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Abstract: As the stress–strain curve of standardized metal samples provides the basic details about
mechanical properties of structural materials, the polarization curve or current–voltage characteristics
of fuel cells are vitally important to explore the scientific mechanism of various solid oxide cells
aiming at low operational temperatures (below 600 ◦C), ranging from protonic conductor ceramic
cells (PCFC) to emerging Semiconductor ionic fuel cell (SIFC)/Semiconductor membrane fuel cells
(SMFC). Thus far, worldwide efforts to achieve higher nominal peak power density (PPD) at a low
operational temperature of over 0.1 s/cm ionic conductivity of electrolyte and super catalyst electrode
is the key challenge for SIFCs. Thus, we illustrate an alternative approach to the present PPD concept
and current–voltage characteristic. Case studies reveal that the holy grail of 1 W/cm2 from journal
publications is expected to be reconsidered and normalized, since partial cells may still remain in
a transient state (TS) to some extent, which means that they are unable to fulfill the prerequisite
of a steady state (SS) characteristic of polarization curve measurement. Depending on the testing
parameters, the reported PPD value can arbitrarily exist between higher transient power density
(TPD) and lower stable power density (SPD). Herein, a standardized procedure has been proposed
by modifying a quasi-steady state (QSS) characterization based on stabilized cell and time-prolonged
measurements of common I–V plots. The present study indicates, when compared with steady state
value, that QSS power density itself still provides a better approximation for the real performance of
fuel cells, and concurrently recalls a novel paradigm transformation from a transient to steady state
perspective in the oxide solid fuel cell community.

Keywords: standardized procedure; transient state power; quasi-steady-state performance; semicon-
ductor ionic fuel cell; semiconductor membrane fuel cell

1. Introduction

Searching oxide ion-conducting oxide materials with a low operating temperature of
the solid oxide fuel cell (SOFC) has become the mainstream approach, owing to economic
and technical demands [1]. Over the past decade, scientific and engineering efforts have
been facilitated by the development of electrolytes with >0.1 s/cm ionic conductivity
and a super catalyst electrode, together with new cell structure and improved fabrication
techniques for the commercialization of low-temperature SOFCs [2]. Until now, remarkable
achievements have been demonstrated at low operational temperatures of constructed
cells, wherein a peak power density of 1700 mW/cm2 at 650 ◦C [3] has been observed in
the lab-scale cell under hydrogen fuel (H2), as well the oxidizing atmosphere (air) of carbon
dioxide/oxygen mixture gas. Moreover, a giant power output of about 2 W/cm2 with reliable
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durability measurements at 550 ◦C were able to be achieved in the constructed fuel cell device
because of advanced nano-engineering cathode materials [4,5]. For commercialization, cell
stacks as a product on doped ceria GDC was well demonstrated in the recent SOFC Market,
exhibiting a reliable fuel cell performance of 0.2%/1000 h degradation below 600 ◦C [6].

As reported in SOFC literature, a large quantity of recorded nominal peak power
density (PPD) has been achieved (200–1000 mW/cm2) below 600 ◦C in SOFC [7,8]. More-
over, semiconductor ionic fuel cell (SIFC)/semiconductor membrane fuel Cells (SMFC),
exhibit the super-fast ion transportation through the surface/interface and heterostruc-
ture based semiconducting oxide materials constructed as an electrolyte functional layer
(EFL). In addition, the energy band offsetting and electron-ion coupling effect between ion-
conductor/semiconductors contribute to attaining feasible electro-chemical catalytic activ-
ity and low polarization resistance in the fuel cell environment. The achieved power output
from the various SIFC/SMFCs mechanism is rather diverse, but the general trend is that the
reported PPD of cells can be increased at lower operating temperatures. Xia Chen et al. re-
ported BCFZY-ZnO system, which exhibits an excellent PPD of 643 mW/cm2 at 500 ◦C [9];
likewise, the heterostructure of LCP-ZnO also displays 864 mW/cm2 at 550 ◦C [10]. In
SOFCs, the electron leakage and durability measurement of semiconductor materials are
still main concerns.

In SOFC, the maximum/peak power density (MPD/PPD) of constructed cells can
be acquired directly from the polarization curve (also known as current–voltage plot).
Hence, the I–V scanning in potentiostatic or galvanostatic mode constitutes the basic
characterization technique to explore the potential of new materials and cell structure
design. Similarly, as the stress–strain curve of the standard samples was employed to reflect
the basic mechanical properties of reported structural materials as shown in Figure 1a–c,
the polarization curve can be widely employed to characterize the electrical properties of
SOFCs (shown in Figure 1d–f). Naturally, searching for a standard test method to obtain
comparable power results can be beneficial to promote the new developments in LTSOFCs.
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Figure 1. Stress–strain process of metal samples: (a) elastic stage, (b) yield stage, (c) hardening stage; polarization process 

of fuel cells: (d) activation polarization, (e) ohmic polarization, (f) concentration polarization. 
Figure 1. Stress–strain process of metal samples: (a) elastic stage, (b) yield stage, (c) hardening stage; polarization process of
fuel cells: (d) activation polarization, (e) ohmic polarization, (f) concentration polarization.

The lack of an industry-level standard to acquire the polarization curve as its coun-
terpart PEMFC, hampers the effective comparison of peak power density data of LTSOFC
from various laboratories and institutions. A possible solution to tackle this predicament is
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to introduce a standard procedure of testing cells under an identical condition. This issue
has been realized gradually and new testing procedures with a high standard have been
proposed based on the single component fuel cells (SCFCs) [11]. The possible factors have
been summarized from two aspects: geometric size and temperature. The constructed
cells with a diameter of 13–30 mm are introduced in the experimental labs for fuel cell
measurements. For the limited constructed cell size (13 mm for instance), just a 1 mm
error (by sample loading/or fabrication) would lead to at least a 17% non-determinacy by
directly affecting the current and power output of the testing cell. In addition, uncertainty
in operational temperature fluctuation (even a 20 ◦C fluctuation of cell temperature) may
lead to a fluctuation of at least a 10% variation on ionic conductivity of the cell, thereby
reducing the practical performance. As a result, this a framework about cells fabrication
and standard experiment procedures has been listed for SCFCs.

Though the aforementioned strategy of statistic duplicate verification via meticulous
experiments can slightly increase the confidence level of the power output-measured
polarization curves, there is still inadequate information between the transient state and
steady state performance of LTSOFCs. The traditional solid oxide cells (those adopting
single SDC or GDC thin electrolyte), which are usually subjected to high-temperature
calcination, are more or less non-consistent in their current–voltage characteristic and
short-term duration performance in terms of output power. Furthermore, the achieved
peak power results are higher than the derived data from stability curves [12,13]. In
particular, remarkable derivation is a common phenomenon of SIFC or SMFC, which may
be attributed to its inherent electronic conduction and non-dense EFL layer structures.

In the first section of the case study, we will demonstrate that such derivation cannot
be eliminated by repeating the experiments for current–voltage curves, which may result
from the transient state of test cells instead of the steady state. Steady state means the
voltage of cells corresponding to the specific current did not vary with the time [14]. With
regard to transient state, the voltage of the cell needed several seconds/minutes/hours to
reach a stable point affected by the time constant, which is further correlated with the cell
materials/structure and thermal history. If the transient state remains constant during the
current–voltage sweeping, the recorded power output of LTSOFC will increase with the
increased scanning rate/speed.

The valuable indicators of fuel cell characteristics (power density and enhanced ionic
conductivity) rely on the polarization/I–V curve. Therefore, we attempted to establish a
modified standard procedure for assessing a reliable polarization curve with improved
confident level (CL), namely a diagram conversion from transient to steady state evaluation.

2. Case Study

Currently, research seldom provides complete testing conditions and whole param-
eters of polarization curves as reported by Rauf et al. [15], such as hydrogen flux, cells
thermal history, device fabrication, and scanning method. Among them, the current–
voltage sweeping rate/speed is previously considered as an insignificant factor, whereas it
indeed has a great influence on the final curve profile. Based on the previous literature, most
PPD/MPD data are based on transient polarization curves, and the aforementioned devi-
ation between the transient and steady state performance in LTSOFCs is ubiquitous [14].
The NSDC-LCCN nanocomposite electrolyte is a recently reported work that illustrates this
phenomenon [16]. As shown in Figure S1a, 3NSDC-LCCN cells exhibit a high apparent
peak power density of about 600 mW/cm2 at 550 ◦C. The obtained 0.81 V operating voltage
corresponds to the current density of 469 mA/cm2 under fuel cell conditions. While, the
operating voltage of cell can only reach 0.45 V at the identical current density according to
the steady-state curve (Figure S1b). Obviously, cells present transient state characterization
during fast current–voltage sweeping/scanning way. In addition, this transient state will
lead to significant discreteness in power output.

In the current–voltage/polarization curve measurements of constructed NSDC-LCCN
cells, as well as previous reported results, demonstrated high power density in SIFC and
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SMFC [17,18]. The parameters, with a step size/voltage interval of 0.01–0.02 V and a
time interval of 0.5 s were utilized during I–V sweeping with a short circle of 1–2 min.
Thus, the power density data might be a transient state result for the cells subjected to
fast sweeping/scanning rate. In comparison, the representative sweeping rate of 1 mV/s
is usually employed in the YSZ, conventional doped ceria and LSGM electrolyte cell, in
the electro-chemical workstation, which further corresponds to I–V measurements for
10–15 min. It is reasonable to believe that the cell exhibits an apparent power density
(APP) instead of stable power density (SPP) in the instantaneous/quick polarization
curve measurements, and transient state characteristics are beyond the actual operating
performance of fuel cells.

To further illustrate the great influence of sweeping/scanning rate on the apparent
power density of SJFC/SMFC, I–V–P curves were demonstrated. For example, the re-
ported high oxide ion-conducting electrolytes, such as non-doped ceria (CeO2) [19,20] and
SDC-SnO2 [21] heterostructure have fast ionic transportation as well as high power density
at low operational temperature. In addition, the fabricated devices with schematic PEN
structure, i.e., CeO2 and SDC-SnO2 electrolytes sandwiched with identical symmetrical
NCAL electrode, are fabricated (Figure S2). The measurement procedure of polarization
curves and involved devices setup are ascribed in the supplemental data. Moreover, the
comparative exploration of polarization curves in potentiostatic mode has been conducted
by undergoing a quick scan of 0.5 s time interval. A slower scan with a 300 s time interval
was set, in which the latter can be regarded as a quasi-steady-state characterization due to
the notably reduced sweeping rate of about 0.06 mV/s during current–voltage measure-
ment (around a half of 1 m/V). As shown in Figure 2, the constructed cell with commercial
CeO2 as electrolyte membrane displayed a distinguished MPD/PPD over 1000 mW/cm2

at 550 ◦C (0.5 s case). Nevertheless, in the case of the 300 s time interval, the polarization
curve shifted down and left with an obvious drop of 500 mW/cm2 because of the transient
to steady-state characteristics. Similarly, the peak power density of 4SDC-SnO2 declined by
half with the increase of time interval. It is also worthy to note that the quasi-steady-state
polarization curves of CeO2 and 4SDC-SnO2 cells exhibited a special asymmetric and
default feature, in which the I–V profile is cut-off after peak power point because of the
reverse output current at constant potential (as shown in Figure S3). In galvanostatic
measurement mode, the cell voltage exhibited a catastrophic instability by entering of
concentration polarization zone.

Nanomaterials 2021, 11, x FOR PEER REVIEW 4 of 8 
 

 

transient state characterization during fast current–voltage sweeping/scanning way. In 

addition, this transient state will lead to significant discreteness in power output. 

In the current–voltage/polarization curve measurements of constructed NSDC-

LCCN cells, as well as previous reported results, demonstrated high power density in 

SIFC and SMFC [17,18]. The parameters, with a step size/voltage interval of 0.01–0.02 V 

and a time interval of 0.5 s were utilized during I–V sweeping with a short circle of 1–2 

min. Thus, the power density data might be a transient state result for the cells subjected 

to fast sweeping/scanning rate. In comparison, the representative sweeping rate of 1 mV/s 

is usually employed in the YSZ, conventional doped ceria and LSGM electrolyte cell, in 

the electro-chemical workstation, which further corresponds to I–V measurements for 10–

15 min. It is reasonable to believe that the cell exhibits an apparent power density (APP) 

instead of stable power density (SPP) in the instantaneous/quick polarization curve 

measurements, and transient state characteristics are beyond the actual operating 

performance of fuel cells.  

To further illustrate the great influence of sweeping/scanning rate on the apparent 

power density of SJFC/SMFC, I–V–P curves were demonstrated. For example, the 

reported high oxide ion-conducting electrolytes, such as non-doped ceria (CeO2) [19,20] 

and SDC-SnO2 [21] heterostructure have fast ionic transportation as well as high power 

density at low operational temperature. In addition, the fabricated devices with schematic 

PEN structure, i.e., CeO2 and SDC-SnO2 electrolytes sandwiched with identical 

symmetrical NCAL electrode, are fabricated (Figure S2). The measurement procedure of 

polarization curves and involved devices setup are ascribed in the supplemental data. 

Moreover, the comparative exploration of polarization curves in potentiostatic mode has 

been conducted by undergoing a quick scan of 0.5 s time interval. A slower scan with a 

300 s time interval was set, in which the latter can be regarded as a quasi-steady-state 

characterization due to the notably reduced sweeping rate of about 0.06 mV/s during 

current–voltage measurement (around a half of 1 m/V). As shown in Figure 2, the 

constructed cell with commercial CeO2 as electrolyte membrane displayed a distinguished 

MPD/PPD over 1000 mW/cm2 at 550 °C (0.5 s case). Nevertheless, in the case of the 300 s 

time interval, the polarization curve shifted down and left with an obvious drop of 500 

mW/cm2 because of the transient to steady-state characteristics. Similarly, the peak power 

density of 4SDC-SnO2 declined by half with the increase of time interval. It is also worthy 

to note that the quasi-steady-state polarization curves of CeO2 and 4SDC-SnO2 cells 

exhibited a special asymmetric and default feature, in which the I–V profile is cut-off after 

peak power point because of the reverse output current at constant potential (as shown in 

Figure S3). In galvanostatic measurement mode, the cell voltage exhibited a catastrophic 

instability by entering of concentration polarization zone. 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

 0.5s

 300s

Current density (A/cm2)

V
o
lt
a
g

e
 (

V
)

CeO2

0

200

400

600

800

1000

1200

 P
o
w

e
r 

d
e
n

s
it
y
 (

m
W

/c
m

2
)

  

(a) (b) 

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

 0.5s

 300s

Current density (A/cm2)

V
o
lt
a
g

e
 (

V
)

4SDC-SnO2

0

200

400

600

800

 P
o
w

e
r 

d
e
n

s
it
y
 (

m
W

/c
m

2
)

Figure 2. I–V–P curve of cells by sweeping on different time intervals (a) CeO2; (b) 4SDC-SnO2 electrolyte.
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3. Standard Test Procedure

Generally, SOFCs need a certain time to activate and reach a steady state. In this
respect, extending the testing time consumption is a simple way to approach steady state
evaluation. Therefore, trading off between economic and technical acceptability is the
crucial issue for the standard procedure of acquiring a reliable polarization curve, in which
suitable time interval should be sought in the current–voltage sweeping/scanning instead
of fast measurements in the transient state approach.

For primary screening, LTSOFCs using conventional SDC electrolyte were studied as
a prototype cell, in which the SDC was prepared by co-precipitation method using sodium
carbonate (Na2CO3) as a precipitating agent. The derived current–voltage sweeping
curves are shown in Figure 3, with time intervals of 0.5 s. 1 s, 10 s, 60 s, 100 s and 200 s,
respectively. It was easily figured out that the SDC cell power density decreases with
the increase of time interval, which is quite similar to non-doped CeO2 and SDC-SnO2
heterostructure. However, the capacity of completing the whole I–V profile without a
cut-off effect in the quasi-steady-state evaluation, indicates that the Na2CO3-precipitated
SDC may have a superior operative potential at high-current density than ammonium
hydrogen carbonate (NH4HCO3)-precipitated SDC materials (employed in the SDC-SnO2
heterostructure sample), as shown in Figure 3b. In addition, the PPD/MPD results coincide
with the steady value of around 200 mW/cm2 with a time interval of 100–200 s. Thus, 100 s
is chosen as the standard time interval temporarily.
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Another possible factor that has to be excluded is durability measurements, because
the time duration of cells also contributes to analyzing the sweeping rate-dependence of the
apparent power density. Hence, the further exploration on modified standard procedure
of polarization curve should be based on a verified stable fuel cell system. To this end,
NSDC nanocomposite electrolyte with short-term duration at considerable current-load
as Ref. [16] was fabricated and measured at different sweeping rates (modulated by time
interval). The NSDC cell was proven to be stable at operating current density of 0.5 A/cm2

as shown in Figure 4a. Moreover, it can be concluded from the series of polarization
curves (Figure 4b) that the sweeping rate of I–V profile shows a limited effect on the
final performance of the stable cell system. For the strongly transient state evaluation, as
demonstrated by a quick sweeping in the case of 0.5 s, the cell exhibits the top apparent
output power, peak at about 560 mW/cm2. Thus, the time interval extension effectively
decreases the record power output to peak value of about 300 mW/cm2 with the difference
between 100 s and 150 s of scanning.
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Figure 4. (a) Steady-state power output of NSDC cell; (b) Polarization curve with voltage interval 0.01 V and scanning time
interval of 1 s, 10 s, 60 s, 100 s, and 200 s.

According to the above investigation, a modified test procedure on constructed cell
(lab-scale) by quasi-steady-state characteristic could be described as:

Part I: Preparation process
Stabilization of Cell includes the heat-up of test holder with button cell in furnace

(setting at specific temperature), e.g., heating at 500–600 ◦C for 30 min, then inlet fuel
(hydrogen)/air (oxygen) gas into anode and cathode, respectively, until the whole system
reached a thermal equilibrium state with a fixed OCV.

Part II: Measure process
Undergo a standard current–voltage sweeping from OCV to 0.4 V below the threshold

scanning rate/speed (1 mV/s).
For clarity, a schematic parameter set of the modified standard procedure of current–

voltage characteristic is listed in Table 1. Among the three setups, P3 (0.01 V step size with
time interval of 100/200 s) is believed to achieve the highest confidence level. Therefore, the
polarization curve is a steady state characterizing technique, in which the cells have to fulfill
the requirement of steady state, though the proposed standard procedural measurements
already employed the lowest sweeping rate. To assess an actual steady state performance,
one can adopt optimal stabilization process, in which the cell was operated in the activation
zone, i.e., at around 100 mA/cm2 for 5–10 h before undoing I–V sweeping.

Table 1. A schematic parameter set of the proposed standard procedure of polarization cure
measurement.

Content P1 P2 P3

Device Electrical chemical
workstation Electrical Load Electrical Load

Sweeping parameter 0.001 V, 1 s 0.01 V, 60 s 0.01 V, 100/200 s

Scanning rate 1 mV/s 0.16 mV/s 0.05–0.1 mV/s

Single I–V scan >15 min >60 min >80 min

Confidence Level (CL) III IIII IIIII

4. Conclusions

A standardized measurement process by acquiring reliable polarization curve of the
constructed cell plays a pivotal role in SOFC/SIFC. Even small geometrical errors may
cause huge differences in the electro-chemical properties. Consistent testing conditions are
also meaningful for the screen out of promising systems.

Furthermore, this case study reveals that it is reasonable to infer that the conventional
test procedure on transient state evaluation may induce an appreciable error in measuring
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electro-chemical properties. Exploring the power density data of cells with an improved
confidence level can be facilitated by a modified quasi-steady state characterization of
polarization curves, employing a current–voltage sweeping with sampling/time interval
of 100 s. Compared with transient state evaluation, the normalized MPD from the updated
standard procedure of I–V curve on quasi-steady state represents a better approximation
of actual performance of fuel cells. The uncertainty of measurement of errors in various
LTSOFC systems can also be expected to significantly lessened by the proposed approach.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11081923/s1, Figure S1:(a) The polarization curve of NSDC-LCCN cell; (b) the duration
of NSDC-LCCN cell (Permission and redrawn from Ref. [1]), Figure S2: Illustration of single fuel cell,
Figure S3: Full I-V-P profile of cells by sweeping on different time intervals (a) CeO2; (b) 4SDC-SnO2
electrolyte.
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