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Abstract
Background: Microarray techniques provide promising tools for cancer diagnosis using gene expression profiles. However, molecu-
lar diagnosis based on high-throughput platforms presents great challenges due to the overwhelming number of variables versus the 
small sample size and the complex nature of multi-type tumors. Support vector machines (SVMs) have shown superior performance in 
cancer classification due to their ability to handle high dimensional low sample size data. The multi-class SVM algorithm of Crammer 
and Singer provides a natural framework for multi-class learning. Despite its effective performance, the procedure utilizes all variables 
without selection. In this paper, we propose to improve the procedure by imposing shrinkage penalties in learning to enforce solution 
sparsity.
Results: The original multi-class SVM of Crammer and Singer is effective for multi-class classification but does not conduct variable 
selection. We improved the method by introducing soft-thresholding type penalties to incorporate variable selection into multi-class 
classification for high dimensional data. The new methods were applied to simulated data and two cancer gene expression data sets. 
The results demonstrate that the new methods can select a small number of genes for building accurate multi-class classification rules. 
Furthermore, the important genes selected by the methods overlap significantly, suggesting general agreement among different variable 
selection schemes.
Conclusions: High accuracy and sparsity make the new methods attractive for cancer diagnostics with gene expression data and defin-
ing targets of therapeutic intervention.
Availability: The source MATLAB code are available from http://math.arizona.edu/∼hzhang/software.html.
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classification

http://dx.doi.org/10.4137/CIN.S10212
http://www.la-press.com
http://www.la-press.com
http://www.la-press.com/cancer-informatics-journal-j10
http://www.la-press.com
mailto:lingkang.huang@gmail.com
http://math.arizona.edu/~hzhang/software.html


Huang et al

144	 Cancer Informatics 2013:12

Introduction
With the boost of modern techniques such as microar-
rays and next-generation sequencing in biological 
sciences, more and more high-throughput data are 
generated and utilized for basic science and for trans-
lational medicine. A typical gene expression data set 
contains tens or hundreds of thousands (p) input vari-
ables, which greatly exceeds the sample size n, i.e., 
p .. n. Many classical multivariate analysis methods 
have difficulties in handling such data because of the 
curse of dimensionality. However, the support vec-
tor machine (SVM),1,2 originally designed for binary 
classification, has shown success in learning large p 
small n data and is useful for cancer classification.3,4

Cancer classification using gene expression data 
often results in multi-class problems, classifying 
tumor cells to multiple subtypes. In previous studies, 
samples were defined as (xi, yi), i = 1, …, n, where 
xi is the gene expression profile of the ith sample and 
yi ∈ {1, …, K} is the cancer type. There are several 
methods available to extend the binary SVM (K = 2) 
to K  $  3. One common approach is to decom-
pose the multi-class problem into multiple binary 
problems,5,6 using one-versus-rest or one-versus-one 
schemes, and combine learned multiple binary rules 
by a voting method. These approaches are useful in 
practice but have some limitations. First, the one-
versus-rest approach may fail if no class dominates 
the union of the others.7 Second, the one-versus-rest 
approach tends to yield unbalanced classification 
problems, especially if one class is much smaller than 
the union of remaining classes. Third, the one-versus-
one approach trains each classifier based on only a 
portion of samples, which may increase the solution 
variablity. Fourth, these procedures do not effectively 
capture the correlation between different classes.8 For 
example, tumor sub-types are more correlated to each 
other than to normal samples.

A better method for handling multi-class prob-
lems is to separate all the classes by estimating 
K discriminating functions (f1(x), f2(x), …, fK(x)) 
simultaneously. The decision rule is then defined 
as Φ =(X)  arg (X)

k

K
k

f
=1

max , assigning the label r to 
an input x if fr(x) gives the highest value. Several 
generalized loss functions have been proposed for 
multi-class SVMs (MSVMs), including Weston 
and Watkins (1999),9 Crammer and Singer (2001),8 
Lee et  al. (2004),7 and Liu and Shen (2006).10 

Among those available, the loss function used by 
Crammer and Singer8 and Liu and Shen10 gives a 
natural extension of the hinge loss from binary to 
multi-class problems, which is our main focus in 
this paper.

Besides classification, another question of pri-
mary interest to biologists is to identify important 
genes for tumor classification. Since including too 
many redundant variables in a model may negatively 
impact its prediction performance,3 variable selec-
tion is important and necessary for accurate cancer 
classification. The redundant variables include both 
noise variables and variables which are highly corre-
lated with the predictor variables. Furthermore, build-
ing a sparse and more interpretable model can reduce 
the number of follow-up experiments to a manage-
able size. One common approach of variable selec-
tion is gene-ranking: first, rank genes using univariate 
measurements such as p-values from hypothesis tests 
or correlation coefficients between individual inputs 
and the response, then sequentially add/remove genes 
to/from the model, and finally select the model based 
on cross-validation or the validation error. Despite 
their popularity in practice, gene-ranking methods 
have some drawbacks. First, genes are pre-selected 
based on individual effects, so their combined effects 
cannot be taken into account. This can be an issue 
since many genes tend to be highly correlated. In 
addition, these procedures separate variable selection 
and classification in two stages, and hence selected 
variables are not guaranteed to contribute signifi-
cantly to the final classifier. This may result in subop-
timal performance of classification.

The standard SVMs are equipped with L2 penalty 
for regularization; see Guyon et  al. (2002)11 for the 
binary SVM and Lee et al. (2004)7 for the MSVM. 
Since L2 penalty shrinks the fitted coefficients towards 
zero, it effectively controls the model variability and 
improves prediction performance especially when 
many variables are highly correlated.3 However, L2 
penalty can not set small coefficients to exactly zeros, 
so all variables are utilized in the learned model. 
For the purpose of variable selection, Bradley and 
Mangasarian12 introduced L1 penalty to the binary 
SVM for achieving sparsity in the solution. By shrink-
ing small coefficients to exact zeros, L1 SVM can 
build a parsimonious model with more accuracy than 
the standard L2 SVM when many redundant variables 
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exist. A large p and small n data set can be directly fed 
into the L1 model without pre-screening.

In this paper, we consider variable selection 
for the multi-class SVM, which is more challeng-
ing than the binary case because of the increased 
complexity in multi-class learning. The work on the 
MSVM variable selection in literature is limited but 
includes Wang et  al. (2007),13 Lee et  al. (2006),14 
and Zhang et al. (2008).15 In particular, Wang et al.13 
studied the L1-norm MSVM and developed the solu-
tion path algorithm, while Zhang et  al.15 proposed 
a new penalty form, called the sup-norm penalty, 
which was shown to lead to more sparse models 
than L1 penalty. Lee et al.14 proposed to first make 
a functional ANOVA decomposition for the deci-
sion function and then conduct variable selection by 
imposing a soft-thresholding penalty on the func-
tional components. All of these methods are based 
on the loss function of Lee et al.7

In this work, we suggest several new variable 
selection procedures for MSVM based on the loss 
function of Crammer and Singer.8 Compared to 
other loss functions, this particular function provides 
a direct generalization of the hinge loss in binary 
SVMs and has a natural interpretation in terms of 
the functional margin. In practice, the resulting clas-
sifiers have shown competitive performance. We 
first considered linear classification problems. A 
group of regularization problems are proposed for 
sparse multi-class learning, and the computational 
algorithms are discussed as well. We then extended 
the methods to nonlinear cases. Our methods are 
particularly useful for analyzing large p and small 
n data, for example, high dimensional microarray 
or other “-omics” data. We applied the methods to 
two microarray data sets, acute leukemia study16 and 
small round blue cell tumors.17 The results suggest 
promising performance of the new methods in terms 
of accurately predicting the classes using a minimal 
number of genes.

Methods
Given a training set {(xi, yi), i  =  1, …, n}, where 
xi ∈ Rp and yi ∈ {1,2, …, K}, the goal of multiclass 
classification is to learn the optimal decision rule 
Φ : Rp → {1,2, …, K} which can accurately pre-
dict labels for future observations. For the MSVM, 
we need to learn multiple discriminant functions 

f(x) = (f1(x), …, fK(x)), where fk(x) represents the 
strength of evidence that a sample x belongs to class k. 
The decision rule is 

1, ,
 arg (X)max(X) K

kk K
f

= …
Φ = , and the 

classification boundary between any two classes k 
and l is {x : fk(x) = fl(x)} for k ≠ l.

When K = 2, the label y is coded as {+1, −1} by 
convention. Consider the linear classifier f(x) = β0 + 
xTβ. The binary SVM minimizes 2

1|| || n
i iλ ξ=∑β +  sub-

ject to the following constraint, depending on whether 
the data are separable:

Binary SVM
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In the binary SVM objective function, the term 
|| ||β β2 2

1= =∑ jj
p  controls the width of the margin, 

the quantity ξii
n
=∑ 1  is an upper bound for the mis-

classification error on the training set when data are 
non-separable and λ . 0 is the tuning parameter. 
Equivalently, the binary SVM can be formulated as a 
regularization problem using the hinge loss function 
as: min x +

+f 11
2−[ ]=∑ y fi ii

n ( ) || || .λ β
Crammer and Singer8 extended the hinge loss from 

the binary SVM to multi-class problems. In the sepa-
rable case, the discriminating functions are required 
to satisfy constraint (3) for all observations: if x 
belongs to class y, then fy(x) is greater than any fk(x) 
with k ≠ y by at least margin 1. In the non-separable 
case, ξi $ 0 are introduced to get the relaxed con-
straint (4):
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For linear classification, we assume fk(x) = βk0 + 
xTβk for k = 1, …, K. The MSVM of Crammer and 
Singer8 solves:

	
min || ||
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To avoid estimation redundancy, the constraint 
fkk

K ==∑ 01  is often invoked. In (5), ξii
n
=∑ 1  bounds 

the training error, and || ||β βkk
K

kjj
p

k
K2

1
2

11= ==∑ ∑∑=  
controls model complexity. The problem can be 
solved by quadratic programming (QP). As Liu and 
Shen10 shows, this formulation has a natural inter-
pretation of minimizing a generalized hinge loss 
[1 − mink≠y gk(f(x),y)]+, where gk = fy(x) − fk(x). The 
generalized function margin of f is defined as the vec-
tor g = (g1, … , gy−1, gy+1, …, gK).

Crammer and Singer8 imposed L2 penalty on the 
coefficients β in (5). The resulting solution utilizes all 
variables, which may diminish the prediction accu-
racy when there are many redundant noise variables. 
In the following sections, we utilize the same loss 
function but suggest different penalty forms to con-
trol model complexity and achieve sparse solutions. 
In particular, we investigate four different penalties: 
L1 penalty, adaptive L1 penalty, sup-norm penalty and 
adaptive sup-norm penalty, and discuss computational 
algorithms for each type of regularization.

L1 Penalty: The L1 penalty is also known as LASSO 
penalty.18 The MSVM learning with L1 penalty solves:
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To eliminate the absolute operation in (6), define 
| |β β β β β βkj kj kj kj kj kj= = −− −+ +and+ , where β βkj kj

+ =  
if βkj $ 0, or 0, otherwise; β βkj kj

− = −  if βkj # 0, or 0, 
otherwise. Then, the L1 MSVM can be expressed as 
the following linear programming (LP) equation:

min ( )

: ( )

, ,β β ξ
ξ λ β β

β β

0 111
i kj kj

j

p

k

K

i

n

yj yj ijx

+ ++

+

s.t.

−

===

−

∑∑∑

− −− − ≥ −

= = ≠

−

=
=

∑∑ ( )

, , ; , , ,

,

,

β β ξ

β

kj kj ij i
j

p

i
j

p

k

x

i n k K k y

+

for

1

1 1
1

1 … …

00
11

0 0 1

0 0 0

= − = =

≥ ≥ ≥ ∀

−

==
−

∑∑ ; ( ) , , ,

, , , ,

β β

β β ξ

kj kj
k

K

k

K

kj kj i

j p

k

+

+

…

jj i, . 	

(7)

Adaptive L1 Penalty: The adaptive L1 penalty, also 
known as the adaptive LASSO, was first studied in vari-
ous regression models.19–21 Instead of applying the same 
penalty to coefficients, the adaptive L1 penalty assigns 
different penalties to coefficients adaptively: large coef-
ficients receive small penalties, while small coefficients 
receive large penalties. In this way, large coefficients 
can be protectively preserved during the selection pro-
cess and small coefficients are decreased to zero more, 
resulting more sparse models. We propose the adap-
tive L1 MSVM by solving the following optimization 
problem:
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Choices of weights in (8) are essential to adap-
tive procedures. We propose the construction of 
weights as Wkj kj= −| |β 1 , where ’skjβ  are the solu-
tion to the standard L2 MSVM (5), as the ridge pen-
alty generally produces stable and robust estimates 
even when collinearity exists among covariates. 
The optimization problem of adaptive L1 MSVM 
has the same constraints as L1 MSVM, with the 
objective function (7) replaced by the following 
function:
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Sup-norm Penalty: In K-class learning problems, 
we need to fit K functions (f1(x), …, fK(x)). These 
functions are associated with a K  × p coefficients 
matrix (βkj), 1 # k # K, 1 # j # p. In theory, if the jth 
variable is unimportant, then all the coefficients {βkj, 
k = 1, …, K} should be zero. Motivated by this, Zhang 
et al.15 suggested to penalize the maximum absolute 
value of K coefficients associated with each variable, 
i.e., 1, ,

max | |j kjk K
η β

=
=

…
 for j = 1, …, p. It is clear that if 

ˆ 0jη = , then ˆ 0kjβ =  for all 1 # k # K. We propose 
to solve:
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Adaptive Sup-norm Penalty: The adaptive 
sup-norm penalty shares the same motivation as 
the adaptive L1 penalty: important variables are 
given small penalties and noise variables are given 
large penalties. In particular, we replace the sec-
ond term in (10) by λ ηwj jj

p
=∑ 1 . To Construct the 

weights, we propose to use wj j= −η 1  for all j, where 
1, ,

max | | and ’sη β β
=

=
…

 
j kj kjk K

 are the solution to L2 
MSVM (5). If η j  is large, then wj is small and ηj is 
given a small penalty and vice-versa. The resulting 
optimization problem has the same constraints as 
the sup-norm MSVM, with the objective function 
in (10) replaced as the following: 

	
min .
, ,β β ξ

ξ λ
η
η0 11
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j

jj
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Nonlinear extension
We have given four new regularization forms of 
MSVM for variable selection in linear classifica-
tion. Next, we show that these methods can be easily 
extended to the non-linear case by using the basis 
expansion approach. Let h(x) =  {h1(x), h2(x), …, 
hq(x)} be a dictionary of basis functions trans-
formed from x. We construct the decision function 
as f hk k k j kjj

q( ) ( ( ))x x= + =∑β β0 1 , which is linear in 
the transformed space but nonlinear in terms of the 
original x. The new design matrix is H = (hk(xi))n×q. 
For implementation, we simply treat hi = (h(xi))1×q 
as xi and replace xij with hij in the above four reg-
ularization forms. With this approach, note that 
variable selection is conducted for the transformed 
features {h1(x), h2(x), …, hq(x)}. Therefore, we 
suggest to use the nonlinear transformations 

which are interpretable, such as the polynomial 
transformation.

Model tuning
The choice of tuning parameter λ is crucial in the 
above regularization problems, since it controls the 
trade-off between the training error and generaliza-
tion performance of classifiers. It also has an impact 
on sparsity of the solution. To select the optimal λ, 
we use a validation set in simulated examples and use 
five-fold cross validation in real data analysis. A fine 
grid search is conducted over a wide range of values 
of λ, and the best λ is identified as the one which 
gives the least tuning error or cross validation error.

Results and Discussion
Simulation study
We illustrate the performance of new methods for pre-
diction and variable selection in both linear and non-
linear settings using simulated data sets. The Bayes 
rule and L2 MSVM of Crammer and Singer8 (denoted 
as “L2 MSVM (C&S)”) are also included. The Bayes 
rule is the optimal classification rule if the underly-
ing distribution of the data is known. It serves as the 
golden standard to evaluate the performance of the 
trained classifiers. We conducted 100 simulations for 
each classification method and report the average per-
formance of the methods, including test error on test 
samples, model size, and the total selection frequency 
of individual inputs in 100 runs.

Linear example
This is a linear classification problem with p  =  20 
and k  =  4. The first two components of x from 
class k are from N(µk, σ 

2I2), with µ’s values being 
( , ), ( , ), ( , ), ( , )2 3 3 2 2 3 3 2− − − − . Here 
σ = 2 and I2 is the identity matrix of size 2. Thus, 
the x1 and x2 marginally both follow a mixture of normal 
distributions with E(xi) = 0 and Var(xi) = 4.5, i = 1,2. The 
rest of the 18 components of x are i.i.d. from N(0, 1). 
To introduce some informative but redundant vari-
ables, two new variables ′ ′x x3 4and , which are highly 
correlated with x1 and x2, were generated to replace the 
noise variables x3 and x4. Let correlation parameters 
ρ1 = 0.8 and ρ2 = 0.9, ′ + −x x x3 1 1 1

2
34 5 1= ρ ρ* / . ( ) *  

and ′ + −x x x
4 2 2 2

2
44 5 1= ρ ρ* / . ( )* . So, only x1 and 

x2 are important; the ′x3  and ′x4  are two variables 
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highly correlated with x1 and x2; x5∼x20 are noise vari-
ables. Two hundred training and 200 tuning samples, 
with equal samples from each class, were generated 
to learn and tune the model. 40,000 test samples were 
generated to evaluate the model performance.

Table 1 reports the selection frequency of each 
variable over 100 runs. Important variables x1 and x2 
are never missed by any method. The rest of the vari-
ables, either noise variables or informative but redun-
dant variables, are selected with different frequencies 
by different methods. The adaptive sup-norm MSVM 
selects noise or informative but redundant vari-
ables with fewer than 10 times in 100 runs, which 
is a much lower selection frequency than that of L1 
MSVM. Furthermore, all methods except L2 MSVM 
can handle informative but redundant variables very 
well. The ′x3  and ′x4 , which are correlated to impor-
tant variables x1 and x2 with ρ1 = 0.8 and ρ2 = 0.9, are 
selected fewer than 15 times in 100 runs using any 
of four proposed methods, which is fewer most noise 
variables.

Table 2 summarizes the average test error and 
model size of 100 runs. The numbers in the parenthe-
ses are standard errors (SE) of the mean of test errors 
from 100 simulations. The Bayes error (i.e., the opti-
mum classification error) is 0.246 and L2 MSVM has 
test error 0.296. All new methods are statistically bet-
ter than L2 MSVM, with adaptive sup-norm MSVM 
giving the smallest test error 0.255. Adaptive penalties 
tend to enhance model sparsity, and the adaptive sup-
norm yields the most compact model of size 3.25 on 
average. Overall, adaptive sup-norm MSVM is the best 
for both variable selection and prediction accuracy.

Nonlinear example
Consider a nonlinear three-class example in a large p 
small n setting. Generate x ∈ R20 as following: (x1, x2) 
are uniformly distributed in the square [−3,3] × [−3,3], 
and the remaining 18 components x3, …, x20 are i.i.d. 
from N(0, 2). Define the three functions:
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Table 2. Average test error and model size for the linear example.

Method Test error  
(SE)

Selected variables Model 
sizeImportant  

2 var.
Noise or informative  
but redundant 18 var.

L2 MSVM (C&S) 0.296 (1.4 × 10-3) 2 18 20
L1 MSVM 0.263 (1.4 × 10-3) 2 4.16 6.16
Adapt-L1 MSVM 0.262 (1.0 × 10-3) 2 2.08 4.08
Sup MSVM 0.258 (1.2 × 10-3) 2 2.49 4.49
Adapt-Sup MSVM 0.255 (6.1 × 10-4) 2 1.25 3.25
Bayes 0.246 (-) 2 0 2

Thus, the classification boundary is nonlinear and 
determined only by x1, x1

2  and x2
2. We fit the non-

linear MSVM by including 20 main effects, all qua-
dratic effects and their 2-way interaction effects as 
basis functions, which results in totally P = 230 terms 
in the model. Let n = 120, thus, p . n. Additional 120 
tuning samples were generated for tuning the optimal 
λ and 30,000 test samples were generated to evaluate 
the model performance.

Table 3 reports the average test error and model 
size over 100 runs for each method. Note that L1 
MSVM and sup-norm MSVM are equivalent for 
three-class problems.15 The Bayes error is 0.120, L2 
MSVM has the test error 0.441, and all the new meth-
ods show a significant improvement over L2 MSVM. 
Adaptive sup-norm MSVM gives the smallest error 
0.147, very close to the Bayes error. L2 MSVM does 
not perform well here, mainly due to a large number 
of noise variables contained in data. With regard to 
variable selection, L2 MSVM includes almost all vari-
ables in the fitted model, and the average model size 
is 221.87. The new MSVMs produce much smaller 
models while identifying the three important vari-
ables correctly. Adaptive sup-norm MSVM yields the 
most parsimonious model of size 8.58 on average. 
Adaptive L1 MSVM works similarly, with test error 

Table 3. Average test error and model size for the nonlinear example.

Method Test error 
(SE)

Selected variables Model 
sizeImportant 

3 var.
Noise 
227 var.

L2 MSVM (C&S) 0.441 (2.1 × 10-3) 3 218.87 221.87
L1/Sup MSVM 0.160 (2.4 × 10-3) 3 18.34 21.34
Adapt-L1 MSVM 0.152 (2.1 × 10-3) 2.98 6.08 9.06
Adapt-Sup MSVM 0.147 (1.9 × 10-3) 3 5.58 8.58
Bayes 0.120 (-) 3 0 3

0.152 and on average, selecting nine variables. Again, 
adaptively-weighted penalties are shown to produce 
more sparsity than equally-weighted penalties.

Table 4 summarizes the selection frequency of 
each term in the adaptive sup-norm MSVM model: 
those of main effects given in the first row, those of 
quadratic terms given on the main diagonal line, and 
those of 190 two-way interaction terms given in inter-
sections of the corresponding rows and columns. We 
observe that the three important effects ( , , )x x x1 1

2
2
2  are 

always selected, and noise variables are selected with 
a low frequency (fewer than 10 times in 100 runs).

Real data
One important application of our new methods is 
classification and variable selection of microarray 
or other “-omics” data. We analyze two cancer gene 
expression data sets: leukemia data16 and small round 
blue cell tumor data.17 In addition to distinguishing 
multi-type tumors, another primary goal is to iden-
tify signature genes which are responsible for classi-
fication and helpful for understanding the underlying 
mechanism of cancer. Since microarray data typi-
cally represent a large number of genes (p  ..  n), 
one common practice is selecting relevant genes 
before building a classifier. A popular approach of 

http://www.la-press.com


Huang et al

150	 Cancer Informatics 2013:12

Table 4. The variable selection frequencies of adaptive sup-norm MSVM over 100 runs for the nonlinear example.

List x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

100 1 0 2 0 3 0 1 0 0 1 0 2 2 2 0 1 0 0 1

x1 100 . . . . . . . . . . . . . . . . . . .
x2 9 100 . . . . . . . . . . . . . . . . . .
x3 0 5 6 . . . . . . . . . . . . . . . . .
x4 1 4 3 8 . . . . . . . . . . . . . . . .
x5 4 3 3 1 4 . . . . . . . . . . . . . . .
x6 1 1 1 2 1 7 . . . . . . . . . . . . . .
x7 3 1 1 4 2 3 5 . . . . . . . . . . . . .
x8 3 4 5 2 2 0 0 5 . . . . . . . . . . . .
x9 2 6 2 2 1 2 2 2 6 . . . . . . . . . . .
x10 1 4 4 2 4 2 1 3 2 7 . . . . . . . . . .
x11 1 8 1 4 2 2 1 4 1 1 7 . . . . . . . . .
x12 2 3 3 1 3 0 4 2 2 2 1 9 . . . . . . . .
x13 2 5 2 0 3 2 2 4 2 3 0 4 9 . . . . . . .
x14 2 3 3 2 1 5 1 4 1 4 3 3 3 5 . . . . . .
x15 2 2 3 0 6 3 1 4 3 3 3 1 2 1 5 . . . . .
x16 0 6 0 5 4 2 0 4 2 4 0 2 4 0 3 4 . . . .
x17 1 5 0 2 1 4 2 2 2 1 3 1 1 1 3 2 4 . . .
x18 0 4 3 2 1 0 2 3 2 2 4 3 3 1 2 0 2 4 . .
x19 0 4 3 4 6 3 3 0 1 3 1 2 2 3 0 1 3 2 9 .
x20 1 3 2 4 3 1 3 3 3 0 0 0 3 1 2 0 2 1 1 6

gene selection is gene ranking based on univariate 
statistics such as F-statistic and p-value. The weak-
nesses of ranking methods include: (1) classification 
and variable selection are performed separately and 
(2) the correlation and interaction among genes can-
not be fully taken into account. However, rank-based 
screening has been found useful at an initial step by 
filtering irrelevant features and therefore beneficial to 
the refined variable selection process that follows, as 
in Lee et  al.,7 Wang and Shen,13 Zhang et  al.,15 and 
so on. Pre-screening is commonly used in microarray 
data analysis to remove genes which do not contrib-
ute expression changes across the samples (i.e., those 
that are considered flat), as uninformative genes add 
noise to the downstream analysis. In practice, it is rec-
ommended to conduct two-stage modeling: feature 
screening (based on simple tests) followed by formal 
model building (based on more sophisticated variable 
selection procedures) to enhance the final variable 
selection results. We adopted the two-stage modeling 
in our real data analysis. Compared to univariate anal-
ysis done in most gene-ranking approaches, our new 
classification methods conduct joint selection and 
can account for gene-gene interactions naturally. The 
following results show that the methods effectively 
select important genes and achieve high accuracy at 

the same time. Therefore, they provide alternative 
promising tools for cancer classification using gene 
expression data.

Leukemia study
The leukemia study16 analyzed human bone marrow 
samples using oligonucleotide microarrays produced 
by Affymetrix. The data consist of 7129 probe sets, 
which represent 6817 human genes and 72 samples in 
three classes: acute myeloid leukemia (AML), T-cell, 
and B-cell acute lymphoblastic leukemia (ALL−T and 
ALL−B). There are 38 training samples (19 ALL−B, 
8 ALL−T, 11 AML) and 34 test samples (19 ALL−B, 
1 ALL−T, 14 AML). We preprocessed the data fol-
lowing Dudiot et al.22 and selected the subset of 742 
genes by F-ratio test for memory and computational 
efficiency. Then, L2 MSVM and four new approaches 
were applied for gene selection as well as model 
building. Variable selection and parameter choice 
during model building were done strictly on the train-
ing data set.

Table 5 shows that L2 MSVM only misclassifies 1 
out of 34 test samples, but its solution depends on a 
large number of genes (429 genes). In contrast, our 
new methods select a very small set of genes (14, 
9, 4 genes for L1 MSVM, adaptive L1 MSVM, and 
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Table 5. Classification and selection results for the 
leukemia study.

Method Test error No. of genes
L2 MSVM (C&S) 1/34 429
L1/Sup MSVM 2/34 14
Adapt-L1 MSVM 3/34 9
Adapt-Sup MSVM 3/34 4

Table 6. Selected genes by various methods for the leukemia study.

Probe set ID Adapt-sup Adapt-L1 L1/Sup Rank of F-test Gene name/description
X00437_s_at 1 1 1 1 TCRB (T-cell receptor, beta cluster)
X76223_s_at 1 1 1 3 MAL gene
M27891_at 1 1 1 12 CST3 (Cystatin C)
X82240_rna1_at 1 1 1 19 TCL1 (T-cell leukemia/lymphoma)
X59871_at – 1 1 8 TCF7 (Transcription factor 7; T-cell specific)
M11722_at – 1 1 157 Terminal transferase mRNA
U89922_s_at – 1 1 324 LTB (Lymphotoxin-beta)
Z14982_rna1_at – 1 1 527 MHC-encoded proteasome subunit gene

LAMP 7-E1 gene
M21624_at – 1 – 462 TCRD (T-cell receptor, delta)
U05259_rna1_at – – 1 10 MB-1 gene
X58529_at – – 1 27 IGHM Immunoglobulin mu
M74719_at – – 1 46 SEF2-1A mRNA, 5′ end
Y00787_s_at – – 1 58 Interleukin-8 precursor
M19507_at – – 1 112 MPO (Myeloperoxidase)
U01317_cds4_at – – 1 390 Delta-globin gene

adaptive sup-norm MSVM respectively) while giving 
comparable accuracy. Table 6 shows a significant 
overlap in the selection: all four genes selected by 
adaptive sup-norm MSVM are also selected by oth-
ers, and 8 of 9 genes selected by adaptive L1 MSVM 
are selected by L1 MSVM. Not all these genes are 
top-ranked by F-test, which does not take into account 
gene interactions.

To interpret the role of selected genes in classifi-
cation, we now examine the three discriminant func-
tions given by adaptive sup-norm MSVM:

	

ALL_B

ALL_T

AML

ˆ = 0.037*TCRB 0.330*MAL
0.640*CST3 0.091*TCL1,

ˆ = 0.162*TCRB 0.450*MAL,
ˆ = 0.124*TCRB 0.121*MAL

0.640*CST3 0.091*TCL1.

− −
− +

+
− −
+ −

f

f
f

Each test sample has three predicted decision 
values ALL_B ALL_T AML

ˆ ˆ ˆ( , , )f f f  and assigned to a class 

with the largest value. T-cell receptor, beta cluster 
(TCRB), and MAL genes have positive coefficients in 

ALL_Tf̂  and negative coefficients in ALL_B AML
ˆ ˆandf f , 

and are useful to separate ALL−T from the other two 
classes. This pattern is also confirmed by Figure 1, 
which illustrates the hierarchical clustering structure 
of the data corresponding to the four selected probe 
sets (i.e., four genes). TCRB (X00437−s−at) and MAL 
(X76223−s−at) have high expression values (in red) for 
most ALL−T samples and low expression (in green) 
for most of the ALL−B and AML samples. The rele-
vance of the MAL gene with T-cell ALL was reported 
in the literature. For example, the MAL gene shows 
significant higher expression level in acute T-cell leu-
kemia/lymphoma than in chronic T-cell leukemia.23 
Gene Cystatin C (CST3) is helpful in distinguish-
ing all three classes, since its coefficient is zero in 

ALL_Tf̂ , is negative in ALL_Bf̂ , and is positive in AMLf̂ . 
Correspondingly, gene CST3 (M27891−at) has low 
values in most ALL−B samples but high values in most 
AML samples in Figure 1. CST3 is one of the genes 
reported by Golub,16 which can differentiate the ALL 
vs. AML. Gene T-cell leukemia/lymphoma 1 (TCL1; 
X82240−rna1−at) reveals the opposite patterns, which 
has high values in most ALL−B samples but low val-
ues in most AML and ALL−T samples (Fig. 1). It is 
reported that TCL1 shows significant higher expres-
sion during pre-B-cell acute lymphoblastic leukemia 
progression.24 All four genes have been individually 
or jointly identified as one of the predictor genes to 
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differentiate between AML and ALL or among AML, 
ALL−T and ALL−B in the leukemia study using vari-
ous analysis methods.25–29 In particular, a penalized 
likelihood method,29 called structured polychotomous 
machine, selected the exactly same four genes with 
the same prediction accuracy obtained in this study.

Small Round Blue Cell Tumor (SRBCT) study
The SRBCT data are from cDNA microarrays using 
standard protocols of the National Human Genome 
Research Institute (NHGRI).17 There are 63 train-
ing and 20 test samples, categorized into 4 classes: 
neuroblastoma (NB), rhabdomyosarcoma (RMS), 
non-Hodgkin lymphoma (NHL), and the Ewing fam-
ily of tumors (EWS). We began with 2308 genes 
available at http://research.nhgri.nih.gov/microarray/
Supplement/, and conducted gene screening with 
F-ratio tests. We include the top 333 and bottom 
300 genes for analysis and show results in Table 7. 
Variable selection and parameter choice during model 
building were done strictly on the training data set.

We observe that all the new methods have test 
error 0 except L1-norm SVM, which misclassifies 1 
out of 20 test samples. With regard to gene selection, 
all the new methods successfully exclude the bot-
tom 300 genes from the final model. The number of 
selected genes ranges between 28–36, with adaptive 

sup-norm MSVM selecting the smallest number of 
genes. Compared to other MSVM methods applied 
by Lee et al.14 and Zhang et al.15 on the same data set, 
our new methods give better or comparable predic-
tion accuracy overall and they select a smaller number 
of genes. When examining the genes selected by the 
four new methods, we observe a large overlap across 
the final lists. In particular, 10 genes are commonly 
selected by all four methods, and 13 genes are selected 
by three methods, demonstrating general agreement 
among different variable selection schemes.

Conclusions
We proposed to improve the standard MSVM of 
Crammer and Singer8 by constructing a new class 
of regularization methods which incorporates vari-
able selection in the model learning. Performance 
of the new methods is demonstrated via numerical 
studies. Compared to the standard L2 MSVM, the 
new methods are shown to achieve high prediction 
accuracy and are able to build sparse and more inter-
pretable models. In both simulations and real data 
analyses, adaptive sup-norm MSVM shows the best 
performance among all the methods with regard to 
either variable selection or prediction accuracy. The 
combination of high accuracy and effective selec-
tion makes the new methods attractive for high-
dimensional data analysis and powerful tools for 
cancer biomarker discovery based on gene expres-
sion data.
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Figure 1. Hierarchical clustering of all training and test samples based on 4 selected genes in leukemia study.
Notes: All samples, including 38 training and 34 test samples, are plotted. Each column represents a sample from one of classes: AML, ALL_T or ALL_B. 
Each row represents the expression profile of a gene (labeled as a probe set ID) across all samples. The color scale ranges from green for an expression 
value less than the mean to red for an expression value greater than the mean. The hierarchical clustering result is generated using the public software 
Cluster (http://rana.lbl.gov/EisenSoftware.htm) and viewed by the Java TreeView (http://jtreeview.sourceforge.net/). The hierarchical clustering used Pear-
son correlation for gene similarity metric and average-linkage algorithm for clustering correlation matrixes.

Table 7. Classification and selection results for the 
SRBCT study.

Method Test 
error

Selected genes
Top 
333 genes

Bottom 
300 genes

L2 MSVM (C&S) 0/20 194 124
L1 MSVM 1/20 31 0
Sup MSVM 0/20 36 0
Adapt-L1 MSVM 0/20 31 0
Adapt-Sup MSVM 0/20 28 0
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