pature
COMMUNICATIONS

ARTICLE
Received 21 Jul 2015 | Accepted 7 Oct 2015 | Published 17 Nov 2015 OPEN

The antisymmetry of distortions

Brian K. VanLeeuwen' & Venkatraman Gopalan'

Distortions are ubiquitous in nature. Under perturbations such as stresses, fields or other
changes, a physical system reconfigures by following a path from one state to another; this
path, often a collection of atomic trajectories, describes a distortion. Here we introduce an
antisymmetry operation called distortion reversal that reverses a distortion pathway. The
symmetry of a distortion pathway is then uniquely defined by a distortion group; it has the
same form as a magnetic group that involves time reversal. Given its isomorphism to
magnetic groups, distortion groups could have a commensurate impact in the study of
distortions, as the magnetic groups have had in the study of magnetic structures. Distortion
symmetry has important implications for a range of phenomena such as structural and
electronic phase transitions, diffusion, molecular conformational changes, vibrations, reaction
pathways and interface dynamics.
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distortion or distortion pathway refers to any one of the

many possible paths between two or more states

of a system. They are important for understanding
chemical reaction kinetics'™*, phonon modes®~’, molecular
pseudorotations and conformational changes!=3, diffusion®11,
the motion of interfaces such as grain boundaries!>!3, domain
walls'*15, and dislocations'®!7, and emergent phenomena in
transient or metastable states that arise from a distortion of the
ground state!8-23, There is often a privileged point on a pathway
that is extremal in energy. For stable phonons, this is the ground
state; for unstable phonons, the parent structure; for reaction
pathways, the transition state; and for phase transitions, the
saddle point. The relative energy of this point corresponds to the
activation energy in the transition-state theory“?*. In many
important pathways, it is found that the energies on either side of
this privileged point are symmetric, for example, when opposite
sides are mirror images of each other. An antisymmetry operation
named distortion reversal, 1* is introduced here to describe the
complete symmetry of such pathways. When combined with
conventional symmetry groups, it gives rise to distortion groups.
The symmetry of a distortion pathway is uniquely described by a
distortion group.

Distortions, especially phonon modes, are studied today using
representation analysis®/, through decomposition onto a
symmetry-adapted basis using irreducible representations
(irreps). Why then is the concept of distortion-reversal
symmetry and distortion groups necessary? It is instructive to
look at the history, where a similar question has been posed for
over 45 years regarding the need for time-reversal symmetry and
magnetic groups versus representation analysis for the study of
magnetic structures>>?®. Opechowski and Dreyfus rigorously
showed that representation analysis of magnetic structures and
magnetic groups were equivalent, through a correspondence
between one-dimensional real irreps and magnetic groups®>27-28,
In practice, however, magnetic groups are widely used today due
to their ease of use in describing and visualizing complex spin
structures, easy transformations for predicting the form of
magnetic property tensors and in deriving the energy invariants
in magnetic crystals in a simple and transparent manner. In
contrast, distortions and vibrations in molecules and crystals are
studied today only by representation analysis. There is currently
no equivalent formalism to the time-reversal symmetry or the
magnetic groups for studying distortions. This work provides that
framework through the introduction of distortion-reversal
symmetry and distortion groups.

In developing distortion symmetry, we discovered that a
somewhat similar concept was introduced several decades ago in
transition-state theory in the limited context of reversing
reactants and products in simple molecular reactions!3. We
demonstrate here that the concept of distortion groups is much
more general, and can be used for studying distortions
interpreted in a very broad sense, including phonon modes, the
migration of crystal defects such as vacancies and interstitials,
dislocation motion, ferroelectric switching, the motion of
interfaces such as domain walls and grain boundaries, and
electronic processes. Further, we show that they can predict the
form of tensors that describe any property change of a system as a
function of a general distortion parameter. We demonstrate that
this symmetry framework can be applied not only to nuclear
positions, but to the electronic structure itself, including the Berry
phase of a distortion. We show that any distortion whose
symmetry group includes distortion-reversing elements will have
a Berry phase of exactly zero. Distortion symmetry can be applied
to improve computational methods such as the popular nudged
elastic band (NEB) method?®, for finding minimum-energy
pathways (MEPs). Applying distortion-reversing symmetries to
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NEB reduces the number of images required by a factor
of two, which could increase performance significantly.
Symmetry analysis can also identify numerical errors in NEB
computations that may not be properly converged or
symmetrized. The irreps of a distortion group classify the ways
in which the symmetry can be broken by perturbations of the
distortion pathway, potentially leading to lower-energy pathways
than would be achieved by only applying NEB or related
methods, such as CI-NEB. This is similar to how the irreps of the
symmetry group of a structure can be used to classify and explore
the types of stable and unstable phonons (perturbations of the
nuclear positions) of the structure that can lead to other
structures with lower energies. Double-antisymmetry groups
can describe the symmetry of distortions of magnetic molecules
and crystals, where both distortion-reversal and time-reversal
antisymmetries become relevant.

Results

Definition of distortion-reversal symmetry. We introduce the
concept of distortion reversal in Fig. la in a discrete system
through three randomly placed atoms (in red) that form the
parent structure. The atoms then displace to their new positions
as per the displacements shown as arrows. The final distorted
structure (in light pink) is the result of displacing each position
accordingly. The action of the distortion-reversal operation, 1%,
on the distortion in Fig. la is the reversal of displacements u; of
the atoms i (=1, 2, 3) to —w; in Fig. 1b. These displacements
have been decomposed in Fig. 1c into rotation (u;g, Fig. 1d),
translation (u;r, Fig. le), scaling (u;s, Fig. 1f) and deformation
(u;p, Fig. 1g), that is, w;=w;r, + w; 7+ u; s+ w; p. This is analo-
gous to the Helmholtz decomposition of continuous vector fields
into components (see Methods). This decomposition is not
necessary for implementing 1*, but it is helpful to illustrate the
relationship between 1* and the rotation-reversal operation, 1?,
introduced by Gopalan and Litvin®. While 1% reverses the
rotation component, u;z (Fig. le) to —u;y, it has no clear
implications for the other components. This creates a problem in
implementing 1%, because it requires the identification of
appropriate polyhedra within a structure that exhibits rigid
rotations, but not the other components; the process for such
polyhedral identification is non-unique, and often approximate in
real systems. In this work, no such polyhedron is required to be
identified in implementing 1* as seen from Fig. 1a,b. Further, 1*
reverses all the components of w; that is, 1*(w;r, w;r, g,
u;p)=(—w;r, —W;T, —U;5, —U;p), NOt just rotation, u; g, and
in this sense, 1% is a special case of 1*. There is an alternate way to
view the action of 1* as described below, which will be used in the
rest of this article. For linear atomic paths of atoms indexed by
subscript i, the final atomic positions (r;) are given by
r'=r;+Au, where —1<A<+1 and r; are the Iinitial
positions of atoms, i, in the intermediate state (Fig. 1h). A
typical distortion pathway may begin at A= —1, go through an
intermediate state at =0, and end at A= + 1. We can reverse
this pathway by reversing the parameter A— — A while leaving
the displacement amplitude u; constant. The atomic trajectories
in this example are linear with respect to A, but in general, the
pathway can be a nonlinear function r;(4); the action of 1* will
then be to reverse this function r}(1) — ri( —2).

We now make several important observations regarding the
distortion-reversal operation, 1*. First, in addition to the ordinary
dimensions, a distortion has a time-like dimension, 4, that
describes the extent of the distortion. For a reaction pathway, this
is the reaction coordinate; for a phonon mode, this is the
amplitude; and for a phase transition, this is the order parameter.
In this article, we normalize these over the range —1<A< +1.
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Figure 1 | A simple example of a distortion and its decomposition. Three
atoms (red spheres) are displaced by vectors u (black arrows) to their new
positions (pink spheres) in a. The collection of the three displacement
vectors, u, constitute a distortion. The distortion-reversal operation, 1%,
reverses these displacements, u, and hence the distortion, as shown in b.
The blue double-headed arrow indicates that repeated application of 1* can
reverse between a and b. In ¢, each displacement vector, u, is decomposed
into pure rotation (green arrows) (d), pure translation (purple arrows) (e),
pure scaling (blue arrows) (f), and the remainder deformation (pink
arrows) (g). As a guide to the eye, the orange and grey triangles in ¢-g
indicate the initial and final configurations of the atoms, respectively. Linear
atomic trajectories depicted here can be parameterized by —1<1<1, as
shown in h. Distortion-reversal operation, 1%, can thus be alternately viewed
as a reversal of A for a fixed u. This definition of 1* reversing the sign of 4,
and not the reversal of displacement vectors, will be used in the rest of this
article.

Note that for coordinates (r, t, 4), spatial inversion, 1, reverses the
position vector r— —r, 1’ reverses the time t— —¢ and 1*
reverses A— —A. Second, an analogy to the time-reversal
operation, 1’ can be drawn from Fig. 1. If 1 is replaced with ¢,
then the displacement vectors u are replaced with velocity vectors,
v, and 1" is replaced by 1’ between panels in Fig. 1lab. If the
velocities were decomposed in a similar way as in Fig. 1, the
rotational component of this decomposition would correspond to
the angular momentum, and for charged particles, magnetic
moment. Because it was inspired by the practice of applying 1’ to

reverse the localized magnetic moments of atoms, Gopalan and
Litvin’s rotation-reversal operation, 1?, focused exclusively on the
rotational component®®. Third, we note that the action of 1* i
well defined on any structure that is parameterized by 4, not ]ust a
system of discrete atomic positions and displacements. For
example, in calculating ferroelectric polarization, the modern
theory of polarization implicitly parameterizes the electronic
structure of a system by A by parameterizing the ionic positions,
and then calculating the ground-state electronic structure for a
series of steps between 0 <A< + 1 (ref. 31). On such a system, 1*
has a well-defined action, even on the electronic structure itself
(see later discussion on Berry phase). Fourth, we note that the
symmetry of a distortion is not the symmetry of any particular
static structure along the pathway, but rather of the symmetry of
the entire pathway. The distortion group maps the entire pathway
onto itself, and not the individual structures onto themselves; an
infinitesimal section of the pathway may map to another section
of the pathway through a distortion-reversing operation such that
the pathway as a whole remains invariant.

Application to molecular distortions. We first demonstrate
distortion symmetry in a distortion of a simple molecule and
show how it can predict relevant property changes. Figure 2
shows the pseudorotation distortion of phosphorus pentafluoride,
PFs, a well-known fluxional molecule. The ground-state geometry
of PFs has 62m symmetry. The distortion proceeds by the Berry
mechanism? where the pair of fluorine atoms on the high-
symmetry axis move down as another pair of fluorine atoms
move up. The structure goes through an intermediate transition
state with 4 mm symmetry to a final state with 62m symmetry.
Although this distortion is not a rotation, the final state is
equivalent to the original structure rotated by 90°, hence the term
‘pseudorotation’. We calculated the MEP using the NEB
method®?2. The MEP represents the set of most likely
trajectories that atoms will follow when physically transitioning
between these states, and NEB calculations discretize the
distortion pathway into a sequence of ‘images’. The highest-
energy point on the MEP is known as the transition state and
corresponds to A =0 in Fig. 2. The energy of the transition state
corresponds to the activation energy.

The MEP of the PF5 pseudorotation was determined to have
4*mm* symmetry (see the Methods section). A polynomial fit to
the energy profile, AE, of the MEP, shown in Fig. 2a, is
symmetric, that is, it is invariant under 41— — 4. This is required
by the distortion group, 4*mm*, as shown next. Because 1*
commutes with all spatial operations, the action of any starred
symmetry operation on a coefficient of the power series
expansion of P(4) can be determined, where P is any property
of the system. Specifically, the energy, P= AE in Fig. 2 is a scalar
property and is invariant under rotation. By applying tensor
transformation rules, we find that 4*AE(1) = AE( — /). However,
since 4* is a symmetry operation, Neumann’s principle>>3 states
that 4*AE(1) = AE(A). Equating the two, one obtains

AE(J) = AE(— ). (1)

In other words, AE(4) is a symmetric function of A, which
is consistent with the fit in Fig. 2. The three bond lengths,
PF1, PF2 and PF3, also follow the requirements of the 4*mm*
symmetry as shown in Fig. 2. For example, 4°(PF1
(A))=PF1(—4), 4*(PF2(A))=PF3(—4) and 4"(PF3(1))=
PF2(— /). Since 4" is a symmetry of the distortion, by
Neumann’s principle, PF1(4) =PF1(— 1), PF2(4)) =PF3(— 1),
and PF3(1)) = PF2( — A). This is consistent with the results of the
NEB calculation shown in Fig. 2b.

Supplementary Note 1 and Supplementary Fig. 1 present a
similar application of distortion groups to molecular vibrations in
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Figure 2 | Distortion symmetry of the PF5 pseudorotation. The PFs
molecule undergoes pseudorotation from the A= —1 state (left inset in a,
blue atom is P and yellow atoms are F), through a transition state at 1=0
(middle inset in a), to the A= +1 state (right inset in a). Pairs of static
images at 4 and — 1 are related by a fourfold rotation along the PF1 bond
(see inset in b for atom labels). The orange (light blue) arrows represent
portions of the pathway going in the direction of increasing (decreasing) 4.
The path segment over an infinitesimal path segment, 44 to the left of A =0
is transformed under 4* into the path segment — 42/ to the right of 1=0.
The displacements of atoms between consecutive images on the left can be
related to the displacements of atoms between consecutive images on the
right. Thus 4* transforms images between / and — 4 and also the atomic
displacements between consecutive images in such a way that the overall
distortion path remains invariant. The set of all such operations that leave
this pathway invariant form the complete distortion-symmetry group of this
pathway, 4*mm®*, where starred symmetries are distortion reversing and are
highlighted by blue colour. The blue circles in a are energies from NEB
calculations and the black line is the symmetrized fit as guaranteed by the
4*mm* symmetry group. The PF1 bond length (labelled in the inset in b,
which shows the superimposed images of the molecule along the distortion
path) as a function of A for the NEB calculated path is plotted in b as blue
circles; it is also guaranteed to be an even function with respect to 4, as is
consistent with the symmetrized fit (blue line). Similarly, the PF2 (green
circles and line) and PF3 (red circles and line) bond lengths are required by
the 4*mm* symmetry to be mirror images of each other; this is consistent
with the plot in b.

H,0 and NH; molecules. For vibrations of NH; corresponding to
the doubly degenerate irrep, E, in particular, the distortion-
symmetry framework is shown to be far more intuitive and
transparent than the equivalent representation analysis. Distor-
tion-reversal symmetry can be used to avoid the complexities of
representation analysis such as in two- or higher-dimensional
irreps. For many problems, distortion symmetry offers a simple
and elegant alternative to traditional representation analysis.
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Application to finding an MEP. Next, we demonstrate a sym-
metry-based approach to testing the stability of a pathway and
checking the results of numerical computations for accuracy. This
is demonstrated in the NEB calculation of activation energy for
an oxygen atom diffusing across a Cg ring on the surface of
graphene (Fig. 3a,b). Although not typically thought of as a
‘distortion’, this diffusion path is a distortion within the sym-
metry framework presented in this article. Linear interpolation
from the state with oxygen on the right (1= — 1), to the state
with oxygen on the left (1= +1) creates a path with m*m2*
symmetry with a high-activation-energy barrier (Fig. 3a,b); this is
not an MEP. Typically, only the first and last images are specified
when setting up a NEB calculation and a linear path, such as this
would be constructed by default by the NEB implementation. For
example, this is the case for VIST Tools for VASP and neb.x for
Quantum Espresso (QE). Relaxing this path using NEB cannot
and does not change the m*m2* symmetry, because every NEB
iteration must conserve distortion symmetry (Fig. 3c,d;
Supplementary Note 2; Supplementary Figs 2-5), since the forces
are balanced by symmetry. Without understanding that the
symmetry needs to be broken, one might incorrectly conclude
that the activation barrier for oxygen diffusion on graphene is
several times larger than it actually is. We can now systematically
explore perturbations to this path by using the irreps of m*m2*
summarized by the character table given in Table 1.

For a distortion path discretized into M images with N atoms,
the perturbations form a 3NM-dimensional space; this is similar
to the 3N-dimensional space of phonons. Similar to the methods
applied to studying phonons and in mode crystallography, we can
use the irreps in Table 1 to construct a symmetry-adapted basis
(Supplementary Note 1) from an arbitrary basis set for general
perturbations of the path. Using perturbations associated with the
irreps, I';, I'; and Ty, we can reduce the symmetry of our initial
guess path to the symmetry of their kernels, 2*, m and m*
respectively. To achieve a trivial symmetry (point group 1) path,
we can combine these. For the example in Fig. 3, subspaces
associated with I, and I'; are stable (Fig. 3c), while for the
subspace associated with I'y (Fig. 3d), one or more directions are
unstable, that is, small perturbations of the path in these
directions will decrease the energy of the path and there will be
a net force driving the path away from m*m2* and towards the
m* path symmetry as seen in Fig. 3d. This is similar to the
unstable phonons of an unstable structure. The stability or
instability of any path perturbation could clearly be calculated
using a method analogous to finite displacement methods used
for calculating phonon frequencies of static structures. Using a
symmetry-adapted basis for the perturbations of a distortion path
would convey the same benefits as it does for phonon
calculations, for example, reducing the force constants matrix
to block diagonal form.

Figure 3e shows that the path with trivial symmetry (that is,
point group 1) relaxes to a much lower-energy path with m*
symmetry. The perturbations are exaggerated in Fig. 3; the
maximum displacement of oxygen along the path was 0.1 A in
panel a and about 0.18 A in panel b. Because NEB can only raise
the symmetry of the path, not lower it (see Methods), the 2* path
cannot achieve the same results and has approximately the same
energy as the original relaxed m*m2* path. Essentially, the same
path as our m*m2* path was studied by Dai et al.3*> who reported
a high-energy transition state with a barrier of 1.75eV. Dai et al.
also report a lower-energy transition state, apparently similar to
our 0.66 eV state, but with 0.81 eV and an energy profile that is
highly asymmetric with respect to the distortion coordinate. It
thus erroneously violates the m* symmetry that our symmetry
analysis in Fig. 3 indicates it must possess. Such unintentional
errors are in fact quite common in literature as the survey
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Figure 3 | The consequences of distortion symmetry and balanced forces for NEB calculations. (a-d) Superimposed images along oxygen (red atom)
diffusion paths on graphene (grey carbon atoms connected by grey bonds). In a and b, an initial linear path is assumed for the diffusion of a single oxygen
atom from right (A= —1) to left (A= +1), across a C¢ graphene ring. The symmetry of the path in a and b is m*m2*; the symmetry traps the path and
prevents convergence to a minimum-energy pathway (MEP). To break the m*m2* symmetry, we perturb this linear path as m*m2* —2* and m*m2* -1,
respectively, as shown schematically exaggerated as green curves in a and b and indicated by the text in the inset. (¢,d) The final paths after NEB relaxation
starting from the perturbed paths of a and b, respectively, as indicated by red vertical arrows. The paths ¢ and d have distortion symmetries of 2* and m*,
respectively. The 2* symmetry continues to trap the transition state (just like m*m2* did for the linear path), whereas the initial path with trivial symmetry
can correctly converge to a MEP with m* symmetry. (e) The calculated energies of the images and the interpolation provided by QE's NEB module®>. ()
Results for an example two-dimensional potential energy surface inspired by the above problem, using a simple NEB implementation. The plots are
smoothed and rescaled histograms showing the frequency of NEB convergence at a given number of iterations in this example system for 100,000
randomly generated initial paths each with m* or with trivial symmetry of 1. The two curves are rescaled to the same maximum height. Symmetrizing using
the correct symmetry, m* (red curve) reduced the number of NEB iterations needed in 98.97% of test cases. The average reduction was ~2.3 x as
compared with conventional symmetry (blue curve). This demonstrates that distortion symmetry can reduce the number of NEB iterations necessary for
convergence.

examples in Supplementary Table 1 indicate. Supplementary
Table 1 gives 50 examples of published studies where distortion
symmetry would have been useful; this is clearly a very small
subset of such studies. Distortion symmetry analysis can help
identify errors and properly symmetrize computational results.
We implemented a two-dimensional potential energy surface
similar to the oxygen diffusion on graphene problem (see
Supplementary Note 3; Supplementary Fig. 6 and
Supplementary Software 1) to test whether there are potential

efficiency gains in an NEB code by implementing distortion-
reversal symmetry. The results shown in the histograms in Fig. 3f
suggests that NEB codes can potentially converge in about half as
many iterations if distortion symmetry is implemented. This
benefit is in addition to the benefit of reducing the number of
asymmetric images that would be necessary. Together, these two
benefits may potentially speed up NEB convergence by a factor of
four, that is, a fourfold reduction in total central processing unit
(CPU) time, for paths with starred symmetry. Finally, our brief
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Table 1 | The character table of the distortion group m*m2*.

1 2¢ m m* Kernel
I, 1 1 1 1 m*m2*
I, 1 1 -1 -1 2*
I's 1 -1 1 -1 m
| DA 1 -1 -1 1 m*

The four one-dimensional irreducible representations (irreps), I';-I'4, represent four distinct
types of perturbations to a distortion pathway with m*m2* symmetry. Each irrep has a kernel
symmetry shown in the last column.

survey in Supplementary Table 1 suggests that a large number of
references to the use of NEB in materials science are made in
the study of pathways with energetically equivalent end
points, such as in diffusion, dislocation, interface, and grain
boundary motion, and ferroelectric and magnetic switching
of domains®®, and therefore may have distortion-reversing
symmetries.

Application to crystals and tensor properties. Next we
demonstrate the application of distortion groups in predicting
allowed energy couplings that are odd powers in the distortion
parameter and may appear at first to be disallowed by conven-
tional symmetry groups. We will use beta barium borate,
f-BaB,0y, a widely used nonlinear optical crystal, as an example.
Using a parent structure (1=0) with R3c symmetry’’, we
construct a distortion with R3¢ variants at /= —1 and A= +1.
This distortion pathway has R3*c symmetry. The calculated
energy profile, AE(4), is shown in Fig. 4a and is symmetric with
respect to A. This is a consequence of the starred symmetry
operations, just as with the PF5 example. In Fig. 4b, we depict the
sequence of intermediate structures along the distortion pathway
by superimposing them using a colour scale. From the blurred
pattern, we can see that this distortion is mostly the nearly rigid
rotation of the B3Oy rings. For ff-BaB,0, and distortion group
R3*c (no. 4306 in the complete double-antisymmetry space group
(DASG) listing38’39), the B3O rings are on the 12c site. From
referring to the listing, this means that there are rings located at
{0, 0, 2}, {0, 0, — z+ %}, {0, 0, — z} and {0, 0, z + %} with rotation
vectors of [0, 0, w,], [0, 0, w,], [0, 0, —w,] and [0, 0, — w,],
respectively. This tells us that the R3*c symmetry requires that the
rotation (w) of the rings is only along the z axis and alternates
every two rings along the column, that is, clockwise, clockwise,
counterclockwise, counterclockwise and so on. The distortion
symmetry listing also tells us that the displacement of the rings is
only along the z axis and all the rings displace in the same
direction with the same magnitude. This is just one of the many
ways in which the concept of distortion symmetry can be used to
make useful predictions about distortions.

It is certainly not intuitive a priori how properties, such as
optical second harmonic generation (SHG), relevant to this
material would vary with this distortion. The SHG interaction,
po = diiE"EY, creates a nonlinear polarization P at a frequency
of 2w by combining two photons with electric fields E at
frequency w. In Fig. 4c, we plot the calculated values (circles) for
optical SHG coefficients for this crystal along the distortion
pathway as calculated by Cammarata and Rondinelli*”. The
macroscopic point group of the $-BaB,O, distortion described
above is 3*m. We write diji as a function of 4 as,

dijk()h) = Aijk + Bijk/I + Cijk/lz + Dijk/13 + - (2)

1*, an element of 3*m, combined with Neumann’s principle,
requires that djx(4) = — diz( — A). Thus, we immediately deduce

a _
— R3*c —_—
150
™
=}
—T' 100
©
£
2
oL 50
N
O Calculated
0 — Symmetrized fit
-1.0 -0.5 0.0 0.5 1.0
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Figure 4 | The application of distortion symmetry to a distortion of
p-BaB,0,4. The mostly rigid rotation of the B3Og rings leads to two variants
of f-BaB,0O4 with R3¢ symmetry group, the 2= —1 variant (inset in orange
in a and the A= +1 variant (inset in cyan in a), transforming through a
transition state at A =0 (inset in magenta in a) with a symmetry of R3*c.
The symmetry of this path, R3*c, requires that the energy profile in a is
symmetric. (b) The superimposed images of -BaB,O, along the distortion
pathway; their colour varies from orange, through magenta to cyan as 4
varies from —1 through O to +1. (¢) The optical second harmonic
generation tensor coefficients along this pathway calculated by Cammarata
and Rondinelli3” (red, green and blue circles) and a polynomial fit (red,
green and blue lines) using only the coefficients that are consistent with
3*m point-group symmetry. Distortion symmetry predicts that these
coefficients will be odd functions of the distortion parameter, 4, and zero
when 2=0.

that the function should be odd with respect to /4, and hence the
even coefficients (A, C and so on) should be exactly zero. It also
clearly implies that d;;(0) = 0. The points marked by open circles
at 2= 1.0 and A = 2.0 are from previously reported calculations’’.
The curves are the result of solving for dij(4) = ByA + Dijk/13 that
goes through these points. Since it was not obvious a priori that
djj. should be an odd function of this distortion, this example

demonstrates how applying distortion symmetry predicts the
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form of the tensors that describe the change in any property as a
function of a distortion. This also suggests that in the Landau
phenomenology, there should be an energy coupling of the form

U o QuP}"P{ PP 2+ Ry P} PPy 7 (3)

in the parent R3¢ (point group 3m) phase. However, the polar
third-rank tensors Qu and Ry would be identically zero in the
conventional 3m parent phase as deduced by noticing that
1(P)= —Pand 1 (1) =/. The only way such a coupling would
exist is if the complete distortion symmetry of the pathway,
namely, 3*m is considered, since 1*(P)= — P and 1*(1)= — /.
This example shows the value of distortion symmetry analysis in
easily revealing energy invariants that are odd powers in A. It is
far more transparent than the corresponding representation
theory-based analysis.

Including distortion-reversing symmetry operations (that is,
starred operations) can place greater restrictions on invariant
property tensors. Table 2 compares the form of various types of
tensors for a conventional symmetry group versus a group that
includes starred operations corresponding to the distortion of the
B-BaB,O, given in Figure 4. Because of how the A;; and Cijkkz
terms transform, A and Cj are 1*-even third-rank polar tensors.
Likewise, Bj and Dy are 1*-odd third-rank polar tensors. From
consulting Table 2, we find that the power series expansion of
d;ji(4) to the third power contains half as many degrees of freedom
if the full symmetry group 3*m is considered instead of only the
unstarred symmetry of the distortion, 3m. If instead of the P =
dyE’E}’ interaction, we had considered P2 = d,jkEJ?"(VxE)Z’ as
an example, then the corresponding tensors A;z and Cjy in an
expansion similar to (2) would be axial 1*-even, 1’-even tensors,
while the tensors By and Dy would be axial, 1*-odd, 1'-even
tensors. Their forms and how they differ between the distortion
group and conventional group is also given in Table 2. Thus,
distortion symmetry can significantly reduce the number of tensor
coefficients that are predicted to be non-zero.

Application to diverse phenomena. The ubiquitousness of dis-
tortion symmetry is further illustrated in Fig. 5 with four exam-
ples. Each panel depicts the structures from A= —1to A= +1

superimposed so that the movement of the atoms appears in the
form of a blur. A common piezoelectric crystal quartz (SiO,) is
depicted in Fig. 5a, where a distortion from one domain of right-
handed alpha quartz (at = — 1) through beta quartz (at 1 =0)
to another domain of right-handed alpha (at A= +1) exhibits
the distortion symmetry of P6,°22* (with point group 6*22%).
Supplementary Note 4 and Supplementary Fig. 7 shows how there
is an equivalent pathway in left-handed quartz with P6,*22*
symmetry, as well as the symmetries of paths between left- and
right-handed quartz. More generally, one can find distortion
groups describing transformation between any two enantio-
morphic structures (related by mirror) by choosing an appro-
priate parent that is intermediate between the two. Multiple such
parents are possible, in principle. These ideas are also applicable
to liquid crystals that can switch between left- and right-handed
enantiomorphs under an electric field, a property that is utilized
in display technologies.

A prototypical proper ferroelectric, PbTiO; is depicted in
Fig. 5b, where the distortion pathway runs between opposite
polarization states and has P4/m*mm symmetry. An improper
ferroelectric antiferromagnet, YMnO;, distorting from one
ferroelectric domain, o™ at A= —1 to the opposite domain
o~ at A= +1 exhibits a distortion symmetry of P6s/m*cm, as
depicted in Fig. 5c. Note that the corresponding point groups
(4/m*mm and 6/m*mm) for Fig. 5a,b allow for an energy
invariant of the form UocP.i+P.A%+., where P is the
polarization that develops under the distortion modes in
question, parametrized by A. In contrast, this coupling is zero
under the conventional parent phase symmetries of m3m and
6/mmm, respectively, again demonstrating the value of the
distortion-reversal symmetry in revealing such couplings in a
transparent and simple manner. This coupling in YMnO;
was confirmed by first-principles calculations?®. Including
antiferromagnetism and weak canted ferromagnetism in
YMnO; (ref. 41), we can consider two cases: either spins
reverse or spins are invariant through o™ —a ™. The former has
P65’ /m* symmetry and the latter has P65 /m'* symmetry. Note
that these DASGs involve two independent antisymmetries, 1*
and 1. A complete listing of the 17,803 DASGs has recently been

>k
Table 2 | Tensor forms for 3"m versus 3m symmetry groups.
Rank — | 0" rank | 1% rank 2" rank 2™ rank 37 rank 4™ rank
Type | Q Q Q Q= Q; Q= Qug Qo= Q= Qi = Quy
Polar Q 0 Qi 0 0 Qi 0 0 0 0 0 0 0# Q5 0% Q6 Qu Qi Qi3 Q0 0
1" even 0 0 Qu 0 0 Qu 0 0# Qi 0# Qs 0 0#0Q; 0 Qz Qu Qs —Qus 0 0
1* even 0#0; 0 0 0y 0 0 Q3 0#Qs 0#Q: 0#Q;3 0 0 0 Gz Qs Q3 0 0 0
Qs —Qu 0 Q5 0 0
o o o o s 0 QQ?A
0 0 0 0 Q %7%
Axial 0 ] 0 0#Q; 0 00 0 Q0 —Qu 0 Qu 0 0 0 0 0 0 0% Qrs 0
1" even 0 0% Qs 0 0 000 0 0 0 0 —Qu —0Qn 0 0 0 0 0% —0Qus 0
1% even 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0# —0Qss5
0#Q;s 0#—Qys O 0 0 0
0 0 0 0#—0Q 0 0
Polar 02Q 0 0 # Q1 0 0 0 01, 0 0 0 0 0 0 Qp 0 0%#Q;;, 0%#Q; 0#0Q; 0%#0Q4 0 0
1" even 0 0 0#Qy 0 0#Qu 0 Qs Qi 0 Q5 0 0 0#05, 0#Qy 0#0Q5 0%—0y 0 0
1* odd Qs 0 0 0% Qa3 0 0 0# Q33 Qi Q@ Qs 0 0 0 0#Qs 0#Qi; 0% Qu 0 0 0
0#Qy 0% —Qy 0 0# Qss 0 0
0 0 0 0 0 # Qss 0# Qi
0 0 0 0 0#0Qu % 7%
Axial 0 0 0 Q 0 000 0#Q; 0#—-Q 0 0#Qy 0 0 0 0 0 0 Qs 0
1" even 0 —Q 0 0 000 0 0 0 0%-0y 0#-0y 0 0 0 0 -@; O
1% odd 0 0o 0 00 0 0 0 0 0 0 0 0 o o0 o 0 0
0 0 0 0 0 —Qs
Qs —-Qs 0 0 0 0
0 0 0 -Qs O 0
A comparison of the form of various general tensors of different ranks (columns) and types (rows) that are predicted by the distortion group 3*m versus that predicted by the conventional 3m symmetry
group, which are the distortion symmetry and conventional symmetry groups, respectively, of the distortion path for f-BaB,0,4. For example, the second row, sixth column corresponds to the form of a
general third-rank polar tensor, Q; (ij,k correspond to an orthogonal crystal physics coordinate system) that is invariant under time reversal, ', and distortion reversal, 1*. The tensor coefficients shown in
colour are the predictions that differ between the distortion symmetry (in green) versus the conventional symmetry group (in red). The remaining coefficients in black correspond to predictions that are
identical between the two symmetry groups. Four other tensor types, namely, polar 1 odd 1* odd, polar 1 odd 1* even, axial 1" odd 1* odd and axial 1" odd 1* even, have identical tensor forms for the two
symmetry groups, and hence are not shown.
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P65/m*cm

Pm*mm

Figure 5 | Four different example distortions in crystals and their distortion symmetry groups. Each panel depicts the superimposed structures through
a distortion from 2= —1to A= +1 so that the movement of the atoms appears in the form of a blur. (a) A distortion pathway between two domain
variants of a right-handed alpha quartz, passing through beta quartz at A =0, with a distortion group of P6,*22*. (b) A distortion of ferroelectric PbTiO3
created by a linear interpolation between opposite (180°) polarization states; the pathway has a symmetry of P4/m*mm. (¢) A distortion of YMnOs3
between opposite ferroelectric domain variants with a distortion symmetry of P65/m*cm. (d) A By, normal mode of YBa,CusOg¢ 5 with a distortion

symmetry of Pm*mm.

made available by VanLeeuwen et al3%°. These kinds of
distortion pathways should exist in most ferroelectrics and
multiferroics. One can analyse what pathways a domain wall
could take in moving by a unit cell inside a ferroelectric, a
ferromagnet or a multiferroic, using methods similar to the
oxygen diffusion problem discussed in Fig. 3.

The 670 cm ~! B,, mode of a superconductor, YBa,Cu;Og:s, is
shown in Fig. 5d'®. This mode has a distortion symmetry of
Pm*mm, and has recently been shown to couple with A; modes
to create a transient structure that was reported to exhibit
room-temperature coherent interlayer transport on picosecond
timescales, reminiscent of superconductivity'®?’. Including the
coupling between this B;, mode and the A; modes retains the
same distortion symmetry. The form of the invariant tensors
describing changes in any property in these example systems as a
function of distortion can be deduced, similar to that shown in
Table 2.

Application to the electronic structure and Berry phase. Finally,
we show that distortion symmetry can be applied to the electronic
structure of a distortion and has implications for Berry phase
calculations. Ceresoli and Tosatti*? give the Berry phase along a

path as:
y 22 —Imlogdet H?:_ol (Wele i) (4)

where {=0 through {=N are the indices of discrete images
along the path (that is, each corresponds to a set of nuclear
positions which can be used to compute the ground state
electronic structure, /). The product expressed in equation (4)
for Berry phase expands as follows:

TT, Welvess) = Wolv) W) - o) W)
(5)

1* reverses the path such that the last image (at £ = N) becomes
the first image (at £ =0) and vice versa. Thus:

(o) (i [a) - (W ol 1) (U1 [wy)
= WUnlUn_ ) Wn_ 1l —a) - (Waldh) (i) (6)

Substituting this into equation (4) for the Berry phase and
simplifying leads to the conclusion that 1*y= —1y for |y|<m.
Thus, if a distortion path is invariant with R* symmetry (that is, if
R*y =y, for any Euclidean motion, R), then we conclude that

y=0. (7)
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Thus, for a path with 1* symmetry, y=0 (assuming |p|<m).
Because y is invariant under rotations, mirrors and translations
(that is, Euclidean motions, R), this general result states that for
any distortion pathway with a starred symmetry, R*, the Berry
phase will be exactly zero. This includes all the example
distortions given in this work that are described by distortion
groups that contain any operation R*.

Discussion

In the course of this study, we have come to conclude that
distortion symmetry introduced here has applicability to a very
wide range of physical problems, including atomic and electronic
structure reconfigurations, reconfigurations of proteins and other
biomolecules, motion of domain walls and grain boundaries,
distortion tuning of metamaterials such as those exhibiting
photonic bandgaps*?, distortion-reversal symmetry protection of
topological boundary modes** analogous to time-reversal
symmetry protection of topological insulators via Kramers
theorem, the search for transient and metastable phases
exhibiting emergent properties under a distortion'2* and the
search for intermediate stable structures in materials away from
equilibrium, by reducing the asymmetric domain. The double-
antisymmetry groups created from incorporating both distortion-
reversal and time-reversal antisymmetries could be applied to
explore the energy landscape of magnetic structures under a
distortion. Similar to the impact of time-reversal antisymmetry
and magnetic groups, we foresee a commensurate impact of
distortion-reversal antisymmetry and distortion groups on a
diverse set of problems and design tools used in the physical
sciences.

Methods

The decomposition of a vector field. The decomposition applied to the simple
distortion seen in Fig. 1 was performed by selecting a basis for translation, rotation,
scaling and deformation components. Supplementary Fig. 1 shows an example of
such a basis for a water molecule and, in this case, it is also symmetry adapted.
After the basis is selected, the displacement vectors are projected onto it and
each component can be isolated as shown in Fig. 1. This and other notions of
decomposition into rotational and non-rotational components were explored in
our attempts to formalize the concepts of rotation-reversal symmetry.

PFs pseudorotation NEB calculations. The PFs pseudorotation MEP was com-
puted using DMol? in Materials Studio 6.0 (ref. 32). The approximate structure was
input using Materials Studio’s tools and then geometrically optimized using
DMol>. This structure was taken as the 2 = — 1 variant and was copied and rotated
90° around the high-symmetry axis to make the A= +1 variant. Then the
Reaction Preview tool was used to match the atoms of the structures and generate
an initial guess path. This guess was used as input for the DMol® Transition
State Search tool whose output was then run in the Transition State Conformation
Tool, which performs NEB to find a MEP. The output from NEB was symmetrized
to remove the small asymmetric numerical errors and used to construct the plots in
Fig. 2.

Oxygen diffusion on graphene NEB calculations. The geometrically optimized
structure was from an example calculation used at the QE2014 workshop held at
PennState. The /= — 1 structure consists of a 3 x 3 supercell of graphene with an
oxygen atom bonded to the surface, as part of an epoxy functional group. This was
mirrored to create the = + 1 structure. These structures were used as the first and
final images in the input for QE’s NEB module (neb.x)**. Seven images were used.
These are linearly interpolated from the first and final images. This initial guess
path, discretized into a chain of seven images, relaxed into the path seen in Fig. 3a
and Fig. 3b with m*m2* symmetry.

Next, two new paths were created from the m*m2* path using small symmetry-
breaking perturbations of the oxygen trajectory parallel to the
graphene sheet. The first was a sinusoidal perturbation with an amplitude of 0.1 A
resulting in a path with 2* symmetry. The second was a perturbation of
— (X5 =524~ 6,3 +222+7).4+3)/32 A resulting in a path with only trivial
symmetry (that is, point group 1). These two new paths were then relaxed using
QE’s NEB module again to get the paths shown in Fig. 3c,d.

The reason that starred symmetry operations affect the results of NEB
calculations in this way is because NEB commutes with 1* in the same way that
conventional symmetry operations commute with physical laws. Clearly, NEB(X)

gives the same result as A~ INEB(AX) where X is the initial guess path and A is an
ordinary symmetry operation, such as a rotation or a mirror. Similarly, NEB(X)
gives the same result as 1%~ INEB(1*X) and, since 1* ~1=1*, NEB(X) gives the
same result as 1*NEB(1*X). This is no different from the idea that physical laws
should not depend on what basis one chooses for their coordinate system. If A* is a
symmetry of the initial guess path, that is, X = A*X, then, by substitution,
NEB(X) = A*NEB(X). Thus, due to the commutativity of A* with NEB, X=A*X
implies NEB(X) = A*NEB(X), that is, a symmetry of the initial guess will also be a
symmetry of the results. In practice, however, A ~ 'NEB(AX) is not exactly equal to
NEB(X), because the NEB implementation will have small symmetry-breaking
numerical errors.

p-BaB,0, (BBO) calculations. The f}-BaB,O, distortion shown in Fig. 4 was
created using Materials Studio’s Reaction Preview tool by matching atoms of a
f-BaB,0, variant with its inverted variant. The result is a path that goes through an
R3c intermediate, as shown in Fig. 4a,b. The energy along this path, as plotted in
Fig. 4a, was computed using Materials Studio’s CASTEP module and symmetrized
to remove small asymmetric numerical errors. Similar methods were applied to
make the energy plot for the quartz example in Supplementary Fig. 7.

Our f3-BaB,0, distortion path is similar, but not identical, to the linear path
implied by Cammarata and Rondinelli*” where the displacements from the
hypothetical R3¢ parent structure are scaled by a factor. In particular, we note that
our path has rigid or near-rigid rotation of the B;Og¢ rings, whereas linearly scaling
the displacements creates a path that diverges from rigid rotation as rotation angle
increases. Nonetheless, as the two paths are still very similar and have the same
distortion symmetry, we have used the results of Cammarata and Rondinelli*’ to
create Fig. 4c.

Method for determining the distortion symmetry group. Let S(1) denote the

structure at 4. Let G(4) denote the conventional symmetry group of S(A). If there
exists A€ G(A=0) such that AS(1) =S(—2) for all —1<A< +1, then the sym-
metry of the distortion is HU1*AH, where H = () _,_,.; G(4). Otherwise, H is
the symmetry of the distortion. In other words, find the conventional symmetry

group of all the images in a pathway (/ from — 1 to + 1); the intersection of these
groups is the group H. Now find an element A in the conventional symmetry group
of the structure at =0 that can transform a structure at A to a structure at — A.
The distortion group of the pathway is then HUA*H. If no such A can be found,
then H is the symmetry of the distortion pathway.

References

1. Pechukas, P. Transition state theory. Annu. Rev. Phys. Chem. 32, 159-177
(1981).

2. Bone, R. G. A. Deducing the symmetry operations generated at a transition
state. Chem. Phys. Lett. 193, 557-564 (1992).

3. Mclver, J. W. & Stanton, R. E. Symmetry selection rules for transition states.
J. Am. Chem. Soc. 94, 8618-8620 (1972).

4. Henkelman, G. & Jonsson, H. Improved tangent estimate in the nudged elastic
band method for finding minimum energy paths and saddle points. J. Chem.
Phys. 113, 9978 (2000).

5. Campbell, B. J., Stokes, H. T., Tanner, D. E. & Hatch, D. M. ISODISPLACE: a
web-based tool for exploring structural distortions. J. Appl. Crystallogr. 39,
607-614 (2006).

6. Orobengoa, D., Capillas, C., Aroyo, M. I. & Perez-Mato, ]. M. AMPLIMODES:
symmetry-mode analysis on the Bilbao Crystallographic Server. J. Appl.
Crystallogr. 42, 820-833 (2009).

7. Perez-Mato, J. M., Orobengoa, D. & Aroyo, M. I. Mode crystallography of
distorted structures. Acta Cryst. A 66, 558-590 (2010).

8. Zacherl, C. L. A Computational Investigation of the Effect of Alloying Elements
on the Thermodynamic and Diffusion Properties of Fcc Ni Alloys, With
Application to the Creep Rate of Dilute Ni-X Alloys (The Pennsylvania State
University, 2012).

9. Lomaeyv, L. L., Novikov, D. L., Okatov, S. V., Gornostyrev, Y. N. & Burlatsky, S. F.
First-principles study of 4d solute diffusion in nickel. J. Mater. Sci. 49,
4038-4044 (2014).

10. Shang, S., Hector, Jr. L. G., Wang, Y. & Liu, Z. K. Anomalous energy pathway of
vacancy migration and self-diffusion in hcp Ti. Phys. Rev. B 83, 224104 (2011).

11. Fang, H. Z. et al. First-principles studies on vacancy-modified interstitial
diffusion mechanism of oxygen in nickel, associated with large-scale atomic
simulation techniques. J. Appl. Phys. 115, 043501 (2014).

12. Aidhy, D. S., Zhang, Y. & Weber, W. J. Stabilizing nanocrystalline grains in
ceramic-oxides. Phys. Chem. Chem. Phys. 15, 18915-18920 (2013).

13. Rajabzadeh, A., Mompiou, F., Legros, M. & Combe, N. Elementary mechanisms
of shear-coupled grain boundary migration. Phys. Rev. Lett. 110, 265507 (2013).

14. Kumagai, Y. & Spaldin, N. A. Structural domain walls in polar hexagonal
manganites. Nat. Commun. 4, 1540 (2013).

15. Chandrasekaran, A., Damjanovic, D., Setter, N. & Marzari, N. Defect ordering
and defect-domain-wall interactions in PbTiO 3: a first-principles study. Phys.
Rev. B Condens. Matter Mater. Phys. 88, 214116 (2013).

| 6:8818 | DOI: 10.1038/ncomms9818 | www.nature.com/naturecommunications 9

© 2015 Macmillan Publishers Limited. All rights reserved.


http://www.nature.com/naturecommunications

ARTICLE

16.

17.

18.

19.

20.

2

—

22.

2

w

24.

2

w

2

(=2}

27.

28.

29

30.

3

—

32.

33.

34.

35.

36.

37.

38.

39.

40.

Vegge, T., Rasmussen, T., Leffers, T., Pedersen, O. B. & Jacobsen, K. W.
Determination of the of rate cross slip of screw dislocations. Phys. Rev. Lett. 85,
3866 (2000).

Shang, S. L. et al. Generalized stacking fault energy, ideal strength and
twinnability of dilute Mg-based alloys: a first-principles study of shear
deformation. Acta Mater. 67, 168-180 (2014).

Mankowsky, R. et al. Nonlinear lattice dynamics as a basis for enhanced
superconductivity in YBa2Cu306.5. Nature 516, 71-73 (2014).

Kaiser, S. et al. Optically induced coherent transport far above Tc in underdoped
YBa2Cu306 + . Phys. Rev. B Condens. Matter Mater. Phys. 89, 184516 (2014).
Hu, W. et al. Optically enhanced coherent transport in YBa2Cu306.5 by
ultrafast redistribution of interlayer coupling. Nat. Mater. 13, 705-711 (2014).

. Miller, R. J. D. Femtosecond crystallography with ultrabright electrons and

x-rays: capturing chemistry in action. Science 343, 1108-1116 (2014).
Blanchard, F., Doi, A., Tanaka, T. & Tanaka, K. Real-time, subwavelength
terahertz imaging. Annu. Rev. Mater. Res. 43, 237-259 (2013).

. Kampfrath, T., Tanaka, K. & Nelson, K. A. Resonant and nonresonant control over

matter and light by intense terahertz transients. Nat. Photonics 7, 680-690 (2013).
Truhlar, D. G, Garrett, B. C. & Klippenstein, S. J. Current status of transition-
state theory. J. Phys. Chem. 100, 12771-12800 (1996).

. Petricek, V., Fuksa, J. & Dusek, M. Magnetic space and superspace groups,

representation analysis: competing or friendly concepts? Acta Cryst. A 66,
649-655 (2010).

. Bertaut, E. F. Representation analysis of magnetic structures. Acta Cryst. A 24,

217-231 (1968).

Perez-Mato, J. M., Ribeiro, J. L., Petricek, V. & Aroyo, M. I. Magnetic
superspace groups and symmetry constraints in incommensurate magnetic
phases. J. Phys. Condens. Matter 24, 163201 (2012).

Opechowski, W. & Dreyfus, T. Classifications of magnetic structures. Acta
Cryst. A 27, 470-484 (1971).

. Jonsson, H., Mills, G. & Jacobsen, K. in Proceedings of the International School

of Physics, Ch. 16, 385-404 (World Scientific Publishing Co. Pte. Ltd, 1998).
Gopalan, V. & Litvin, D. B. Rotation-reversal symmetries in crystals and
handed structures. Nat. Mater. 10, 376-381 (2011).

. King-Smith, R. D. & Vanderbilt, D. Theory of polarization of crystalline solids.

Phys. Rev. B 47, 1651(R) (1993).

Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys.
113, 7756 (2000).

Newnham, R. E. Properties of Materials: Anisotropy, Symmetry, Structure
(Oxford Univ. Press, 2005).

Nye, J. F. Physical Properties of Crystals: their Representation by Tensors and
Matrices (Clarendon, 1985).

Dai, Y., Ni, S, Li, Z. & Yang, J. Diffusion and desorption of oxygen atoms on
graphene. J. Phys. Condens. Matter 25, 405301 (2013).

Heron, J. T. et al. Deterministic switching of ferromagnetism at room
temperature using an electric field. Nature 516, 370-373 (2014).

Cammarata, A. & Rondinelli, J. M. Contributions of correlated acentric atomic
displacements to the nonlinear second harmonic generation and response. ACS
Photon. 1, 96-100 (2014).

Huang, M., VanLeeuwen, B. K, Litvin, D. B. & Gopalan, V. Crystallographic
data of double antisymmetry space groups. Acta Cryst. A 70, 373-381 (2014).
VanLeeuwen, B. K., Gopalan, V. & Litvin, D. B. Double antisymmetry and the
rotation-reversal space groups. Acta Cryst. A 70, 24-38 (2014).

Fennie, C. J. & Rabe, K. M. Ferroelectric transition in YMnO3 from first
principles. Phys. Rev. B Condens. Matter Mater. Phys. 72, 100103 (2005).

4

—_

. Brown, P. J. & Chatterji, T. Neutron diffraction and polarimetric study of the
magnetic and crystal structures of HoMnO3 and YMnO3. J. Phys. Condens.
Matter 18, 10085-10096 (2006).

. Ceresoli, D. & Tosatti, E. Berry-phase calculation of magnetic screening
and rotational g factor in molecules and solids. Phys. Rev. Lett. 89, 116402
(2002).

43. Rechtsman, M. C. et al. Strain-induced pseudomagnetic field and photonic

Landau levels in dielectric structures. Nat. Photon. 7, 153-158 (2013).
44. Kane, C. L. & Lubensky, T. C. Topological boundary modes in isostatic lattices.
Nat. Phys. 10, 39-45 (2013).

45. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source

software project for quantum simulations of materials. J. Phys. Condens. Matter

21, 395502 (2009).

4

[S8]

Acknowledgements

We acknowledge primary support from the National Science Foundation grant number
DMR-1210588 and additional financial support from the Penn State MRSEC Center for
Nanoscale Science through grant number DMR-1420620. Discussions with M. Huang,
D.B. Litvin, V.H. Crespi, M.I. Aroyo, B.J. Campbell, I.Dabo and C.X. Liu are gratefully
acknowledged. J.M. Rondinelli provided valuable information for Fig. 4 and the related
discussion. We thank Hai-Tian Zhang for kind help with creating the figures in the
correct format.

Author contributions

B.K.V. found the initial problems with V.G.’s rotation-reversal symmetry and distortion
symmetry evolved out of the discussions with V.G. about these problems. V.G. suggested
looking for approaches that work directly with atomic displacements from parent
structures. B.K.V. contributed the idea of replacing polyhedral rotations with the general
parameterization of a pathway by 4, 1* for reversing 4 and the application to NEB and
the transition-state theory. V.G. contributed sections on applying Neumann’s principle,
Landau phenomenology (energy couplings and energy invariants), initial ideas on the
decomposition seen in Fig. 1 and proposed studying the distortions seen in Figs 4 and 5,
and Supplementary Fig. 1. B.K.V. and V.G. co-wrote the paper and made the figures.
Computational results and Supplementary Table 1 are from B.K.V.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: VanLeeuwen, B. K. & Gopalan, V. The antisymmetry of

distortions. Nat. Commun. 6:8818 doi: 10.1038/ncomms9818 (2015).

This work is licensed under a Creative Commons Attribution 4.0
L7 International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

| 6:8818 | DOI: 10.1038/ncomms9818 | www.nature.com/naturecommunications

© 2015 Macmillan Publishers Limited. All rights reserved.


http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	Definition of distortion-reversal symmetry
	Application to molecular distortions

	Figure™1A simple example of a distortion and its decomposition.Three atoms (red spheres) are displaced by vectors u (black arrows) to their new positions (pink spheres) in a. The collection of the three displacement vectors, u, constitute a distortion. Th
	Application to finding an MEP

	Figure™2Distortion symmetry of the PF5 pseudorotation.The PF5 molecule undergoes pseudorotation from the lambda=-1 state (left inset in a, blue atom is P and yellow atoms are F), through a transition state at lambda=0 (middle inset in a), to the lambda=+1
	Figure™3The consequences of distortion symmetry and balanced forces for NEB calculations.(a-d) Superimposed images along oxygen (red atom) diffusion paths on graphene (grey carbon atoms connected by grey bonds). In a and b, an initial linear path is assum
	Application to crystals and tensor properties

	Table 1 
	Figure™4The application of distortion symmetry to a distortion of beta-BaB2O4.The mostly rigid rotation of the B3O6 rings leads to two variants of beta-BaB2O4 with R3c symmetry group, the lambda=-1 variant (inset in orange in a and the lambda=+1 variant (
	Application to diverse phenomena

	Table 2 
	Application to the electronic structure and Berry phase

	Figure™5Four different example distortions in crystals and their distortion symmetry groups.Each panel depicts the superimposed structures through a distortion from lambda=-1 to lambda=+1 so that the movement of the atoms appears in the form of a blur. (a
	Discussion
	Methods
	The decomposition of a vector field
	PF5 pseudorotation NEB calculations
	Oxygen diffusion on graphene NEB calculations
	beta-BaB2O4 (BBO) calculations
	Method for determining the distortion symmetry group

	PechukasP.Transition state theoryAnnu. Rev. Phys. Chem.321591771981BoneR. G. A.Deducing the symmetry operations generated at a transition stateChem. Phys. Lett.1935575641992McIverJ. W.StantonR. E.Symmetry selection rules for transition statesJ. Am. Chem. 
	We acknowledge primary support from the National Science Foundation grant number DMR-1210588 and additional financial support from the Penn State MRSEC Center for Nanoscale Science through grant number DMR-1420620. Discussions with M. Huang, D.B. Litvin, 
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




