tumors have an incidence of 64 per 100,000 
person-years and account for 3% of primary tumors of the cen-
tral nervous system (CNS).6 Spinal intradural extramedullary 
tumors account for two-thirds of all spinal neoplasms. Spinal 
meningiomas (SM) are the second most common intradural 

spinal lesion after spinal schwannomas.7,8 SM are intradural 
extramedullary lesions that originate from meningothelial 
arachnoid membranes within the spinal dura mater.8 SM al-
most always adhere to the inner layer of the dura and are thus 
mainly located in the intradural compartment. SM generally 
respect the pial layer of the spinal cord, which can be used as 
an anatomical dissection plane during resection.9

SM can grow along anywhere along the neuraxis/spinal 
column but are predominantly observed in the thoracic (mid-
spine) region (67–84%), the cervical spine (14–27%), and—in 
rare cases—in the lumbar spine (2–14%).4,10–15 SM may de-
velop at any age, but the incidence increases with age and 
decreases after reaching a peak. Based on an analysis of the 
SEER database from 2004 to 2018, the peak age of benign SM 
is 80–84 years, 75–79 years for borderline SM, and 70–74 years 
for malignant SM.16

The age-adjusted incidence rate at the peak age of malig-
nant SM is less than 0.25/100 000, whereas the reported age-
adjusted incidence rate of supratentorial meningioma between 

Spinal meningiomas  

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 
For commercial re-use, please contact journals.permissions@oup.com

https://orcid.org/0000-0003-3894-5053
mailto:nils-ole.schmidt@ukr.de
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/


N
eu

ro-O
n

colog
y 

A
d

van
ces

i113Hohenberger et al.: Spinal meningiomas

70 and 74 years is higher than 0.4/100 000.16 The prevalence 
of intracranial and spinal meningiomas is higher in women 
with a female:male ratio of 3:1 to 4:1 for both sites.4,17 
Although a clinical series of SM in the 1980s had shown 
an even stronger female predominance in SM, this finding 
was never affirmed in other, more modern clinical series.17 
Nevertheless, there is ample evidence that meningiomas 
can express receptors for sex hormones such as androgen, 
estrogen, and progesterone. Furthermore, endogenous 
and exogenous hormone exposure may be linked to a 
higher risk of developing meningioma.18 However, there 
is no clear evidence that this aspect may be different for 
SM because the expression pattern of receptors of sex hor-
mones is similar to that of intracranial meningiomas.19

Neurofibromatosis 2 (NF2) is associated with the devel-
opment of meningioma.20 14% of all spinal tumors found in 
NF2 patients are meningiomas.21 Detection of a spinal me-
ningioma raises suspicion for NF2, particularly in younger 
patients, and when found in NF2 patients, tend to have a 
more aggressive course than in non-NF2 patients.22

Classification

The majority of SM are histopathologically benign and 
represent World Health Organization (WHO) grade 1 tu-
mors. Only a small percentage are atypical (WHO grade 
2) (5–25%) or anaplastic (WHO grade 3) meningiomas 
(1–5%).8,23 The histological subtypes of SM are sim-
ilar to those seen in cranial meningiomas.24 The most 
common histological subtypes of SM are WHO grade  1 
meningothelial, psammomatous, and transitional 
meningiomas. In general, these lesions are usually soli-
tary, well-delineated, not invading the spinal cord and do 
not normally metastasize to any other parts of the central 
nervous system (CNS) or the body.1,25,26 SM have lower re-
currence rates after surgical resection (between 1.3% and 
6.4%) than cranial meningiomas.23 In the past decade, 
the molecular characterization of meningiomas has in-
creased substantially, improving the original histological 
classification by integrating molecular data.27–29 Recently, 
a DNA methylation-based classification of intracranial 
meningiomas has been proposed to capture clinically 
more homogenous groups and to improve the power of 
predicting tumor recurrence and prognosis.30 For WHO 
grade 3 meningiomas, TERT promoter mutations or homo-
zygous deletions of CDKN2A and/or CDKN2B have been 
described as additional defining molecular alterations.31 
While this classification has increased the prediction of 
the clinical course of this tumor entity, the identification 
of molecular targets has not yet led to any meaningful 
novel therapeutic approaches. Most sporadic intracranial 
meningiomas exhibit frequent somatic mutations in NF2, 
TRAF7, KLF4, AKT1, SMO, and PIK3CA. Homozygous dele-
tion of the NF2 gene is found in up to 80% of nonfamilial 
meningiomas and in 100% of patients with NF2 and SM.20 
SM and intracranial meningiomas have historically been 
considered as the same entity, just developing at dif-
ferent anatomical sites. However, recent molecular data 
may change this paradigm because homozygous chromo-
some 22 deletions are more commonly detected in spinal 
meningiomas.32–34 In a microarray-based study of spinal 

and intracranial meningiomas, Sayagues and colleagues 
reported that in 86% of the spinal tumors versus 56% of 
the intracranial tumors, the detected ancestral tumor cell 
clone showed either absence of any chromosomal abnor-
mality or monosomy 22/22q alone.35 Other chromosomal 
aberrations reported in SM include loss of 1p, 9p, and 10q 
or gain of 5p and 17q but these were mostly detected in 
atypical or anaplastic meningiomas supporting the no-
tion that SM may be genetically more stable than intra-
cranial meningiomas36,37 In addition, other genes such as 
of the DUSP family, the NR4 family, CMKOR, and FOSL2 
have been identified to play a role in SM.32 SM were un-
derrepresented in the cohorts of previous molecular 
studies on meningioma, but a recent genome-wide DNA 
methylation analysis identified SM to be different from 
cranial meningiomas. The analysis showed that SM con-
sist of two major genetically and epigenetically distinct 
tumor groups.38 Targeted next-generation sequencing 
of frequently mutated genes in meningiomas identified 
two mutually exclusive molecular subtypes of SM WHO 1 
characterized by AKT1E17K or NF2 mutations.39 While NF2-
mutant tumors were strongly associated with female sex 
and most frequently occur at the dorsal thoracic spine, 
AKT1-mutant tumors occur in the cervical spine ventral 
to the spinal cord and are predominantly meningothelial. 
Smith et al. recently identified germline SMARCE1 muta-
tions to be associated with multiple spinal meningiomas 
and with a clear-cell histological subtype.40,41

Further studies are needed to establish the clinical im-
pact of a further refined classification of SM and to enable 
the development of targeted therapies for molecular sub-
groups of SM—if molecular key players can be identified.

Clinical Presentation and Diagnosis

The typical clinical presentation of SM consists of pain fol-
lowed by gait, sensory, and bowel or bladder dysfunction.2 
However, the clinical presentation of SM is often rather un-
specific and may be marked by chronic or acute spinal cord 
compression causing neurologic dysfunction and pro-
gressive myelopathy, depending on the tumor site. About 
50% of affected patients experience unspecific back pain, 
whereas radiating pain, motor deficits, and sensory loss 
often only progress very slowly.

In advanced stages of spinal cord compression, disso-
ciated long tract signs or in rare cases Brown-Séquard 
syndrome may occur. Many SM are asymptomatic for a 
long time because of their slow growth rate and become 
symptomatic when the spinal cord or nerve roots are com-
pressed to a critical level. Due to the “unspecific nature and 
indolent course of symptoms and signs may delay timely 
diagnosis.1,9,42,43

Spinal magnetic resonance imaging (MRI) represents 
the gold standard and has greatly improved preopera-
tive diagnosis and treatment.26 SM display a similar spec-
trum of MRI characteristics as cranial meningiomas.44–46 
MRI allows the assessment of the extent of involvement 
and compression of neural and neurovascular structures 
and the presence of myelopathy (Figure 1). The diagnostic 
work-up can be extended by computed tomography (CT) to 
assess any bony involvement, which is rather rare in SM as 
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compared to cranial meningiomas. Primary intraosseous 
meningioma of the spine is an exceptionally rare tumor en-
tity with only one case reported in the literature so far.47 
More importantly, CT provides information about the pres-
ence and extent of tumor calcification, which is a relevant 
factor to consider in surgical planning as calcified tumors 
can be more difficult to resect. Tumor texture can influence 
surgical morbidity and outcome as recently shown for in-
tracranial meningiomas.48 Based on imaging characteris-
tics and growth patterns, SM can usually be differentiated 
from other intradural extramedullary spinal cord lesions 
such as neurofibroma and schwannoma. Signal intensity 
ratio of the spinal tumor and fat on T2 weighted images is 
useful for differentiating schwannomas from meningiomas 
to obtain an accurate diagnosis.49 Furthermore, bony 
changes such as enlarged neural foramina or pedicle ero-
sion are suspicious for spinal nerve sheath tumors.

However, solitary fibrous tumors, as previously termed 
hemangiopericytoma, have a similar appearance on MRI, 
and differential diagnosis can only be established by a 
neuropathologist after surgical resection (Figure 2A,B). 
Intraoperatively, these very rare tumors may display higher 
vascularization and/or higher adherence or infiltration 
of surrounding neural structures that must be assessed 
during surgical resection to avoid surgical morbidity. More 
importantly, establishing the diagnosis of solitary fibrous 
tumors or hemangiopericytoma is highly relevant for pa-
tient management because adjuvant radiotherapy must 
be considered particularly in patients in whom gross total 
resection (GTR) cannot be achieved because these tumors 
have a significantly higher recurrence rate than SM.50

Indication for Treatment

SM are much rarer than intracranial meningiomas, but, 
in general, the same principles for therapeutic decisions 
apply.51 There is no evidence to suggest the growth dy-
namics of spinal meningiomas differ from the majority of 
intracranial meningiomas.52 Therefore, a potentially indo-
lent clinical course has to be considered when SM are inci-
dentally detected during neuroimaging. Nonsymptomatic 
and small SM may be managed with a wait-and-see 
strategy using annual MR imaging as recommended for 
meningiomas in general.51 However, given that the spinal 
canal is a narrow, confined anatomical compartment con-
taining the vulnerable spinal cord, any decision on an ob-
servational strategy has to consider that further growth 
may lead to compression of functionally relevant neural 
structures, and of course that the spinal canal is propor-
tionally much smaller than the cranial vault, therefore, 
a smaller amount of growth of a smaller meningioma in 
the spine, may cause more neurological morbidity than a 
meningioma of the same size in the cranium. Enlarging, 
untreated SM may result in serious neurologic deficits. 
Therefore, the primary treatment for most growing 
and symptomatic SM is surgical resection of the space-
occupying tumor; such surgical interventions have the po-
tential to be curative, are generally quite safe, and usually 
result in rapid functional recovery12–14 The decision on sur-
gery or observation should balance the benefit of tumor 
removal versus the risk of surgical morbidity and outcome 
on an individual basis including comorbidities and patient 
expectations.

Figure 1. Preoperative MR image showing a classic case of homogeneously enhancing cervical spinal meningioma in (A) sagittal and (B) axial 
T1 contrast-enhanced sequences and significant compression of the spinal cord.
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The occurrence of multiple SM is mostly associated 
with NF2.20 In such patients, treatment preferably by sur-
gery should be reserved for symptomatic or significantly 
growing SM and take into account the stage of disease and 
any previous treatment. Therapeutic strategies should be 
discussed in a multidisciplinary setting, particularly in case 
of patients with NF2.53

Surgical Therapy

Advances in the development of imaging and surgical tech-
niques (e.g. MR imaging, intraoperative neuromonitoring 
(IOM), intraoperative ultrasound, microsurgical tech-
niques, and surgical ultrasonic aspirator) have resulted in 
earlier diagnosis and in the ability to achieve GTR while 
preserving or even improving neurological dysfunction. 
Surgical resection is the first-line therapy for the treatment 
of symptomatic SM, with a GTR often leading to cure for 
most patients.

Furthermore, surgery allows the immediate relief of 
neurologic symptoms instead of primary radiotherapy or 
gamma knife which takes much longer to control tumor 
growth and shrink tumor, and the establishment of a histo-
pathological diagnosis. The surgical approach to resection 
of SM requires the dissection of the musculoligamentous 
structures of the spine. Various vertebral components 
must be removed to create a corridor to the intraspinal 
compartment. The cardinal principles of intraspinal tumor 
resection are to minimize the intraoperative risks of verte-
bral column deformity, and neurologic injury to the spinal 
cord.54 The optimal and safest surgical approach to SM 
resection normally depends on the site and extension of 
the tumor. In most dorsal and dorsolateral tumors, one- or 
two-level hemilaminectomy or laminectomy is adequate, 
allowing the surgeon to work in an adequate surgical cor-
ridor to achieve complete resection, even of anterior and 
anterolateral lesions.2,55 Raco et al. described the posterior 
approach as the gold standard in the majority of cases.2 

Figure 2. (A) Preoperative T2-MR image of an intradural space-occupying lesion at level L5, showing (B) homogenous contrast enhancement 
on T1-MR imaging. This lesion was a lumbal spinal solitary fibrous tumor, also termed hemangiopericytoma, WHO II, which reflects one of the 
possible differential diagnoses when a spinal meningioma is suspected in preoperative MR imaging. (C) The intraoperative ultrasound image con-
firmed the correct level and extent of surgical access before dural opening. (D) In contrast to most spinal meningiomas, this tumor showed a more 
reddish coloration during surgery, which is indicative of higher vascularization.
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However, some tumors located anterior or anterolateral 
to the spinal cord require a more lateral exposure, espe-
cially in case intradural lesions with extradural extension 
infiltrating the vertebral body or in case of massively cal-
cified lesions and recurrent tumors with spinal cord inva-
sion. As mentioned above, SM are typically classified as 
intradural extramedullary lesions, although 5–14% of SM 
may have an extradural component.10,11 In these cases, 
costotransversectomy or partial vertebrectomy may be 
required to improve exposure and allow safer tumor 
removal.46

In case of ventral extension or origin of the SM, removal 
of the articular process laterally may be useful to provide a 
corridor to the ventral spinal cord. In case of anterior or an-
terolateral cervical SM, an anterior cervical approach with 
corpectomy and grafting with fusion may provide an ideal 
corridor for tumor resection. With this approach, primary 
dural repair can be difficult and necessitate CSF drainage 
(CSF) using a intra- or postoperative lumbar drain.8 For 
lesions located in the lateral or anterior corridor between 
T3 and L2, a lateral extracavitary approach can be used to 
allow circumferential neural decompression with direct 
visualization and extrapleural or extravisceral dissection.56 
This approach may require posterior instrumentation with 
screws in the setting of extensive pedicle removal and dis-
ruption of the ipsilateral facet joint. In general, the neces-
sity of spinal fusion in the setting of SM surgery depends 
on the dimensions of the lesion, its site along the spinal 
axis, its position relative to the spinal cord, and the pres-
ence of extradural or vertebral column extension that de-
fines the extent of the surgical approach.54 Predictors of 
spinal instability after SM resection are well established 
and include multilevel laminectomy, disruption of the facet 
joints, and corpectomy.56–58 In women, SM most often 
occur in the posterior, posterolateral, or lateral thoracic 
region (80%) of the spine, followed by the anterior cervical 
region (15%), and least often in the lumbosacral region 
(5%).26 In men, 50% of SM occur in the thoracic region and 
40% in the cervical region.59 SM more often develop in the 
upper cervical region and foramen magnum than other 
tumors.26 With regard to the predisposed anterior or an-
terolateral development in the upper cervical region, SM 
may encase or surround but rarely infiltrate the vertebral 
artery.60

Another important aspect when planning surgical resec-
tion of thoracic SM is the fact that radiculomedullary ar-
teries (RMA) can be found at any thoracic vertebral level 
(ventral and posterior). RMA play an important role in 
spinal cord vascularization, and their preservation during 
surgery can be critical to functional outcome. RMA injury 
may constitute a significant pitfall during surgical pro-
cedures and may result in complete paraplegia. The best 
known RMA is the anterior radicular artery (Adamkiewicz 
artery).61

The gold standard for the surgical treatment of SM is 
complete tumor resection because it is a predictor of good 
prognosis with potential cure. The individual outcome de-
pends on the size and site of the tumor, its preoperative 
neurologic state, and the age and medical comorbidities 
of the patient.62 The Simpson grading classification is 
commonly used to define the extent of SM resection, al-
though the classification was originally established to 

describe the extent of tumor and dural resection of cranial 
meningiomas.37 According to the Simpson grading score, 
which is based on Simpson’s description of tumor recur-
rence of intracranial meningioma after incomplete surgical 
removal in 1957, Simpson grade I resection (representing 
complete tumor removal including the dural and arachnoid 
matrixes) is the most promising surgical approach to avoid 
tumor regrowth. However, Simpson grade I is rarely fea-
sible, especially in patients with anterior dural attachment 
because of the risk of damaging the spinal cord or the dif-
ficulty of dural repair after radical excision.62 Therefore, 
Simpson grade II (complete removal of exophytic tumor 
with coagulation of suspicious dural attachment) has been 
proposed as an acceptable option with a recurrence rate of 
1–8%.63

Many authors have suggested Simpson grade II re-
moval as the achievable standard.9 Consequently, in most 
published series, the dural attachment of SM is cauterized 
rather than resected because of the variable site of the 
dural attachment and the difficulty of repairing a dural de-
fect in the anterior and lateral corridor. Another technique 
for resecting the dural attachment is to separate the dura 
into its inner and outer leaflets and resect the inner layer 
containing the tumor attachment.8 However, it is not clear 
if this technique leads to a lower recurrence rate than a 
Simpson grade 2 resection.

Surgery for SM involves surgery involves a wide spec-
trum of technical procedures that bear the risk of dam-
aging the spinal cord, nerve roots, or main blood vessels. 
One of the most important surgical risks is postopera-
tive neurologic worsening, including, but not limited to, 
motor weakness, sensory loss, and bowel and bladder 
dysfunction. Even when relevant steps are taken to mit-
igate neurological damage, some risk remains. The intro-
duction of the surgical microscope in neurosurgery has 
made microsurgical resection of SM the standard of care. 
Neuronavigation for spinal cord tumors has not become 
as commonplace as it has for intracranial lesions, because 
the main use would be to localize spinal level, and this can 
be done with C-arm or O-arm preoperatively. However, 
the standardized use of intraoperative ultrasound can be a 
helpful adjunct in identifying and localizing meningiomas 
by providing information about the size, shape, and de-
gree of displacement of the spinal cord, thereby helping 
to intraoperatively optimize the surgical approach, espe-
cially to confirm the meningioma location after laminec-
tomy before opening the dura and whether additional 
bony removal is needed,8 (Figure 2C,D). A key element of 
successful surgical resection is minimizing manipulation 
and displacement of the spinal cord by using an exposure 
wide enough to safely and efficiently access the tumor 
and associated dural attachment8 (Figure 3).

IOM provides the opportunity to assess the functional 
integrity of susceptible neural elements during surgery. 
The domain of IOM is to provide information about the 
spinal cord or nerve root manipulation and resection as 
well as the preservation of preservation of motor and/or 
sensory function. IOM enables the continuous evaluation 
of the sensory and motor functions of the spinal cord by 
means of somatosensory-evoked potentials (SSEP), motor 
evoked-potentials (MEP), neurogenic motor-evoked poten-
tials (NMEP), D-waves (D-waves directly from the epidural 
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space are generated by the direct activation of the axons of 
fast-conducting fibers of the cortico-spinal tract). This con-
tinuous evaluation reduces the incidence of subsequent 
neurological complications after spinal surgery.9,64 Spinal 
surgery involves some additional and commonly used 
monitoring modalities, such as spontaneous and stimu-
lated electromyography, direct spinal cord stimulation, and 
reflex monitoring.65 Surgeons should choose the appro-
priate monitoring technique and take into account the in-
dividual findings and effects of anesthesia for each patient.

Surgical Outcome

As previously mentioned, surgical resection is first-line 
therapy for SM and generally considered a safe and effi-
cient procedure in experienced centers. The rate of com-
plete resection of SM mentioned in the literature range 
between 82% and 98%.9,23,66 It is important to emphasize 
that complete resection in SM includes Simpson grade I 
and II resection. Compared to intracranial meningiomas, 
resection of the dural attachment for spinal meningiomas 
is less radical and is not routinely performed for spinal 
meningiomas, with rates ranging from 14% and 58%.23,42

Generally, the recurrence rates of SM after neurosurgical 
resection are low, ranging between 1.3% and 6.4%; recur-
rence occurs within 1–17 years.10,11,67 SM generally have a 
more indolent clinical course, which is most likely due to 
the lack of genetic abnormalities often found in recurrent 
intracranial meningiomas.8,68 In addition, the slow growth 
rate and propensity of SM to present in older age also con-
tributes to the lower recurrence rate.8 Subtotal or partial 
resection has been implicated as a cofactor in tumor pro-
gression but subtotal removal does not necessarily lead 
to progression.69,70 Surgery on recurrent or reoperation on 
progressive SM is more challenging because of the pres-
ence of arachnoid scarring, making extensive resection 
difficult and increasing the risk of surgically morbidity. As 
with intracranial meningioma, atypical or anaplastic SM 
subtypes have been associated with increased recurrence.1

In the majority of patients who have undergone Simpson 
grade II resection, long-term follow-up can be achieved 
without developing recurrent SM at the same site. A series 
conducted by Cohen-Gadol et al. showed much higher recur-
rence rates in patients younger than 50 years because of a 

higher frequency of cervical SM, extradural tumor extension, 
and en plaque growth, all of which are barriers to complete 
resection and implicate more difficult primary surgery.71

Only a few of the published contemporary reports 
have consistently analyzed distinct functional neurolog-
ical performance and recovery after surgery in a large 
sample size with sufficiently long follow-up to detect true 
recurrence.72,73

The majority of patients have improved neurolog-
ical function after tumor removal. A large nationwide 
population-based study including 2844 patients with SM 
reported a rate of 86.8% of patients with good functional 
outcome and without any symptoms specific after three 
years of surgery. Multivariable logistic regression anal-
ysis defined older age at the time of surgery, a high level 
of comorbidities, and aggressive tumor pathology as risk 
factors for decreased functional outcome.72 This finding is 
in line with that of previous smaller case series showing 
a higher risk of mortality in patients of very advanced 
age with severe comorbidities.66 Prognostic factors in pa-
tients with motor deficits due to SM seem to include the 
site of the SM in relation to the spinal cord.73 Moreover, 
perioperative morbidity is mostly related to the extent of 
manipulation of the surrounding spinal cord structures. 
Temporary deterioration of neurological function usually 
does not last longer than 6 months otherwise, deficits are 
generally fixed or permanent.74 Even with the use of IOM, 
surgical resection is challenging and bears a risk of tran-
sient or permanent neurological deterioration.

However, IOM adds to the modern surgical armamen-
tarium of spinal surgery and improves outcome after 
SM resection.75 Many authors have reported rates of 
up to 19.5% for new neurological deficits or worsening 
of pre-existing neurological impairment, or both.9,76 
Sandalcioglu et al. found in their series of SM that higher 
age and complete calcification of the tumor (based on 
intraoperative findings) were risk factors for permanent 
neurological deterioration. Surprisingly and in contrast 
to other authors, Sandalcioglu et al. found no associa-
tion between the site of dural insertion, the extent of the 
tumor, or the degree of resection and postoperative neu-
rological deterioration.23

So far, few studies have examined quality of life and 
return to work (RTW) after surgical treatment of SM. 
Pettersson-Segerlind et al. showed that each of the working 

Figure 3. Intraoperative view of a large intradural cervical meningioma.
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patients in their study (n = 41/48.8%) had returned to work, 
most of them within three months. 96% of their patients 
would accept surgery for the same diagnosis again.77 In 
cranial meningiomas, quality of life and return to work have 
been extensively studied, for example by Sekely et al. who 
found that neurocognitive and psychological factors con-
tribute to the RTW status in patients with meningioma.78

Radiotherapy and Chemotherapy

Primary radiotherapy or radiosurgery for SM represent 
alternative treatment options to microsurgical resection 
and should be considered in patients with a high risk 
of surgery because of the tumor site or comorbidities.8 
Historically, radiosurgery of SM lacked the precision to 
safely deliver a large enough dose in the vicinity of the 
spinal cord. However, modern techniques have solved 
this problem. Accuracy of patient setup and planning and 
irradiation techniques have been improved dramatically. 
Nowadays patients are treated utilizing online image-
guided tracking systems using stereoscopic radiographs 
of the involved spine segment and compared with plan-
ning system generated digitally reconstructed radio-
graphs (e.g. CyberKnife system equipped with Xsight 
Spine tracking software of Accuray Inc. Sunnyvale CA) or 
using gantry-mounted cone beam CT scanner (e.g. Elekta 
Synergy S 6-MV linear accelerator with CBCT image guid-
ance). The Cone beam CT is performed in treating position 
before each treatment and compared software based with 
the planning CT-scan. The automatic calculated correction 
is implemented by a robotic couch (e.g. HexaPOD evo RT 
Couchtop) using six degrees of freedom for precise posi-
tioning with an accuracy less than 1 mm in all directions.79 
The development of intensity-modulated radiotherapy 
(IMRT) is a new method for delivering highly conformal 
radiation to tumors and used everywhere. IMRT allows 
conformal dose distribution in the tumor while simul-
taneous protection of risk structures such as the spinal 
cord even if the structures are adjacent.80 Response rates 
similar to those of cranial meningiomas have been re-
ported, but long-term data are still lacking.81,82 Primary 
radiosurgery is an evolving field and may be a safe and 
effective alternative to surgery in selected patients.83

Adjuvant radiotherapy should be considered fol-
lowing subtotal resection, for recurrent SM with higher 
risk of reoperation, or higher grade SM such as atypical 
or anaplastic tumors.8 A possible complication of radi-
otherapy is the development of delayed myelopathy. 
This complication needs to be considered because of 
the mostly benign course of most SM, as these patients 
have a long life expectancy.84 However, the incidence of 
radiation-induced complications is remains low, ranging 
below 5%.85

The role of adjuvant chemotherapy in SM is very lim-
ited, similar to that in cranial meningiomas. Many studies 
using different medical-based approaches were assessed 
for their effectiveness to inhibit or stabilize meningioma 
growth but failed to demonstrate any clinical benefits for 
the patients. Therefore, adjuvant chemotherapy is not part 
of the standard therapy for meningiomas, independent 
of the tumor site. In cases of recurrent SM, however, 

chemotherapeutic options need to be considered on an in-
dividual basis within an interdisciplinary setting. Graillon 
et al. summarized that despite a low level of evidence, 
some systemic therapies can be considered for patients 
with recurrent meningioma who are unsuitable for further 
surgery or radiotherapy.86 In recurrent high-grade menin-
gioma, everolimus-octreotide combination, bevacizumab, 
sunitinib, and peptide receptor radionuclide therapy ex-
hibit a signal of activity that may justify their clinical use. 
Despite a lack of clear signal of activity till date, immuno-
therapy may offer new perspectives in the treatment of 
these refractory tumors. Taking into account the rapidly 
evolving molecular classification of SM and the increasing 
pharmacological options in other oncological entities, a 
personalized therapeutic option may be established if an 
individual case-specific molecular analysis identifies a 
druggable molecular target.

Conclusion and Future Directions

SM are mostly benign, slow-growing lesions and repre-
sent the most common spinal tumors in adults. Primary 
treatment consists of surgical resection to remove the 
tumor completely. Multimodal IOM is significantly predic-
tive of postoperative deficits after the resection of spinal 
cord tumors.75 Most patients will benefit from improved 
neurological function after tumor resection. Rates of recur-
rence of SM after surgical resection are low, ranging be-
tween 1.3% and 6.4%.

Radiation therapy is an important adjuvant concept 
after subtotal resection and for grade 2 or grade 3 le-
sions. Modern concepts in molecular and genetic pro-
filing have the potential to improve prognostication 
and to enable adjuvant treatment of patients with re-
current SM or higher-grade lesions. However, whereas 
the genetic and molecular landscape of intracranial 
meningiomas is well characterized the differences to SM 
are not fully unraveled yet. Further studies are needed 
to clarify if recent and further advancements in the un-
derstanding of SM will be able to translate into a mean-
ingful clinical impact.
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