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ABSTRACT

Describing how the brain anatomical wiring contributes to the emergence of coordinated neural
activity underlying complex behavior remains challenging. Indeed, patterns of remote coactivations
that adjustwith the ongoing task-demanddo not systematicallymatch direct, static anatomical links.
Here, we propose that observed coactivation patterns, known as functional connectivity (FC),
can be explained by a controllable linear diffusion dynamics defined on the brain architecture.
Our model, termed structure-informed FC, is based on the hypothesis that different sets of
brain regions controlling the information flow on the anatomical wiring produce state-specific
functional patterns. We thus introduce a principled framework for the identification of potential
control centers in the brain.We find that well-defined, sparse, and robust sets of control regions,
partially overlapping across several tasks and resting state, produce FC patterns comparable to
empirical ones. Our findings suggest that controllability is a fundamental feature allowing the
brain to reach different states.

AUTHOR SUMMARY

Understanding how brain anatomy promotes particular patterns of coactivations among neural
regions is a key challenge in neuroscience. This challenge can be addressed using network
science and systems theory. Here, we propose that coactivations result from the diffusion of
information through the network of anatomical links connecting brain regions, with certain
regions controlling the dynamics. We translate this hypothesis into a model called structure-
informed functional connectivity, and we introduce a framework for identifying control
regions based on empirical data. We find that our model produces coactivation patterns
comparable to empirical ones, and that distinct sets of control regions are associated with
different functional states. These findings suggest that controllability is an important feature
allowing the brain to reach different states.

INTRODUCTION

Recently, approaches combining magnetic resonance imaging (MRI) and network science
emerged in order to characterize links among neural regions of interest (ROIs; Bassett &
Sporns, 2017). Most studies focus either on structural connections or on functional interactions,
which capture two distinct aspects of brain connectivity. On the one hand, diffusion MRI
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(dMRI) with tractography (Mori & Zhang, 2006) enables the mapping of white matter pathways
and describes the anatomical links between ROIs. This structural description of the human
brain forms a network called the connectome (Hagmann et al., 2008; Sporns, Tononi, &
Kötter, 2005). On the other hand, the blood-oxygenation-level dependent (BOLD) signal in
functional MRI (fMRI) provides an estimate of brain activity in gray matter areas (Ogawa,
Lee, Kay, & Tank, 1990). The matrix of pairwise Pearson’s correlation coefficients between
regional BOLD time series is a common tool to quantify functional connectivity (FC) among
ROIs (Bassett & Sporns, 2017). Unlike the connectome, functional connectivity varies over
short timescales and across resting-state and task conditions (Cole, Bassett, Power, Braver, &
Petersen, 2014).

An important challenge in neuroscience is to characterize the relationship between the
connectome and functional connectivity (Batista-García-Ramó & Fernández-Verdecia,
2018; C. J. Honey, Thivierge, & Sporns, 2010; Suárez, Markello, Betzel, & Misic, 2020).
Several approaches have been proposed in the literature in order to elucidate this relationship
in macroscale brain networks and understand the importance of the anatomical organization
in promoting particular patterns of activity. Along with methods based on graph signal pro-
cessing and spectral decompositions (Preti & Van De Ville, 2019; Tewarie et al., 2020), it has
been proposed that describing the link between the connectome and FC requires a model of
information flow between ROIs (Avena-Koenigsberger, Misic, & Sporns, 2018). For instance,
models based on random walks and diffusion on the connectome have been able to partly
reproduce resting-state FC (Abdelnour, Voss, & Raj, 2014; Goñi et al., 2014; Mišic� et al.,
2015). Viewing the brain as a dynamical system allows us to study the controllability of this
system, that is, its ability to account for context-dependent control signals in order to affect
the overall state of the brain (Gu et al., 2015; Medaglia, 2019). The framework of network
controllability requires the definition of input regions, that is, ROIs capable of integrating con-
trol signals (Liu, Slotine, & Barabási, 2011). Earlier work demonstrated that any single input
region was theoretically sufficient to get controllability of the connectome (Gu et al., 2015;
Pasqualetti, Gu, & Bassett, 2019; Tu et al., 2018). One shortcoming is that although control-
lable in theory, some configurations are practically unfeasible as they would require exces-
sive control energy. Moreover, several pieces of evidence from the fields of motor and
cognitive control suggest that sets of regions are responsible for the control of brain activity
(Cole et al., 2014; Dosenbach et al., 2007; Eisenreich, Akaishi, & Hayden, 2017; Omrani,
Murnaghan, Pruszynski, & Scott, 2016; Power & Petersen, 2013). Despite these advances in
brain communication modeling and connectome controllability, an integrated explanation
for the emergence of multiple FC patterns from the static structure of the connectome is still
lacking.

Here, we develop a principled approach modeling state-specific FC on the connectome.
We leverage the observation that the Gramian matrix used in controllability studies (Gu
et al., 2015; Pasqualetti, Zampieri, & Bullo, 2014) corresponds to the covariance matrix of
the activities in the different nodes of a network, assuming a linear transition dynamics among
them. This observation brings us to introduce the concept of structure-informed FC, that is, the
pairwise functional correlation matrix derived from the structure of the connectome. Since this
matrix depends on the choice of input nodes, we show that it is possible to identify the set of
input ROIs maximizing the mapping between structure-informed and empirical FC in different
states. Using dMRI and fMRI data (resting-state and seven tasks) from the Human Connectome
Project (Van Essen et al., 2013), we find that sparse input sets produce FC matrices that are
comparable to empirical ones. Moreover, we show that the identified sets are well defined,
stable, and state-specific. We discuss their properties and the fact that the method is able to

Controllability:
The ability of a system to move from
any initial state to any final state,
given external control signals.

Gramian:
In control theory, a fundamental
matrix providing quantitative
information about how “difficult”
it is to control a linear system to a
given state.

Structure-informed functional
connectivity:
A model of functional coactivations
developing on the brain’s anatomical
structure and driven by a set of
control regions.
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capture the singularity of resting-state compared with the other task-related conditions.
Overall, our approach relies on a model linking structure and function in brain networks in
order to identify possible subsets of brain regions underlying task-specific control.

RESULTS

Structure-Informed Functional Connectivity

In order to investigate how the connectome shapes functional connectivity (FC), we study the
covariance matrix of a linear dynamics defined on the connectome. In a network of n nodes,
let x(k) be the n-dimensional state-vector containing the activity level of each node at time k.
The trajectory of x is governed by the following equation:

x kþ 1ð Þ ¼ Ax kð Þ þ Bu kð Þ: (1)

Here, the n × n system matrix A describes the interactions among the nodes of the network, the
columns of the n × m input matrix B are canonical vectors identifying the m input nodes, and
u(k) is an m-dimensional vector providing the value of external input signals at time k.

When the inputs to the system, that is, the signals in u, are white noise signals, it can be
shown that the steady-state covariance matrix of the states Σ = Cov(x) satisfies the following
Lyapunov equation (see Methods for the derivation):

Σ ¼ AΣAT þ BBT : (2)

Here, we see that the solution Σ depends on the structure of the network and the dynamical
model through the system matrix A, and on the set of input nodes defined by B (Figure 1A). The
solution to Equation 2 is known as the controllability Gramian. Here, in contrast to previous
studies where Σ is used to derive quantitative control properties of individual nodes in the
network (Gu et al., 2015; Karrer et al., 2020; Pasqualetti et al., 2014), we interpret the
Gramian as the state-covariance matrix obtained by stochastic excitation of the system through
a set of control nodes. This allows us to relate it to the concept of functional connectivity.

Indeed, after variance normalization, Σ becomes a correlation matrix eΣ (see Methods) and
constitutes the FC matrix associated with the network and its dynamics, which we term the
structure-informed FC and denote FSI:

FSI ¼ eΣ: (3)

Using the mathematical relation between the network structure and the correlation matrix of
the system, we turn to the problem of identifying the set of control inputs defined by B, given
an empirical FC matrix Femp obtained from external recordings of the system. For that, we for-
mulate the optimization problem

B * ¼ arg maxB sim FSI; Femp
� �

such that m ≤U;
(4)

where FSI is a function of B; m is the number of columns of B, that is, the cardinality of the
input set; and U is an upper bound to be fixed in order to control the number of input nodes.

In the present work, we apply this approach to connectomes and FC matrices extracted
from MRI data (Figure 1B). We consider a diffusion dynamics to model interactions among
ROIs in the connectome (see Methods) as suggested in previous studies on large-scale brain
communication (Abdelnour et al., 2014; Avena-Koenigsberger et al., 2018). The similarity
between FSI and Femp is the correlation score (see Methods). For the optimization, we use a
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heuristic approach (genetic algorithm, see Methods). To mitigate the lack of optimality guar-
antee, we run the algorithm multiple times and denote the set of ROIs consistently selected
across runs as the consensus input set (see Methods).

We provide an illustration of the method based on simulated data in Figure 1C. First, we
simulate 2,000 time steps of a diffusion process driven by white noise on a graph composed of
n = 10 nodes (m = 3 input nodes), with edge weights uniformly distributed between 0 and 1.
Using these time series, we compute the associated FC matrix Femp. Then, we solve Problem 4
for U varying from 1 to n. We observe that the method retrieves the correct input set and pro-
duces an FC matrix that is similar to the empirical one.

Linking the Connectome to Multiple Functional States

We apply our approach and solve Problem 4 with empirical MRI data of 100 unrelated indi-
viduals. For each individual, we extract a connectome and FC matrices for resting-state and
seven tasks (Figure 1B; see Methods for a description of the tasks). Although the properties of
resting-state FC are known to be fundamentally different from that of task FC (Deco, Jirsa, &
McIntosh, 2011), we deliberately choose to treat resting-state in the same way as task condi-
tions in order to test whether our approach is able to distinguish it. For simplicity, we refer to

Genetic algorithm:
A heuristic optimization method
that iteratively combines multiple
candidate solutions in order to form
a near optimal one.

Consensus input set:
The set of control regions frequently
selected by repeated runs of a
randomized method.

Figure 1. Overview of the approach. (A) In order to investigate how the connectome shapes functional connectivity, we define a diffusion
dynamics on the connectome (purple) and excite it with uncorrelated signals (white noise, red). Depending on the set of input nodes (orange)
driving the dynamics, the output signals (green) present correlation patterns that are similar to empirical data. (B) Data-processing workflow.
(Top row) We extract the connectome using diffusion imaging (dMRI) and tractography. Nodes correspond to ROIs from a predefined auto-
matic parcellation. (Bottom row) At each ROI, we also retrieve the fMRI BOLD time series and compute the functional connectivity matrix Femp

between these signals. This step is repeated for seven tasks and resting-state. (C) Example on simulated data. We start from a network of n = 10
nodes, with uniformly distributed random weights on the edges. (Top row) We choose a set of m = 3 input nodes, simulate the noise diffusion
process, and compute the empirical functional connectivity matrix Femp. (Bottom row) Our framework applied to the network identifies the
correct set of input nodes and generates a structure-informed functional connectivity matrix FSI comparable to the empirical one.
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both resting-state and task conditions as states in the remainder of the manuscript. Finally, we
use the brain parcellation introduced by Destrieux, Fischl, Dale, and Halgren (2010) and
composed of n = 164 ROIs including subcortical structures and cerebellum.

For the group-level analysis, we compute an average connectome and an average FC
matrix Femp for each state (see Methods and Supplementary Figure S1). In order to study the
stability of our results with respect to the number of input ROIs, we solve Problem 4 with U
increasing from 1 to n. For each upper bound U, we define the consensus input set as the set of
ROIs selected at least 25 times over 30 optimization runs (see Methods). Figure 2A shows the
correlation score r between Femp and FSI using the consensus input set. The curves increase
with U, up to small drops due to the heuristic nature of the optimization (see Methods), until
they reach a plateau at values ranging from r = 0.54 for resting-state to r = 0.7 for the motor
task. We can compare these values with three baselines (see Methods for details about the
baseline definitions). The first one is the correlation score between Femp and the adjacency
matrix of the connectome. The second is the plateau correlation obtained by applying our
approach to a randomly relabeled connectome. The third baseline is the maximum correlation
score between FSI and Femp obtained with random input sets having the same average cardi-
nality as the identified sets. In Figure 2A, we draw for each baseline the highest value across

Figure 2. Relating structure-informed and empirical functional connectivity: Group-level analysis and individual-level variability. (A)
Correlation score between structure-informed and empirical functional connectivity with respect to the number of input nodes allowed U
(group level). FSI is obtained using the consensus input set. Dashed lines represent baselines corresponding to the similarity between Femp

and (1) the adjacency matrix of the connectome, (2) FSI based on a relabeled connectome and (3) FSI obtained with a random input set
(see Methods). (B) Size of the consensus input set with respect to the number of input nodes allowed U (group level). The gray line denotes
the identity function y = x. The dashed blue line corresponds to the minimum number of input nodes selected for Baseline 2, over all con-
ditions and all randomizations. (C) Average Jaccard index between the 30 input sets identified by the optimization algorithm with respect to the
number of input nodes allowed U (group level). (D) Variability across individuals of the correlation score between structure-informed and
empirical correlation matrices, with U = n. (E) Variability of the size of the corresponding consensus input set. (F) Jaccard index between
all pairs (N = 4,950) of consensus input sets (25 selections over 30 runs) across individuals.
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states and see that our approach produces a better matching for all states. Figure 2B shows that
the consensus input set is empty for all states until we allow the selection of at least 19 input
nodes. Then its size stabilizes between m = 35 for the working-memory task (WM) andm = 58
for resting-state. These values are lower than the number of input nodes selected when apply-
ing our approach to a randomly relabeled connectome (Baseline 2, m = 64, minimum across
states and randomizations). To evaluate the consistency of identified input sets across optimi-
zation runs, we report in Figure 2C the evolution of the average Jaccard index �J (see Methods),
computed over all pairs of the 30 optimized input sets. We observe that the method selects
consistent input sets (�J ≥ 0.85) when U ≥ 70.

We also perform an individual-level analysis in the following way. As the plateaus observed
in Figures 2A and 2B are also observed for a random sample of 20 individuals (see
Supplementary Figures S5 and S6), we apply the method to each individual and set U = n
in order to reduce the computational cost of the optimization. We obtain one consensus input
set and one correlation score for each individual and for each state. In Figure 2D, we notice
that the correlation scores are lower than at the group level, for all states. A repeated-measures
ANOVA determines that the mean correlation score differs significantly between states (F(7,
693) = 27.928, p < 10−25, Greenhouse-Geisser corrected). The variance in each condition
does not significantly differ (Levene’s test, p > 0.5), and a post hoc analysis after visual inspec-
tion confirms that the mean correlation score in resting-state is significantly different than in
any task condition (Tukey’s HSD, p < 0.005). The post hoc analysis also reveals that the mean
correlation score significantly differs between the language task and the motor task (Tukey’s
HSD, p < 0.005). Figure 2E shows the variability of the size of the consensus input set in the
population. The relational processing task and the resting-state display a higher variability in
the number of input ROIs selected than other states. In Figure 2F, we evaluate the variability of
the consensus input set in the population by computing the Jaccard index J of all pairs of the
100 consensus input sets (one for each individual). We observe a moderate overlap of the
consensus input set across individuals (median J ≈ 0.6, expected value of J for randomly cho-
sen sets with cardinality m = 40 : E{J} ≈ 0.14; see Methods for the derivation). A Friedman test
finds that Jaccard indices come from different distributions across tasks ( p < 10−244).

Analysis of Input ROIs Across Functional Subsystems

At the group level, we turn our attention to the ROIs composing the input sets that we iden-
tified. In Figures 3A (motor task) and 3B (resting-state), we can follow the evolution of the num-
ber of selections of each ROI when the maximum cardinality U of the input set increases. We
point out that when U is incremented, we perform the new optimization runs while ignoring
previously computed solutions in order to assess the consistency of successively computed
solutions. A first observation is that the selection of input ROIs is stable, that is, once a region
is selected it is typically selected again for higher values of U, as indicated by the horizontal
red lines. Moreover, dark red pixels for a given ROI indicate that it is consistently selected
across 30 independent optimization runs for a fixed U. We make a second observation by
grouping ROIs according to the functional subsystems defined by Yeo et al. (2011) and pre-
sented in Figure 3C (we include the cerebellum in the “subcortical” subsystem for visualiza-
tion). Regions belonging to limbic and subcortical subsystems are selected together, up to
some exceptions. These observations are also valid for the other tasks (corresponding figures
are available in Supplementary Figure S7).

Recent studies investigated how the connectome shapes functional connectivity at the level
of subsystems and showed that the coupling between structure and function is stronger for

Jaccard index:
A measure of the overlap of the
elements of two sets.

Subsystem:
A subset of brain areas associated
with a particular function.
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some subsystems than for others (Baum et al., 2020; Mišic�et al., 2016; Osmanlıog�lu et al., 2019;
Tipnis, Amico, Ventresca, & Goni, 2018; Vázquez-Rodríguez et al., 2019). In Figure 3D, we use
the consensus input sets identified at the group level and compute the correlation score between
the entries of FSI and Femp associated with the subsystems of Figure 3C (see Supplementary
Note 4). The results indicate that the association is the greatest in the frontoparietal lobe during
the motor task (r = 0.74). Moreover, the limbic and subcortical subsystems show low correlation
scores for all states, while we observe for the resting-state a gradient going from high correlation
in primary sensory systems (visual, somatomotor) to low correlation in systems associated with
higher order cognition (limbic, default mode, subcorticals).

Analysis of Input ROIs Across States

Next, we compare the composition of the identified input sets across states, at the group level.
Since we observed in Figure 2A that the correlation score reaches a plateau when U increases,
we set U = n for this analysis. Moreover, we increase the number of optimization runs to 100
to evaluate more precisely the selection of each ROI. Thus, we obtain 100 input sets for each
condition.

Figure 4A depicts the number of selections of each ROI across states. Blue lines indicate
ROIs that have been selected at least 90 times for all states. These ROIs mostly correspond to
subcorticals (accumbens nucleus, amygdala, hippocampus, pallidum, thalamus, and

Figure 3. Analysis across functional subsystems (group level). (A) (resp. B) Evolution of the number of selections (from 0-white, to 30-red) of
each ROI with respect to the number of input nodes allowed U for the motor task (resp. for resting-state). ROIs are arranged according to the
functional subsystems described by Yeo and colleagues (Yeo et al., 2011). The cerebellum is included in the “subcorticals” subsystem for
visualization and corresponds to the last two lines (left and right hemispheres). Corresponding figures for the other tasks are available in
Supplementary Figure S7. (C) Cortical localization of Yeo’s subsystems. (D) Correlation between structure-informed and empirical functional
connectivity with U = n, split into Yeo’s subsystems. Structure-informed functional connectivity is computed using the consensus input set.
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subcallosal gyrus) and limbic regions (medial orbital sulcus, gyrus rectus, and left suborbital
sulcus). Regions of the default mode network (pericallosal sulcus, right suborbital sulcus and
left posterior-ventral part of the cingulate gyrus) and of the somatomotor system (right paracen-
tral lobule) complete the set of ROIs consistently selected across states. A cortical view of these
regions is shown in Figure 4B. We observe that most of these regions are located in the mid-
line. Supplementary Table S17 provides the detailed numerical results by ROI.

In order to visualize the divergence of input sets across states, we use a dimensionality re-
duction method to project in two dimensions the n-dimensional binary vectors indicating
which ROIs belong to each input set (t-distributed stochastic neighbor embedding; see
Methods). In Figure 4C, each data point represents one identified input set (100 runs, 8 states),
and the proximity with each other is indicative of their overlap ( Jaccard similarity). We distin-
guish clusters of points corresponding to different states. In particular, the cluster corresponding
to resting-state is isolated. Among task conditions, there is a partial overlap of the clusters, with
the input sets related to the social cognition task being more isolated from the others. A compar-
ative cortical view of input ROIs for each condition is provided in Figure 5.

Topological Properties of Input ROIs

In order to gain further insight into the topological properties of input ROIs in the connectome,
we analyze the statistical association of the number of selections of each ROI with two nodal

t-SNE:
A nonlinear dimensionality reduction
method allowing the visualization of
high-dimensional data points in 2D
while preserving their neighborhood
structure.

Figure 4. Analysis across functional states. (A) Table summarizing the most frequently selected ROIs for each task. ROIs that are consistently
selected at least 90 times over 100 runs for all functional states are highlighted in blue. ROIs are grouped according to Yeo’s functional
subsystems (Yeo et al., 2011). The cerebellum is included in the “subcorticals” subsystem for visualization and corresponds to the last two
lines (left and right hemispheres) (B) Cortical view of ROIs consistently selected across all tasks and resting-state. (C) Two-dimensional
projection of all input sets (100 runs, eight states). We use the t-distributed stochastic neighbor embedding algorithm (t-SNE, see Methods)
in order to visualize the Jaccard similarity among all input sets. Each data point represents one such input set, and their proximity is propor-
tional to their similarity.
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metrics: the weighted degree and modal controllability. The weighted degree of a node de-
scribes the strength of the connections with its neighbors, while modal controllability de-
scribes the ability of a node to drive the network towards hard-to-reach states requiring
much control energy (see Methods and references Gu et al. [2015] and Pasqualetti et al.
[2014] for further details about modal controllability). For all tasks and resting-state, we report
in Table 1 the correlation between these nodal metrics and the number of selections of ROIs.
On the one hand, we find an inverse relationship between weighted degree and number of
selections (lowest association: Spearman’s ρ = −0.3963 in resting-state, p < 10−7 for all states),
which suggests that low-degree ROIs are selected more often. On the other hand, we find a
direct relationship between modal controllability and number of selections (lowest associa-
tion: Spearman’s ρ = 0.4769 in resting-state, p < 10−10 for all states), indicating that ROIs having
a high modal controllability are selected more frequently. While both associations are signifi-
cant, they are not absolute and they do not prevent the selection of high-degree ROIs such as
subcortical structures (see Supplementary Figure S1).

We also compare the modal controllability and weighted degree of cortical regions consis-
tently selected across states (in blue, Figures 4B and 5) with that of other regions. We find that
the modal controllability is higher (Wilcoxon rank-sum test, p < 0.001) and the weighted
degree is lower (Wilcoxon rank-sum test, p < 0.01) in these regions.

Modal controllability:
A measure of the ability of a single
node to drive a network towards
difficult-to-reach states.

Figure 5. Cortical surface view of state-specific input ROIs. Over 100 runs of the optimization algorithm with U = n, we depict for each state
the number of times each ROI is selected. Regions that were consistently selected across all states (≥90 selections) are shown in blue. Detailed
numerical results by ROI are available in Supplementary Table S17.
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Robustness of Consensus Input Sets

Finally, we study the robustness of the link between structure-informed (FSI) and empirical
(Femp) functional connectivity when the consensus input set is attacked. Here, an attack refers
to the removal of an ROI from the initial input set, not from the connectome. We start from the
correlations between FSI and Femp obtained at the group level with U = n (Figure 2A). We
progressively remove nodes from the consensus input set until it becomes empty. After each
removal, we compute the correlation score obtained with the attacked input set. Since we
previously observed that low-degree (resp. high modal controllability) ROIs are more likely
to be part of the input set, the removal ordering is fixed by increasing order of weighted degree

Figure 6. Robustness analysis. (A) (resp. C) Evolution of the correlation between structure-informed FSI and empirical functional connectivity
Femp as a function of the number of ROIs removed from the consensus input set. Dashed lines represent the three baselines (see Methods), that
is, the correlation between Femp and (a) the adjacency matrix of the connectome, (b) FSI based on a relabeled connectome, and (c) FSI obtained
with a random input set. We consider 50 random removal orderings. (B) (resp. D) Same analysis, with removal ordering fixed by increasing
weighted degree and decreasing modal controllability.

Table 1. Spearman’s rank correlation between the number of selections of each ROI (out of 100 independent optimization runs, with U = n,
group-level) and two nodal coefficients: the strength (weighted degree) and the modal controllability (Pasqualetti et al., 2014). EMO: emotional
processing, GAM: gambling, LAN: language processing, MOT: motor task, REL: relational processing, REST: resting-state, SOC: social
cognition, WM: working-memory.

Spearman’s ρ EMO GAM LAN MOT REL REST SOC WM
Weighted degree −0.5190 −0.4873 −0.4937 −0.4621 −0.4866 −0.3963 −0.4415 −0.5014

Modal control 0.6149 0.5767 0.5672 0.5517 0.5803 0.4769 0.5305 0.5801
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(resp. by decreasing order of modal controllability). In addition, we report the results related to
50 random removal sequences.

In Figure 6, we show the results for the motor task and the resting-state. We observe that the
correlation score between FSI and Femp decreases slowlywith the number of nodes removed from
the consensus input set, nomatter the removal ordering. For themotor task (resp. for resting-state),
up to 75% (resp. 40%) of the nodes can be removed from the consensus input set beforewe reach
correlation scores comparable to the three baselines previously defined (see Methods). Similar
observations are valid for the other tasks (see Supplementary Figures S9 and S10).

DISCUSSION

In this work, we studied the structure-function relationship in brain networks (Batista-García-
Ramó & Fernández-Verdecia, 2018; C. J. Honey et al., 2010; Suárez et al., 2020) across dif-
ferent task conditions as well as in resting-state. We showed that functional connectivity (FC),
that is, the coactivations among brain regions, can be explained by the correlations between
the activities of these regions resulting from a linear dynamics spreading through the structure
of the brain. This model, termed structure-informed FC, happens to be mathematically linked
to the Gramian matrix used in controllability studies (Gu et al., 2015; Karrer et al., 2020;
Pasqualetti et al., 2014). This provides a novel interpretation of FC in which we can leverage
control theory to explain state-specific FC configurations arising from a fixed anatomical
architecture. We thus proposed that different groups of regions controlling a diffusion dynamics
through the wiring diagram of the brain are responsible for FC matrices corresponding to dif-
ferent states. We introduced a principled approach to test this hypothesis and found that sparse
and stable groups of control regions, which partially overlap across states, generate FC matri-
ces that are statistically comparable to empirical ones.

Combining Brain Communication Models and Linear Controllability

Severalmodels of brain communication dynamics have been proposed in order tomap structure
and function during resting-state and in the absence of external input signals (Avena-
Koenigsberger et al., 2018; Avena-Koenigsberger et al., 2019; Goñi et al., 2014; Seguin, van
den Heuvel, & Zalesky, 2018). In parallel, other linear models considered the idea that brain
activity can be modulated by external signals and first assumed that all brain regions are input
nodes (Galán, 2008; C. Honey et al., 2009). Subsequent studies on the controllability of brain
networks (Medaglia, 2019) relaxed this assumption and assessed the role of individual input
nodes (Gu et al., 2015; Karrer et al., 2020). Later, the study of brain state transitions pointed
to the theoretical and empirical motivations of considering a set of control regions (Gu et al.,
2017). However, the question of how to identify the control set associated with a given brain
state from empirical data remains challenging (see Supplementary Note 1 for a comparison with
previous work). Here, we addressed this challenge and proposed a principledmethod to identify
state-specific sets of control regions from empirical data. We considered a symmetric Laplacian
diffusion dynamics following previous work (Abdelnour et al., 2014), though the framework can
be applied to other communication dynamics. For instance, we also tested our approach with
(a) the random-walk Laplacian instead of the symmetric normalized version or (b) with the
adjacency matrix of the connectome as the transition matrix. We obtained similar results with
significant overlap of the computed inputs sets (see Supplementary Table S16 for a comparison).
Alternative dynamics including decentralized (i.e., directed) brain communication models (Goñi
et al., 2014; Seguin et al., 2018) could provide complementary insights into the structure-
function relationship in the human brain.
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As in former connectomic studies (Abdelnour et al., 2014; Gu et al., 2015; Karrer et al.,
2020; Pasqualetti et al., 2014), our approach relies on linear time-invariant modeling
(Equation 1). Despite the known nonlinearities of neural dynamics (Breakspear, 2017), first-
order approximations have been proven useful in capturing various aspects of brain function-
ing at different spatiotemporal scales (Galán, 2008; Schaub, Billeh, Anastassiou, Koch, &
Barahona, 2015; Yan et al., 2017). In addition, time-invariance implies that the structure of
the system does not evolve over time. Although the white matter architecture evolves over
long timescales (Sexton et al., 2014; Tang et al., 2017), significant changes in the topology
of the connectome are not expected over the duration of an MRI scan. Assuming linearity
and time-invariance allowed us to derive an analytical expression of structure-informed FC
(Equation 3). Since the heuristic optimization computes this matrix a large number of times
in order to find a near-optimal input set, relying on an efficiently solved analytical expression
of structure-informed FC rather than simulating the system at each iteration is computationally
beneficial, although the computational cost remains a limitation of our framework. In sum, we
argue that linear and time-invariant modeling of functional connectivity constitutes a reason-
able and computationally tractable approach. Future studies are required to assess how much
these assumptions can or should be relaxed in light of more realistic models compatible with
the biology.

We considered in this work a coarse-grained parcellation spanning the entire brain
(Destrieux et al., 2010). We suggest that the proposed method is also suitable at the level of
subregions. For example, future research could investigate control centers in the cerebellum,
using a refined and dedicated parcellation of cerebellar nuclei (Diedrichsen et al., 2011). At
the microscale, studies of the controllability of the C. elegans connectome have shown the
potential of linear models at the neuronal level (Towlson & Barabási, 2020; Yan et al.,
2017). It has also been reported that the strength of the structure-function relationship in brain
networks is parcellation-dependent (Messé, 2020). Here, the application of our approach with a
coarser whole-brain parcellation (Desikan-Killiany atlas, 84 ROIs, see Supplementary Figure S11)
produced lower correlation scores but did not invalidate our conclusions. We encourage future
research assessing the relevance of the proposed model across parcellations spanning multiple
spatial scales.

Well-Defined Sets of Control Regions Drive State-Specific Functional Connectivity

In our analyses, we identified sparse groups of regions that are thought to support the control of
state-specific brain activity. The fact that our method finds such sparse input sets (Figure 2B),
that is, that empirical FC can be explained more simply from the true connectome structure
than from a randomly relabeled network, suggests the fitness of our model, in line with
Occam’s razor principle. Our model also captured differences between states in terms of their
respective input sets (Figure 4C), supporting the idea that different states are triggered by par-
tially overlapping yet distinct sets of control regions. Because our approach involves a heuris-
tic optimization algorithm, we assessed the consistency of the identification procedure
(Figure 3A–B) and the robustness of the identified input sets (Figure 6). The slow decrease
of the correlation score observed when the optimal input set is eroded, no matter the removal
ordering, indicates a redundant and collective effect of the control regions. Moreover, we
found that ROIs having low degree and high modal controllability, which are topological
properties associated with the brain structure independently of any activation measure, have
a higher probability to be part of an input set (Table 1). Still, we showed that the selection of
control regions was not exclusively driven by those nodal properties of the connectome, since
subcortical areas are high-degree nodes consistently selected across states (Figure 4A and
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Supplementary Figure S1) and input sets are specific to each functional state (Figure 4C).
Together, these results suggest that the identified input ROIs play a central role in driving
FC across the white matter wiring.

Importantly, this role does not imply that identified ROIs systematically match the active areas
traditionally detected in fMRI analyses. For example, the primary motor cortex (M1) is not part of
the input set of the motor task (Figure 5), although it displays strong activation in the functional
data. This activation results from the fact that M1 forms a hub in the motor task, receiving projec-
tions frommultiple regions, including the somatosensory andparietal cortices aswell as premotor
areas, and sending output commands to the periphery. This “centrality” however does not entail
that M1 is part of the set of drivers that put the brain in a state that is suitable for motor control. In
this regard, our findings are supported by recent experimental evidence in mice showing that
thalamic inputs are essential to drive the motor cortex during movement execution (Sauerbrei
et al., 2020). A similar example is that of Wernicke’s area, which was not part of the input set
of the language processing task (Figure 5) but whose activation is often associated with language
understanding. More generally, the fact that drivers are preferentially (but not exclusively) ROIs
with low degree and high modal controllability is consistent with the idea that reaching demand-
ing states requires the control of decentralized and distributed areas, which in turn influence the
whole system including hubs, such as M1 or Wernicke’s area (Amico, Arenas, & Goñi, 2019;
Eisenreich et al., 2017; Gu et al., 2015; Liu et al., 2011; Omrani et al., 2016).

In order to gain a better insight into the role of the ROIs that we identified, we turn our atten-
tion to the drivers common to all states. The presence of subcortical structures (including basal
ganglia, amygdala, hippocampus, and thalamus) in the input set of all states is consistent with
their strong contribution to whole-brain communication (Bell & Shine, 2016), motor control
(Shadmehr & Krakauer, 2008), language processing (Ketteler, Kastrau, Vohn, & Huber, 2008),
reward-related processing (Delgado, Nystrom, Fissell, Noll, & Fiez, 2000) and cognition in gen-
eral (Koziol & Budding, 2009). Anatomical and physiological evidence established the existence
of cortico-subcortical loops supporting functionally segregated systems (Alexander, DeLong, &
Strick, 1986). Within these loops, which include the anterior cingulate and dorsolateral prefron-
tal cortices that have been designated as cognitive control centers (Cole et al., 2013; Dosenbach
et al., 2007; Power & Petersen, 2013), subcortical structures are thought tomodulate the process
of action selection, given afferent cortical signals (Koziol & Budding, 2009). Regarding the other
identified regions, we can speculate that their pericallosal situation and their proximity to
subcortical regions supports interhemispheric communication and the integration of cortico-
subcortical loops (Koziol & Budding, 2009; van der Knaap & van der Ham, 2011). We provided
in our analyses a numerical assessment of their consistency in the context of our model. Their
functional relevance remains to be further validated in neurophysiological studies involving
tailored experimental protocols, and the present work can guide future research investigating
brain regions that underlie task-specific control.

Distinguishing Resting-State From Task Conditions

In this study, we applied our approach to both resting-state and task-based FC without a priori
distinction, although their properties are different (Deco et al., 2011) and resting-state was the
only condition that did not require any active involvement of the individuals. Interestingly, our
method captured the singularity of resting-state in several regards: The matching between
structure-informed and empirical FC is lower (Figure 2A–D) and requires more input regions
(Figure 2B–E). Moreover, the input set related to resting-state is distinct from that of task con-
ditions (Figure 4C) and includes more regions belonging to the frontoparietal subsystem and to
the default mode network (Figure 4A).
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The larger variability of resting-state connectivity across individuals compared with task-
based FC, as individuals are left to wander freely, can influence the significance of the group-
level resting-state FC (see theMethodological Considerations section below). This could explain
the lower correlation score obtained at the group level (Figure 2A). However, we also observed
lower correlation scores at the individual level (Figure 2D) and the overlap of consensus input
sets across individuals in resting-state is in the same range as other tasks (Figure 2F). This suggests
that there exists a common set of control ROIs driving resting-state that is detected by our model.
Further analyses of these regions at the individual level are required to validate their physiolog-
ical role.

The gradient of structure-function coupling observed for the resting-state in Figure 3D, from
high correlation in primary sensory areas to low correlation in regions associated with more
abstract functions, is consistent with recent studies (Liégeois, Santos, Matta, Van De Ville, &
Sayed, 2020; Preti & Van De Ville, 2019; Vázquez-Rodríguez et al., 2019). It has been sug-
gested that the stronger correspondence between structure and function in visuomotor net-
works can support the fast reaction to peripheral inputs (Preti & Van De Ville, 2019), while
the structure-function decoupling in transmodal regions can promote their involvement in
higher order cognitive functions (Vázquez-Rodríguez et al., 2019). During active tasks, the
overall structure-function coupling is stronger than in resting-state, indicating that the brain
anatomy can support a variety of functional configurations that adjust to the ongoing task-
demand. Note that we computed the correlation score for subsystems including connections
linking different subsystems. Excluding these connections modifies the results reported in
Figure 3D and the associated interpretation (see Supplementary Note 4).

Accumulating evidence from fMRI studies speculate that resting-state FC forms a “standard”
architecture in which segregated functional subsystems are represented, and which supports
the transfer of information related to the implementation of tasks (Cole et al., 2014; Deco et al.,
2011; Greicius, Krasnow, Reiss, & Menon, 2003; Ito et al., 2017; van den Heuvel & Pol, 2010;
Yeo et al., 2011). This could explain why, from a controllability viewpoint, our results distin-
guish rest (the passive, default state) from task conditions (the active, target states). Following
the hypothesis that resting-state connectivity supports task implementation, an extension of
this study consists in applying our framework to the graph structure defined by resting-state
FC instead of the connectome, in order to investigate which brain regions drive the rest-to-task
transitions.

Methodological Considerations

Our study relies on several methodological choices. In the construction of the connectome
matrix, we defined the weight of a structural connection between two regions as the streamline
density between these regions, that is, the number of reconstructed streamlines normalized by
the size of the ROIs they are linking (Hagmann et al., 2008). This normalization is used in
order to mitigate the bias due to the variable size of ROIs (see Supplementary Note 2).
Alternative weightings exist for structural connections, and which one is the most appropriate
remains an open question (Oldham et al., 2020). In order to derive the group-level FC matri-
ces, we computed the entry-wise average of individual-level matrices. Other approaches in-
clude computing the pairwise correlations of the concatenation of individual-level BOLD time
series (Liégeois et al., 2020) or computing the barycenter of individual-level matrices, using the
fact that they belong to the manifold of positive semi-definite matrices (Venkatesh, Jaja, &
Pessoa, 2020). Finally, our approach assumes that FC is defined as the linear correlation be-
tween activity time series. More complex measures of FC, such as partial correlations (Liégeois
et al., 2020) or mutual information (Hlinka, Paluš, Vejmelka, Mantini, & Corbetta, 2011),

Network Neuroscience 604

Structure-informed functional connectivity



could provide complementary insights into the structure-function relationship but would
require adjustments in the derivation of structure-informed FC.

Conclusion and Future Work

This report presented a system-theoretic framework for identifying potential state-specific con-
trol regions through a model linking structure and function in human brain networks. In this
respect, it linked concepts of brain communication dynamics and connectome controllability.
We expect that future research, for instance in clinical populations, will further validate the
proposed approach by studying the impact of neurological deficits and lesions on the identi-
fied control regions. This work could in turn guide physiological studies investigating the role
of particular regions in controlling brain processes. Future work should also analyze individual
differences in the identified control regions and their possible relation to behavior.

MATERIALS AND METHODS

Dataset

We retrieved the preprocessed “100 unrelated subjects” dataset of the Human Connectome
Project (HCP) database (https://db.humanconnectome.org/), HCP 1200 release (Van Essen
et al., 2013). All individuals (54 females, 46 males, 22–36 y.o.) gave written informed consent
to the HCP consortium. Scanning protocols were approved by the local Institutional Review
Board at Washington University in Saint Louis. Acquisition parameters are detailed in previous
HCP reports (Glasser et al., 2013; Van Essen et al., 2013; Van Essen et al., 2012).
Preprocessing consisted of HCP minimal preprocessing pipelines (Glasser et al., 2013). We
applied further processing steps in agreement with previously published studies using HCP
data (Amico et al., 2019; Rosenthal et al., 2018; Tipnis et al., 2018).

Parcellation. We used the cortical parcellation introduced by Destrieux and colleagues
(Destrieux et al., 2010) and composed of 148 nonoverlapping regions of interest (ROIs).
Subcortical structures (thalamus, caudate nucleus, putamen, pallidum, hippocampus, amyg-
dala, accumbens nucleus) and cerebellum were extracted using the FMRIB Software Library
(Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012) and added to the parcellation for
completeness, bringing the number of ROIs to n = 164.

Connectome reconstruction. The processing of diffusion data was conducted for each individ-
ual using state-of-the-art methods implemented in the MRtrix3 toolbox (Tournier et al., 2019).
In summary, a tissue-segmented image was generated (MRtrix command 5ttgen) in order to
perform anatomically constrained tractography (Smith, Tournier, Calamante, & Connelly,
2012). Then, multi-shell, multi-tissue response functions were computed (MRtrix command
dwi2response msmt_5tt) in order to inform the constrained spherical deconvolution
(MRtrix command dwi2fod msmt_csd; Jeurissen, Tournier, Dhollander, Connelly, &
Sijbers, 2014). Probabilistic tractography (MRtrix command tckgen) was performed using a
second-order integration over fiber orientation distributions (iFOD2 method; Tournier,
Calamante, & Connelly, 2010) to allow for a more precise fiber tracking through crossing re-
gions. This produced an initial tractogram composed of 10 million streamlines. The tractogram
was corrected (SIFT2 approach, MRtrix command tcksift2) by assigning a weight to each
streamline such that the weighted contribution of all streamlines to the spherical deconvolu-
tion diffusion model matches as well as possible the fiber orientation distribution lobe integrals
of the diffusion data (Smith, Tournier, Calamante, & Connelly, 2015). This post hoc operation
produced a more biologically meaningful representation of white matter tracts. Eventually, we
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built the adjacency matrix S of the connectome by computing the fiber density between each
pair of previously defined ROIs (MRtrix command tck2connectome with option –scale_

invnodevol). The group-average adjacency matrix is obtained as the entrywise average of the
K = 100 individual-level adjacency matrices. Both group-average and individual matrices were
kept unthresholded. Tractograms composed of 1 million or 100,000 streamlines were shown to
produce a group-level matrix that is highly correlated (r > 0.99) with that used in the main
analysis (see Supplementary Figure S12).

Empirical functional connectivity. We included fMRI data acquired during resting-state and seven
tasks. The emotional processing task (EMOTION) consisted of recognizing which of the two faces
(resp. shapes) presented at the bottom of a screen matched the one presented at the top of the
screen. Faces were aimed to represent either anger or fear. In the gambling task (GAMBLING),
participants playeda card guessing game inorder towinor losemoney. The acquisition comprised
neutral blocks, blocks with mostly reward trials, and blocks with mostly loss trials. The language
processing task (LANGUAGE) alternated story blocks and math blocks. In story blocks, partici-
pants had to answer a two-choice question after the hearing of a brief story. In math blocks, par-
ticipants had to choose the right answer out of two after hearing an arithmetic operation. In the
motor task (MOTOR), participants had to move either their fingers (left or right), their toes (left or
right), or their tongue following visual cues on a screen. In the relational processing task
(RELATIONAL), participants were presented with pairs of objects on a screen. Each object was
one shape filled with one texture. Participants were asked to determine what dimension (shape
or texture) differs between the objects. The social cognition task (SOCIAL) consisted of video clips
presenting objects (squares, circles, triangles) either interacting in someway or moving randomly.
Participants were asked to decide whether objects had an interaction or not, or not sure. In the
working-memory task (WM), participants were presented with pictures to be memorized (zero-
back and two-back trials). Separate blocks presented pictures of places, tools, faces, and body
parts. Full details about the fMRI task protocols along with the references from which they are
derived are available in the HCP 1200 reference manual.

The preprocessing of fMRI data included distortion correction, subject motion correction,
intensity normalization, and registration to standard MNI space (Glasser et al., 2013). Resting-
state blood-oxygenation-level dependent (BOLD) time series were filtered in forward and re-
verse directions (first-order Butterworth, bandpass = [0.001, 0.08] Hz; see Power et al., 2014).
We did not regress out the global signal in the main analysis; the impact of global signal
regression is discussed in Supplementary Note 3. For both resting-state and task fMRI, the
voxel time series were then z-scored and averaged in each ROI using the Connectome
Workbench toolbox (Marcus et al., 2011) and excluding outlier time points outside 3 standard
deviations from the mean (Workbench command -cifti-parcellate). Empirical func-
tional connectivity (FC) matrices Femp were obtained by computing Pearson’s correlation
coefficient between each pair of resulting time series. For each task, FC matrices of both
fMRI phase encoding directions (left-to-right and right-to-left) were averaged in order to reduce
the effect of artifactual noise. For resting-state, the four resulting matrices (two scans, two phase
encoding directions) were averaged for the same reason. The group-average FC matrix (for each
task and resting-state) is obtained as the entrywise average of the K = 100 individual-level FC
matrices. Both group-average and individual matrices were kept unthresholded.

State Correlation Matrix of a Linear Diffusion Process Driven by White Noise

We consider the following linear discrete time-invariant dynamics:

x kþ 1ð Þ ¼ Ax kð Þ þ Bu kð Þ: (5)
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We excite the system with white noise signals u, and we assume that x is centered, A is stable,
the input signals are not correlated with the initial state of the system (i.e., E{x(0)uT(k)} = 0, 8k),
and input signals in u have unit variance. We compute the steady-state covariance matrix Σ =
Cov(x) of System 5 as follows:

Σ kþ 1ð Þ ¼ E x kþ 1ð ÞxT kþ 1ð Þ� �
¼ E Ax kð Þ þ Bu kð Þð Þ Ax kð Þ þ Bu kð Þð ÞT

n o
¼ AE x kð ÞxT kð Þ� �

AT þ AE x kð ÞuT kð Þ� �
BT

þ BE u kð ÞxT kð Þ� �
AT þ BE u kð ÞuT kð Þ� �

BT

¼ AΣ kð ÞAT þ BBT using the assumptions on u kð Þ
) Σ ¼ AΣAT þ BBT in steady‐state:

We notice that excitation signals with non-unit variance would result in a scaling of matrix B,
which would not affect further results.

Defining P as the diagonal matrix containing only the diagonal entries of Σ (i.e., the states’
variances), we can apply a symmetric normalization to the steady-state covariance matrix to
obtain a pairwise correlation matrix that we use as a model of functional connectivity:

eΣ ¼ P−1=2ΣP−1=2;
FSI ¼ eΣ:

In this study, we consider the case of a diffusion process unfolding on the connectome, as
proposed by Abdelnour and colleagues (Abdelnour et al., 2014). The state transition matrix A
has the following form:

A ¼ e−βL:

Here, withD being the diagonal matrix of the weighted degree of the ROIs, the matrix L=D−1/2

(D − S)D−1/2 is the normalized Laplacian of the connectome. The parameter β = �βΔT accounts
for the diffusion time constant �β and the sampling time ΔT of the process. We chose to hold this
parameter out of the optimization and to set �β = 1 and ΔT = TR, where TR = 0.72 s is the rep-
etition time of the fMRI data (Van Essen et al., 2013). This choice is arbitrary and the optimal β is
state-dependent (see Supplementary Figure S14), although choosing β 2 [0.1, 4.0] has a weak
impact on the correlation score and produces similar input sets (see Supplementary Figure S15).
Note that any hyperparameter coming with the chosen transition matrix can be included in the
optimization, at the expense of a possibly prohibitive computational cost.

In order to ensure that System 5 unforced dynamics is intrinsically stable so that the activities
decay to zero in the absence of control signals (see Gu et al. [2015], Kim et al. [2018], and the
detailed discussion in Karrer et al. [2020]), the entries of matrix A were further divided by 1 +
λmax(A), where λmax(A) is the largest eigenvalue of A. In our case, the smallest eigenvalue of L is
always 0 since the Laplacian of an unsigned graph is positive semi-definite, and always pos-
sesses a zero eigenvalue (Mohar, Alavi, Chartrand, & Oellermann, 1991). Therefore, λmax(e

−βL)
is always equal to 1.

Correlation Score

The similarity between FSI and Femp is computed as the entry-wise Pearson’s correlation coef-
ficient r, following previous work (Abdelnour et al., 2014; Finn et al., 2015; Goñi et al., 2014;
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Mišic�et al., 2015; Tipnis et al., 2018). Denoting F
4
SI (resp. F

4
emp) as the vectorized version of the

upper triangular part of FSI (resp. Femp), we define r as

r ¼ corr F
4
SI; F

4
emp

� �
: (6)

Finding the Optimal Set of Control Regions: Genetic Algorithms

Given the combinatorial nature of the optimization Problem 4, we must resort to heuristic
methods in order to approach optimal solutions, without guarantee of optimality. A convenient
choice is the family of genetic algorithms (Wolsey & Nemhauser, 1999). Here, the steps in-
volved in the genetic algorithm that we used are (a) generating a random population of admis-
sible input sets, (b) selecting the best input sets in the population, (c) breeding a new
generation of solutions by crossovers between selected input sets, (d) applying random mod-
ifications in the new population to avoid getting trapped in a local optimum, and (e) repeating
the process until no more improvement is achieved after a given number of iterations. In the
present study, we used the Matlab implementation of genetic algorithms, from the Global
Optimization Toolbox, with default options and parameters. The Matlab code used to produce
the results in this report is available online (https://github.com/bchiem42/Structure-informed
-FC; Chiêm, 2020).

Consensus Input Set

In order to mitigate the lack of optimality guarantee of genetic algorithms, we compute multiple
solutions using random initializations. We define the consensus input set as the set of ROIs
selected at least k times. Inspecting the histogram of ROI selections allows us to set the threshold
value k. In our analysis, the distribution of ROI selections is bimodal (see Supplementary Figure S3
for a typical example). Therefore, choosing different thresholds k between both modes of the
histogram has a limited impact on the results (see Supplementary Figure S4). Note that choosing
a threshold too low could produce a consensus input set of which the cardinality is higher than
the number of input nodes allowed in the optimization, especially when few input nodes are
allowed.

Baselines

In order to assess how well our approach maps structure to function, we provide three baseline
values.

Baseline 1. This is the Pearson’s correlation coefficient between the vectorized upper-
triangular of the adjacency matrix of the connectome S and the empirical FC matrix Femp, with-
out any transformation.

Baseline 2. We randomly relabel the ROIs of the connectome matrix S while keeping Femp

unchanged, and then apply our method. This null model breaks the ROI-to-ROI correspon-
dence between structure and function and preserves all network properties of the connectome.
In particular, it preserves the distribution of weighted degrees and allows us to test whether the
selection of control ROIs is exclusively driven by their degree. In the Results, we report the
maximum correlation score obtained over 30 random relabeling.

Baseline 3. In order to assess the usefulness of solving the optimization Problem 4 to identify
optimal input sets, we compute the correlation score between Femp and FSI obtained with an
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input set drawn uniformly at random, with cardinality m 2 [37, 43], following the result de-
picted in Figure 2B. In the Results, we report the maximum correlation score obtained over 30
random input sets.

Modal Controllability

Given a system defined on a network of n nodes, modal controllability is a nodal property that
quantifies the ability of a single node to steer the system towards states requiring substantial
input energy (Gu et al., 2015; Karrer et al., 2020; Pasqualetti et al., 2014). We compute the
modal controllability i of node i from the eigenvalues λ and the eigenvectors v of the adjacency
matrix S of the connectome:

�i ¼
Xn
j¼1

1 − λ2
j Sð Þ

� 	
v2ij :

In this work, we computed modal controllability using the Matlab implementation provided by
the authors of Gu et al. (2015).

2D Visualization of Input Sets Using t-Distributed Stochastic Neighbor Embedding

In a network of n nodes, we represent an input set as an n-dimensional binary vector indicat-
ing which node is selected (1) or not (0). In order to visualize how multiple input sets relate to
each other, we can use dimensionality reduction to embed the n-dimensional vectors in two
dimensions. In particular, the t-distributed stochastic neighbor embedding (van der Maaten &
Hinton, 2008) aims at finding a low-dimensional representation of high-dimensional vectors
while preserving their local structure, such that similar vectors are represented by close points
in 2D and vice versa, with high probability. In this work, we used the Jaccard index to measure
the similarity between vectors.

Jaccard Index

The Jaccard index J between two sets S1 and S2 measures the overlap between these sets and is
computed as

J S1;S2ð Þ ¼ S1 ∩ S2j j
S1 ∩ S2j j ; (7)

with J = 0 indicating no overlap and J = 1 indicating perfect overlap. To derive the expected
value of J, we consider a set of n elements from which we draw two subsets S1 and S2 having
the same cardinality m and whose elements are chosen uniformly at random. We denote the
number of common elements between S1 and S2 as |S1 ∩ S2| = k. The corresponding Jaccard
index is

J S1;S2ð Þ ¼ k
2m − k

:

Now, the probability that the number of common elements is exactly k is

P S1∩S2j j ¼ kð Þ ¼
m
k

� �
n−m
m−k

� �
n
m

� � ;
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since we have
n
m

� �
choices for the elements of S1 and

m
k

� �
n−m
m−k

� �
choices left for the

elements of S2. Therefore, the expected value of the Jaccard index between two random sets of
size m drawn from n elements is

E J S1;S2ð Þf g ¼
Xm
k¼0

m
k

� �
n−m
m−k

� �
n
m

� � k
2m − k

:

For n = 164 and m = 40 (see Figure 2E), we obtain E{J} ≈ 0.1389.
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