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Observers of quantum systems cannot agree to
disagree
Patricia Contreras-Tejada 1, Giannicola Scarpa 2✉, Aleksander M. Kubicki 3, Adam Brandenburger4 &

Pierfrancesco La Mura5

Is the world quantum? An active research line in quantum foundations is devoted to exploring

what constraints can rule out the postquantum theories that are consistent with experi-

mentally observed results. We explore this question in the context of epistemics, and ask

whether agreement between observers can serve as a physical principle that must hold for

any theory of the world. Aumann’s seminal Agreement Theorem states that two observers

(of classical systems) cannot agree to disagree. We propose an extension of this theorem to

no-signaling settings. In particular, we establish an Agreement Theorem for observers of

quantum systems, while we construct examples of (postquantum) no-signaling boxes where

observers can agree to disagree. The PR box is an extremal instance of this phenomenon.

These results make it plausible that agreement between observers might be a physical

principle, while they also establish links between the fields of epistemics and quantum

information that seem worthy of further exploration.
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Quantum mechanics famously made its creators uncom-
fortable. It is highly counterintuitive and, almost a cen-
tury after its introduction, it still sparks much conceptual

and philosophical discussion. Indeed, an active line of research in
quantum foundations deals with the problem of singling out
quantum theory from other post-classical physical theories. This
field is a delicate balance between proposals for new theories that
are ‘tidier’ than quantum mechanics1,2 and proposals for desir-
able physical principles that such theories should obey3–7.

In the domain of classical probability theory, Aumann proved
that Bayesian agents cannot agree to disagree8. A slightly more
general restatement of Aumann’s theorem, which we will refer to
as the classical agreement theorem, states that, if Alice and Bob,
based on their partial information, assign probabilities qA, qB,
respectively, to perfectly correlated events, and these probabilities
are common certainty between them, then qA= qB. “Certainty”
means assigning probability 1, and “common certainty” means
that Alice is certain about qB; Bob is certain about qA; Alice is
certain about Bob being certain about qA; Bob is certain about
Alice being certain about qA; and so on infinitely.

This result is considered a basic requirement in classical epis-
temics, which is the formal study of the knowledge and beliefs of
the agents in a system. The classical agreement theorem has been
used to show that two risk-neutral agents, starting from a com-
mon prior, cannot agree to bet with each other9, to prove “no-
trade” theorems for efficient markets10, and to establish epistemic
conditions for Nash equilibrium11.

Focusing on the quantum domain, a fundamental result of
quantum mechanics is that no local hidden-variable theory can
model the results of all quantum experiments12. This implies that
the classical Bayesian model does not apply, so the classical
agreement theorem need not hold. The question then arises: Can
observers of quantum mechanical phenomena agree to disagree?

In this work, we answer the above question in the negative. We
define two notions of disagreement inspired by Aumann’s theo-
rem. One is a direct analogue to the classical agreement theorem,
and the other one relaxes the common certainty condition while
requiring that the probability estimates differ maximally. We find
that neither kind of disagreement occurs for classical or quantum
systems. However, both kinds of disagreement do occur in
postquantum environments. In fact, we characterize no-signaling
distributions displaying these behaviors. We then put our two
characterizations together and search for distributions that satisfy
both notions of disagreement: We find that the PR box3 is of this
kind—i.e., it displays extremal disagreement in the above sense.
Since the PR box is also an extreme instance of a no-signaling box
as a non-local resource3,13, our findings suggest a deeper relation
between the quantification of disagreement and the quantification
of non-locality.

If a physical theory were to allow agents to agree to disagree,
then undesirable consequences in the settings of refs. 9–11 could
happen. This is why the impossibility of agreeing to disagree is a
desirable feature for all physical theories, and why we propose
that it should be elevated to a physical principle. Its simplicity
makes it convenient for testing the consistency of new post-
quantum theories.

Results
Classical agreement theorem. We start with an intuition about
the setup behind the classical agreement theorem. Suppose that
Alice and Bob share a classical system, which can, thus, be
described by a local hidden-variable model (in Aumann’s lan-
guage, each value of the variable represents a state of the world).
But the observers do not know which value of the hidden variable
is the one that holds (i.e., which is the true state of the world).

Instead, each observer can perform only one local measurement
on the system. Each measurement corresponds to a partition over
the values of the variable, and the result reveals which partition
element contains the value that holds. The probability of each
outcome is the sum of the probabilities of the values in the cor-
responding partition element.

Suppose, also, that Alice is interested in estimating the
probability of an event (i.e., a set of values of the variable) that
does not correspond to an element in her partition. Then, she can
calculate only the conditional probability of the event given the
outcome of her local measurement by Bayesian inference. The
same applies for Bob. Suppose that Alice and Bob are interested
in events that are perfectly correlated (i.e., with probability 1,
either both happen or neither happens). Then, the classical
agreement theorem says that, if their estimates are common
certainty, they must be equal.

Common certainty means that Alice is certain of (i.e., assigns
probability 1 to) Bob’s estimate, Bob is certain of Alice’s estimate,
Alice is certain of Bob’s certainty of Alice’s estimate, and so on.

When formalizing these notions, we refer to a probability
space, together with some given partitions, as a (classical)
ontological model. Ontological models appearing in the literature
(see, e.g., ref. 14) also contain a set of preparations underlying the
distribution over the probability space, and the partitions are
usually phrased in terms of measurements and outcomes.
However, we consider preparations implicit and use the language
of partitions to bridge the gap between classical probability spaces
and no-signaling boxes more smoothly.

For the sake of simplicity and following Aumann, we restrict
our analysis to two observers, Alice and Bob. Aumann’s original
theorem considers common knowledge of one single event of
interest to both observers. We provide a slight generalization with
common certainty about two perfectly correlated events of
interest, one for each observer. This allows us to move to the
framework of no-signaling boxes that we will use later. This is
what we call the classical agreement theorem. This terminology
can be further motivated by the fact that, for purely classical
situations, both statements—the original Aumann’s theorem and
our formulation with perfectly correlated events—can be proven
to be equivalent (as long as states of the world with null
probability are ignored, as in ref. 15).

Consider a probability space ðΩ; E;PÞ where Ω is a finite set of
possible states of the world; E is its power set (i.e., the set of
events); and P is a probability measure over Ω. We will consider
two events EA; EB 2 E of interest to Bob and Alice, respectively
(the choice of subscripts will become clear later). We will assume
that they are perfectly correlated: P(EA\EB)= P(EB\EA)= 0.

Fix partitions PA;PB of Ω for Alice and Bob, respectively. For
convenience, assume that all members of the join (coarsest
common refinement) of PA and PB are non-null. For a state
ω∈Ω,PAðωÞ (PBðωÞ) is the partition element of Alice’s (Bob’s)
that contains ω. For each n 2 N; fix numbers qA, qB∈ [0, 1] and
consider the following sets:

A0 ¼ ω 2 Ω : PðEBjPAðωÞÞ ¼ qA
� �

; ð1Þ

B0 ¼ ω 2 Ω : PðEAjPBðωÞÞ ¼ qB
� �

; ð2Þ

Anþ1 ¼ ω 2 An : PðBnjPAðωÞÞ ¼ 1
� �

; ð3Þ

Bnþ1 ¼ ω 2 Bn : PðAnjPBðωÞÞ ¼ 1
� �

: ð4Þ
Here, the set A0 is the set of states ω such that Alice assigns
probability qA to event EB; the set B1 is the set of states ω such that
Bob assigns probability qB to event EA and probability 1 to the
states in A0—i.e., states where Bob assigns probability qB to EA

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27134-6

2 NATURE COMMUNICATIONS |         (2021) 12:7021 | https://doi.org/10.1038/s41467-021-27134-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


and is certain that Alice assigned probability qA to EB; and so on,
and similarly for B0, A1, etc.

If a state of the world ω* is in sets An and Bn, for all n 2 N,
then, at ω*, Alice assigns probability qA to EB, Bob is certain that
Alice assigns probability qA to EB, and Alice is certain that Bob is
certain that Alice assigns probability qA to EB, and Alice is certain
that Bob is certain that... and so on indefinitely, and also vice
versa about Bob assigning probability qB to EA. In sum, there is
common certainty at ω* that Alice assigns probability qA to EB
and that Bob assigns probability qB to EA.

More formally, it is common certainty at a state ω*∈Ω that
Alice assigns probability qA to EB and that Bob assigns probability
qB to EA if

ω� 2 An \ Bn 8n 2 N: ð5Þ
If equation (5) does not hold for all n 2 N; but, instead, only for
n ≤N for a certain N 2 N; then we talk about Nth-order mutual
certainty.

We now state the classical agreement theorem that will be the
basis of our work. All proofs are given in the Supplementary
Material.

Theorem 1. Fix a probability space ðΩ; E;PÞ, where EA and EB are
perfectly correlated events. If it is common certainty at a state
ω*∈Ω that Alice assigns probability qA to EB and Bob assigns
probability qB to EA, then qA= qB.

Defining agreement for observers of no-signaling systems. We
now map the classical agreement theorem into the no-signaling
framework, in order to explore its applicability beyond the
classical realm.

We consider no-signaling distributions, or boxes3, of the form

pðabjxyÞ� �
a2A;b2B;x2X ;y2Y ; ð6Þ

where x, y and a, b are Alice’s and Bob’s input and output,
respectively, and A;B;X ;Y are index sets, not necessarily of the
same size, and which satisfy

∑
a
pðabjxyÞ ¼ ∑

a
pðabjx0yÞ; ð7Þ

∑
b
pðabjxyÞ ¼ ∑

b
pðabjxy0Þ; ð8Þ

for all x; x0; y; y0.
A no-signaling box is local if there exist probability distribu-

tions {pλ: λ∈Λ}, fpAðajxλÞ : ða; x; λÞ 2 A ´X ´Λg,
fpBðbjyλÞ : ðb; y; λÞ 2 B ´Y ´Λg, such that

pðabjxyÞ ¼ ∑
λ2Λ

pλ pAðajxλÞ pBðbjyλÞ; ð9Þ
for each a, b, x, y, where Λ is an index set. It is quantum if, for
each x, y, there exist POVMs fEa

xga2A, fFb
ygb2B and a quantum

state ρ such that

pðabjxyÞ ¼ tr Ea
x � Fb

yρ
� �

; ð10Þ
for each a, b. The set of local boxes is strictly included in the set of
quantum boxes, which is, in turn, strictly included in the set of
no-signaling boxes. No-signaling boxes that are not quantum are
termed postquantum.

We now show that we can associate a no-signaling box with
any ontological model, and vice versa. Let A;B;X ;Y be index
sets. Let ðΩ;F ;PÞ be a probability space, and, for each x 2 X , let
fAa

x : a 2 Ag be a partition of the states ω∈Ω where a 2 A
denotes the partition elements. Similarly, for each y 2 Y, let fBb

y :

b 2 Bg be another partition of the states ω∈Ω, where b 2 B

denotes the partition elements. According to that, we can
understand labels x 2 X , y 2 Y as inputs—this information fixes
what partition Alice and Bob look at—and a 2 A, b 2 B as
outputs—this is the information that the observers gain by
observing their corresponding partitions. This terminology will
shortly become very natural.

With all the above, fðΩ;F ;PÞ, fAa
x;B

b
yga;b;x;yg is an ontological

model that we now want to associate to a no-signaling box that
reproduces its statistics. In this ontological model, given inputs
x 2 X , y 2 Y, the probability of obtaining outputs a 2 A, b 2 B
is given by PðAa

x \ Bb
yÞ. This simple observation leads us to

construct the no-signaling box

pða; bjx; yÞ :¼ P Aa
x \ Bb

y

� �
; 8ða; b; x; yÞ 2 A ´B ´X ´Y:

ð11Þ
It can be verified that the probabilities p are non-negative,
normalized, and no-signaling.

The converse process of finding an ontological model starting
from a no-signaling box can be also performed, as we show in
Supplementary Note 2. Remarkably, this can be accomplished
even in the case in which the no-signaling box is non-local,
obtaining an ontological model with a quasi-probability measure
(i.e., one which allows for negative values, which still sum to 1)
instead of standard positive probabilities16,17. (The appearance of
quasi-probabilities here should not surprise the reader. In fact,
one cannot hope to obtain ontological models with only non-
negative probabilities for post-classical no-signaling boxes, since
this would provide local hidden-variable models that contradict,
for instance, Bell’s theorem. In any case, the use of this
mathematical tool has been well rooted in the study of quantum
mechanics since its origins—see ref. 14 for a nice review of this
subject.) This makes it possible to translate results from one
framework to the other, something that might be of interest in
order to establish further connections between epistemics and
quantum theory. However, from now on, we focus on no-
signaling boxes and leave this digression aside in the rest of the
main text.

With the association between ontological models and no-
signaling boxes in mind, we next define common certainty of
disagreement for no-signaling boxes. The idea is to reinterpret the
definitions in Section 2.1 in this latter setting.

We first propose a meaning for the events of interest
(previously identified as EA, EB) in the present setting. Now,
these events correspond to some set of outcomes, given that the
no-signaling box was queried with some particular inputs. For the
sake of concreteness, we fix these inputs to be x= 1, y= 1 and the
outcomes of interest to be a= 1, b= 1. This motivates us to
consider the events FA ¼ fð1; b; 1; yÞ : b 2 B; y 2 Yg (on Alice’s
side) and FB ¼ fða; 1; x; 1Þ : a 2 A; x 2 Xg (on Bob’s side). Then,
we say that FA and FB are perfectly correlated when

pða; bjx ¼ 1; y ¼ 1Þ ¼ 0 for all a≠ b: ð12Þ

Given this, we assume that the observers actually conduct their
measurements according to some partitions. Again, for concrete-
ness, let us assume that those partitions are the ones associated
with inputs x= 0, y= 0. These inputs take on the role of
partitions PA, PB in the ontological model picture. The outputs
obtained from these measurements are the no-signaling box
analogue to the events PAðωÞ, PBðωÞ. In order to make the
following expressions more concrete, we assume, when x= 0,
y= 0 are input, that the outputs obtained are a= 0 and b= 0,
respectively.
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Therefore, given the perfectly correlated events FA, FB and
numbers qA, qB∈ [0, 1], we define the sets

α0 ¼ a 2 A : pðb ¼ 1ja; x ¼ 0; y ¼ 1Þ ¼ qA
� �

; ð13Þ

β0 ¼ b 2 B : pða ¼ 1jb; x ¼ 1; y ¼ 0Þ ¼ qB
� �

; ð14Þ
and, for all n ≥ 0,

αnþ1 ¼ a 2 αn : pðBnja; x ¼ 0; y ¼ 0Þ ¼ 1
� �

; ð15Þ

βnþ1 ¼ b 2 βn : pðAnjb; x ¼ 0; y ¼ 0Þ ¼ 1
� �

; ð16Þ
where

An ¼ αn ´B ´X ´Y; ð17Þ

Bn ¼ A ´ βn ´X ´Y: ð18Þ
By analogy with the sets in equations (1)–(4), the set α0 consists
of Alice’s outcomes such that she assigns probability qA to FB
upon seeing that outcome, having input x= 0, if she assumes that
Bob inputs y= 1. The set β1 is the set of Bob’s outcomes such that
he is certain that Alice assigns probability qA to FB upon seeing
that outcome, having input y= 0, if he assumes that Alice inputs
x= 1, and so on, and similarly for β0, α1, etc.

With this in mind, we can build a chain of mutual certainties,
in a manner similar to the classical agreement theorem. If the
event (a= 0, b= 0, x= 0, y= 0) is in the sets An and Bn, for all
n 2 N, then, if Alice and Bob both input 0 and get output 0, we
have: Alice assigns probability qA to FB (assuming that Bob input
y= 1), Bob is certain that Alice assigns probability qA to FB, Alice
is certain that Bob is certain that... and so on indefinitely, and vice
versa. That is, there is common certainty at (a= 0, b= 0, x= 0,
y= 0) that Alice assigns probability qA to FB and that Bob assigns
probability qB to FA.

More formally, there is common certainty about the event that
Alice assigns probability qA to FB and that Bob assigns probability
qB to FA if

ða ¼ 0; b ¼ 0; x ¼ 0; y ¼ 0Þ 2 An \ Bn 8n 2 N: ð19Þ
There is common certainty of disagreement if, in addition,
qA ≠ qB.

Notice the relationship between this definition and the
previous one: the ω* in equation (5), at which the disagreement
occurred, fixed the partition elements that Alice and Bob
observed. Here, disagreement occurs at the inputs and outputs
(a= 0, b= 0, x= 0, y= 0) that the observers obtain.

In complete generality, we can also consider disagreement at
arbitrary inputs and outputs (a, b, x, y). For that, one just has to
consider the appropriate changes in the preceding paragraphs.
The only case that might seem different is that in which Alice
and/or Bob’s input is the same as that corresponding to the event
of interest; that is, x= 1 and/or y= 1. This is allowed but
uninteresting: It is easy to see that the fact that FA and FB are
perfectly correlated precludes the possibility of common certainty
of disagreement in this case. Therefore, for the sake of
concreteness, we fix x, y both different from 1 and, in particular,
equal to 0.

The following is a rephrasing of the classical agreement
theorem:

Theorem 2. Suppose that Alice and Bob share a local no-signaling
box with underlying probability distribution p. Let qA, qB∈ [0, 1],
and let

pðb ¼ 1ja ¼ 0; x ¼ 0; y ¼ 1Þ ¼ qA; ð20Þ

pða ¼ 1jb ¼ 0; x ¼ 1; y ¼ 0Þ ¼ qB: ð21Þ

If qA and qB are common certainty between the observers,
then qA= qB.

In Supplementary Note 3, we give a standalone proof of this
result. Moreover, using the above correspondence between
ontological models and classical no-signaling boxes, one can
prove that the notions of common certainty of disagreement in
Theorems 1 and 2 are equivalent. We now ask whether this
theorem holds in quantum and no-signaling settings.

Observers of quantum systems cannot agree to disagree. Given
the mapping exhibited above, as well as the restatement of the
agreement theorem for local boxes, it is now natural to
ask whether the theorem holds when dropping the locality
constraint.

We address this question by exploring it in the broader no-
signaling setting. First, we establish that, in general, observers of
no-signaling systems can agree to disagree about perfectly
correlated events, and we give explicit examples of disagreeing
no-signaling distributions. In the particular case of two inputs
and two outputs, we characterize the distributions that give rise to
common certainty of disagreement. One might think that the fact
that observers of no-signaling systems can agree to disagree is a
direct consequence of the multitude of uncertainty relations in
quantum mechanics, all of which put a limit on the precision with
which the values of incompatible observables can be measured
and which have even been linked to epistemic inconsistencies in
quantum mechanics18. Somewhat surprisingly, our next finding
shows that this is not the case. We show that disagreeing no-
signaling distributions of two inputs and two outputs cannot be
quantum—i.e., the agreement theorem holds for observers of
quantum systems in this setting. Then, we go beyond this
restriction and show that any disagreeing no-signaling distribu-
tion with more than two inputs or outputs induces a disagreeing
distribution with two inputs and outputs. Since the agreement
theorem holds for observers of quantum systems sharing
distributions of two inputs and outputs, it does so for more
general distributions too. Thus, even if quantum mechanics
features uncertainty relations, this does not apply to observers’
estimates of perfectly correlated events.

We first present the following theorem in which the no-
signaling box has two inputs and two outputs, but we will show in
Theorem 5 that the result is fully general. In place of “common
certainty of disagreement about the event that Alice assigns
probability qA to FB ¼ fða; 1; x; 1Þ : a 2 A; x 2 Xg and Bob
assigns probability qB to FA ¼ fð1; b; 1; yÞ : b 2 B; y 2 Yg, at
event (0, 0, 0, 0),” we simply say “common certainty of
disagreement.”

Theorem 3. A two-input two-output no-signaling box gives rise
to common certainty of disagreement if and only if it takes the
form of Table 1.

Table 1 Parametrization of two-input two-output no-
signaling boxes with common certainty of disagreement.
Here, r, s, t, u∈ [0, 1] are such that all the entries of the box
are non-negative, r > 0, and s− u≠ r− t.

xy\ab 00 01 10 11

00 r 0 0 1− r
01 r− s s − r+ t+ s 1− t− s
10 t− u u r− t+ u 1− r− u
11 t 0 0 1− t
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While some no-signaling distributions can exhibit common
certainty of disagreement, we find that probability distributions
arising in quantum mechanics do satisfy the agreement theorem.
This is surprising: It is well-known that a given measurement of a
quantum system (say, that corresponding to the input x, y= 0)
need not offer any information about the outcome of an
incompatible measurement on the same system (say, x, y= 1).
However, some consistency remains: common certainty of
disagreement is impossible, even for incompatible measurements.

Theorem 4. No two-input two-output quantum box can give rise
to common certainty of disagreement.

The proof follows by deriving a contradiction from Tsirelson’s
theorem19.

We have seen that no two-input two-output quantum box can
give rise to common certainty of disagreement. We now lift the
restriction on the number of inputs and outputs and show that no
quantum box can give rise to common certainty of disagreement.

First, as we now show, the proof for two inputs and outputs
does not require common certainty, but only first-order mutual
certainty. By observing the definitions of the sets αn, βn, one can
see that αn= α1 and βn= β1 for all n ≥ 1. This means that first-
order mutual certainty implies common certainty, and, therefore,
first-order certainty suffices to characterize the no-signaling box
that displays common certainty of disagreement.

As the number of outputs grows, first-order mutual certainty is
no longer sufficient. However, since the number of outputs is
always finite, there exists an N 2 N such that αn= αN and
βn= βN for all n ≥N. Since αn+1⊆ αn ∀ n, and similarly for β, the
sets αN, βN are the smallest sets of outputs for which the
disagreement occurs. Because of this, any (a, b, x, y) that belongs
to AN ∩ BN will also belong to An ∩ Bn for all n; that is, Nth-order
mutual certainty implies common certainty. So, for any finite no-
signaling box, one needs only Nth-order mutual certainty to
characterize it. As the number of outputs grows unboundedly,
one needs common certainty to hold20. These observations will be
relevant to extending Theorem 4 beyond two inputs and outputs.

Theorem 5. No quantum box can give rise to common certainty
of disagreement.

To prove the theorem, we show that any no-signaling box with
common certainty of disagreement induces a two-input two-
output no-signaling box with the same property. Thus, if there
existed a quantum system that could generate the bigger box, it
could also generate the smaller box. Then, Theorem 3 implies that
no quantum box can give rise to common certainty of
disagreement.

Observers of quantum systems cannot disagree singularly.
Next, we ask if observers of no-signaling quantum systems can
disagree in other ways. We define a new notion of disagreement,
which we call singular disagreement, by removing the require-
ment of common certainty and, instead, imposing qA= 1, qB= 0.
We ask whether this new notion holds for observers of classical,
quantum, and no-signaling systems. We find the same pattern as
before: Singular disagreement does not hold for observers of
classical or quantum systems, but can occur in no-signaling set-
tings, where we characterize the distributions that feature it.

Suppose that Alice and Bob share a no-signaling box. As
before, Alice assigns probability qA to the event FB, and Bob
assigns probability qB to the event FA. Suppose that this happens
at event (a= 0, b= 0, x= 0, y= 0). If qA= 1 and qB= 0, these
probabilities differ maximally: Alice is certain that FB happens,
while Bob is certain that FA does not happen. If, in addition, FA
and FB are perfectly correlated, then there is singular disagree-
ment at (0, 0, 0, 0). This time, there is no need for chained

certainties—we just require that Alice’s and Bob’s assignments
differ maximally.

More formally, there is singular disagreement about the
probabilities assigned by Alice and Bob to perfectly correlated
events FB ¼ fða; 1; x; 1Þ : a 2 A; x 2 Xg and FA ¼ fð1; b; 1; yÞ :
b 2 B; y 2 Yg, respectively, at event (0, 0, 0, 0) if it holds that

qA ¼ 1; qB ¼ 0: ð22Þ
Similarly to the previous section, we refer to the above

definition simply as “singular disagreement.”
We restrict ourselves first to boxes of two inputs and outputs

and show that local boxes cannot exhibit singular disagreement.
Then, we characterize the no-signaling boxes that do satisfy
singular disagreement and show they cannot be quantum. Finally,
we generalize to boxes of any number of inputs and outputs.

Theorem 6. There is no local two-input two-output box that gives
rise to singular disagreement.

It turns out that singular disagreement induces a Hardy
paradox21 in the system; therefore it cannot be local.

We now lift the local restriction and characterize the no-
signaling boxes in which singular disagreement occurs.

Theorem 7. A two-input two-output no-signaling box gives rise
to singular disagreement if and only if it takes the form of Table 2.

The definition of singular disagreement gives rise to the zeros
in the second and third rows of Table 2, while the zeros in the
bottom row come from the perfectly correlated outputs on inputs
x= y= 1.

However, singular disagreement cannot arise in quantum
systems. This is another way in which quantum mechanics
provides some consistency between (possibly incompatible)
measurements, just as in the case of common certainty of
disagreement.

Theorem 8. No two-input two-output quantum box can give rise
to singular disagreement.

By ref. 22, the boxes of Theorem 7 are either local or
postquantum. But Theorem 6 implies they cannot be local.

Finally, the above results can be generalized to any finite box:

Theorem 9. No quantum box can give rise to singular
disagreement.

The proof is very similar to that of Theorem 5.
Additionally, the PR box3 satisfies both Theorems 3 and 7, and

this makes it an example of both kinds of disagreement.

Discussion
We have defined two notions of disagreement inspired by notions
from epistemics. Both notions of disagreement imply immediate
tests for new theories—namely, the tables in Theorem 3 and
Theorem 7. These tests are very general in the sense that they are
based only on the capability (or not) of a theory to realize
undesirable correlations between non-communicating parties.
Also, both principles have their roots in epistemics, with common

Table 2 Parametrization of two-input two-output no-
signaling boxes with singular disagreement. Here,
r, s, t, u,∈ [0, 1] are such that all the entries of the box are
non-negative, s > 0, and s+ t≠ 0 and u+ t≠ 1.

xy\ab 00 01 10 11

00 s t 1− s− u− t u
01 0 s+ t r 1− s− t− r
10 1− u− t u+ t+ r− 1 0 1− r
11 r 0 0 1− r
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certainty of disagreement closer to Aumann’s original idea and
singular disagreement permitting a simpler description.

These two notions of disagreement are compatible in that it is
possible to find examples displaying both kinds of disagreement
at once. Strikingly, a prime such example is the Popescu-Rohrlich
box3, establishing that it is an extremal resource both in the sense
of being an extreme point of the polytope of no-signaling dis-
tributions and in the sense of inducing the strongest possible
disagreement between two parties.

On a speculative note, we suggest that it would be also very
interesting to explore the application of the concepts introduced
in this paper to practical tasks in which consensus between parties
plays a role, such as the coordination of the action of distributed
agents or the verification of distributed computations. See ref. 23

for some specific connections along these lines in the
classical case.

Further work could be dedicated to constructing physical
paradoxes arising from the possibility of agreeing to disagree. The
examples in the literature (see refs. 9–11), while very practical,
might, to some communities, be considered less appealing than
deeper physical consequences. These could be explored by
exploiting the newly built bridges between quantum mechanics
and epistemics.

Our results suggest that agreement can be used to design
experiments to test the behavior of Nature. In experimental set-
tings, noise is unavoidable. Adding white noise to the boxes in
Tables 1 and 2 (both of which lie in quantum voids) would mean
that the zeros in the boxes now become small but nonzero
parameters. Robustness of quantum voids to this type of noise
can be deduced from the closure of the set of quantum 2-input 2-
output correlations24. This already covers an approximate version
of singular disagreement. Another future direction to explore
would be defining notions of approximate common certainty of
disagreement.

We contend that agreement between observers could be a
convenient principle for testing the consistency of new post-
quantum theories. Our results yield a clear parameterization of the
set of the probability distributions that allow observer disagree-
ment. This set is easy to work with, thanks to its restriction to two
observations and two outcomes per observer. If a new theory can
be used to generate such a distribution, this might raise a red flag,
since this theory violates a reasonable, intuitive and, importantly,
testable property that quantum mechanics satisfies.

Therefore, another future direction would be to study dis-
agreement in theories that generalize quantum theory. For
instance, one could consider almost quantum correlations25,
which is a set of correlations strictly larger than those achievable
by measuring quantum states but that were designed to satisfy all
physical principles previously proposed in the literature. Almost
quantum correlations are well characterized in terms of no-
signaling boxes, so a natural question is whether they permit
common certainty of disagreement or singular disagreement. For
common certainty of disagreement, a straightforward modifica-
tion to the proof of Theorem 4 shows that this phenomenon
cannot arise under almost quantum correlations. For singular
disagreement, the simple characterization of almost quantum
correlations in terms of a semidefinite program26 makes it is
possible to search numerically for almost quantum boxes dis-
playing singular disagreement. Using this approach, we have
found numerical evidence that singular disagreement, too, cannot
arise under almost quantum correlations. Hence, our principles
would appear to make it possible to identify additional features
that almost quantum correlations share with quantum theory,
indicating a new sense in which these generalized correlations are
still reasonable.

Furthermore, one of the aims of studying physical principles is
to find out whether quantum theory can be deduced from a set of
such principles. Our findings open new directions for the
exploration of such a programme. However, there are two main
challenges in doing so. First, in order to assess this, it would be
desirable to compare this principle to existing ones in the
literature3–7. However, our principle is markedly different in
nature—this novelty being precisely the main obstacle. Second,
ref. 27 shows that bipartite principles are not enough to capture
the set of quantum correlations. This highlights the interest of
finding a multipartite extension for our principle. In the classical
case, multipartite extensions have already been considered (see,
e.g. ref. 28). Studying similar extensions in the quantum and no-
signaling settings is an interesting avenue for future work.

Finally, we compare our results with others in the physics lit-
erature that call on Aumann’s theorem. References 29,30 examine
Aumann’s theorem when observers are assumed to use Born’s
rule to update probabilities. The authors conclude that Aumann’s
theorem does not hold for this type of observer. Instead, our
setting assumes that the observers are macroscopic and merely
share a quantum state or a no-signaling box. Our setting is
appealing in quantum information for its applications to com-
munication complexity, cryptography, teleportation, and many
other scenarios. Reference 31 introduces a different notion of
disagreement in a no-signaling context. Here, disagreement
concerns pieces of information about some variables, and
agreement refers to consistency in the information provided
about the variables. Hence, it is unrelated to the epistemic notion
of disagreement in Aumann’s theorem or in the present work.
Disagreement is also a feature of ref. 18. However, there, one of
the observers ignores the fact that a certain measurement has
taken place, while another observer takes this into account, and
disagreement arises over the outcomes of a different measure-
ment. In our work, the events that take place are the same
according to all observers.
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