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Abstract

Acute febrile illness is a common problem managed by clinicians and health systems glob-

ally, particularly in the Tropics. In many regions, malaria is a leading and potentially deadly

cause of fever; however, myriad alternative etiologies exist. Identifying the cause of fever

allows optimal management, but this depends on many factors including thorough knowl-

edge of circulating infections. Arboviruses such as dengue (DENV) cause fever and may be

underdiagnosed in sub-Saharan Africa where malaria is a major focus. We examined cases

of fever in western Cameroon that tested negative for malaria and found 13.5% (13/96)

were due to DENV, with 75% (9/12) of these being DENV serotype 2 infections. Two com-

plete DENV2 genomes were obtained and clustered closely to recent isolates from Senegal

and Burkina Faso. The seroprevalence of DENV in this region was 24.8% (96/387). Neutral-

izing antibodies to DENV2 were detected in all (15/15) seropositive samples tested. Chikun-

gunya (CHIKV) is an arthritogenic alphavirus that is transmitted by Aedes mosquitoes, the

same principal vector as DENV. The seroprevalence for CHIKV was 15.7% (67/427); how-

ever, CHIKV did not cause a single case of fever in the 96 subjects tested. Of note, being

seropositive for one arbovirus was associated with being seropositive for the other (Χ2 =

16.8, p<0.001). Taken together, these data indicate that Aedes-transmitted arboviruses are

endemic in western Cameroon and are likely a common but underappreciated cause of

febrile illness. This work supports the need for additional study of arboviruses in sub-Saha-

ran Africa and efforts to improve diagnostic capacity, surveillance systems, and arbovirus

prevention strategies.
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Author summary

Acute illness with fever is common but can be challenging for clinicians to manage, partic-

ularly in resource-limited settings. In sub-Saharan Africa, malaria is a major cause of

fever, but other causes of fever are poorly documented or monitored, which impairs opti-

mal medical care to patients and implementation of public health interventions to control

leading causes of disease. Viruses transmitted by mosquitoes are a prevalent and expand-

ing problem throughout the tropics and beyond; however, there is concern that these

infections frequently go undetected in sub-Saharan Africa. We discovered a previously

unrecognized outbreak of dengue virus in western Cameroon by testing remnant samples

from over 400 patients that presented with fever. Our results indicate that dengue has cir-

culated in this region for decades with little recognition. This study adds important infor-

mation about causes of fever in sub-Saharan Africa and advocates for increasing

investment in surveillance systems and prevention strategies for mosquito-borne viruses.

Introduction

Acute febrile illnesses (AFI) commonly prompt presentation to medical attention in sub-Saha-

ran Africa and represent challenging clinical problems. There are numerous possible etiolo-

gies, and the availability of diagnostic testing for non-malarial causes is generally limited. [1–

3] Malaria remains the predominant concern in the febrile patient, and empiric antimalarials

are administered in many areas for undifferentiated fever. While missing a diagnosis of

malaria could have grave consequences, overuse of antimalarials could promote resistance and

confer unnecessary side effects, as well as delay optimal management of the true cause of the

presenting illness. Studies of AFI in sub-Saharan Africa (SSA) have identified some patterns,

but what is most notable is the heterogeneity of reported etiologies. [2] Thus, further develop-

ment of public health capacity, including surveillance systems, is needed to inform the best

decisions for clinical management and health resource allocation at the local level. To address

gaps in epidemiologic knowledge in western Cameroon, we asked whether arbovirus (ARBV)

infection was a common cause of non-malaria acute febrile illness (nmAFI).

ARBVs transmitted by the anthropophilic vector Aedes aegypti [4,5] include dengue

(DENV), Zika (ZIKV) and chikungunya (CHIKV) viruses and represent a major global health

problem. [6,7] DENV is estimated to cause upwards of 400 million infections each year, [8,9]

with 3.6 billion people at risk of acquiring a DENV infection. [10,11] DENV was responsible

for about 41,000 deaths in 2017, [12] with an economic cost estimated at 2.1 billion USD

between 2000–2007 for the Americas. [13] However, the precise global distribution and bur-

den of DENV remains highly uncertain. [14] In SSA, DENV is endemic in at least 34 countries.

There is currently no report of routine DENV diagnosis and treatment in health systems in

Africa despite evidence of continuous, ongoing DENV transmission in East and West Africa,

[1,15,16] and more recently in central Africa. [17–19] Consequently, febrile children and

adults are managed as presumptive cases of malaria or bacterial infections, which limits the

attention and awareness for infections caused by DENV or other viruses. Indeed, over treat-

ment of malaria in Africa is well documented. Up to 70% of patients in Cameroon [20] and

88% in Ghana who received an artemisinin combination were negative for malaria by rapid

diagnostic test. [21] The entrenched clinical paradigm of managing undiagnosed febrile

patients with antimalarials, the lack of guidelines for ARBV control programs, and the accu-

mulating record of DENV transmission among travellers to and residents of Cameroon and

other places in SSA [2,3,22–26] all point to the probability that DENV is an important public
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health problem in SSA. [27] In this study, we hypothesised that ARBV such as DENV represent

an important but underappreciated etiology of febrile illness in SSA countries such as Camer-

oon and investigated the hospital prevalence of DENV infection in a cross-sectional acute

febrile illness survey of patients suspected of having malaria infection in Dschang, West region

of Cameroon.

Methods

Ethics statement

The study was reviewed and approved by the institutional review board (IRB) of the Cameroon

Baptist Convention Health Board (FWA00002077), Protocol IRB2019-40. Written informed

consent was administered in French or English based on participant preference, via an inde-

pendent translator (who also spoke the local language Yemba) as needed. For children,

informed consent was obtained from a parent or guardian.

Study design and operations

Design. The analysis presented in this article was a secondary analysis of remnant samples

collected during a parent study focused on malaria. The parent study was a prospective hospi-

tal based cross-sectional survey in the three main health facilities in the Dschang Health Dis-

trict in the West region of Cameroon: Dschang district hospital, St Vincent Catholic Hospital

and Batsinglah Catholic Hospital.

Study population and site description. The parent study for this project was designed to

study the species and genetics of parasites causing malaria in this region of Cameroon (S1

Text). In total, 431 patients were enrolled between June 12, 2020 –September 8, 2020. Selected

demographic variables are reported in Table 1, and clinical symptoms are detailed in S1

Table. The Dschang health district with its 22 health areas has a surface area of about 1060

km2. It is a tropical, semi-urban environment at an elevation of 1380-1400m above sea level.

The rainy season lasts mid-March–mid October.

Recruitment of study participants and biospecimens. Inclusion criteria of the parent

study included fever (axillary temperature�37.5˚C or self-reported history of fever) in past 24

hours without signs and symptoms suggestive of severe malaria. Participants were excluded if

they had used anti-malarial medicine in the past 14 days. Dried blood spots (DBS) were col-

lected via finger prick. For serologic studies, plasma proteins were eluted from DBS as previ-

ously described. [23,28,29] DBS eluate was heat inactivated for 30 minutes at 56˚C and stored

at 4˚C for up to 1 week or at -20˚C until use. One 6-mm hole punch of each DBS was reserved

for molecular testing.

Laboratory assays and cartography (see S1 Text for greater detail). Samples were tested

as extensively as allowed by specimen quantity and assay costs. Testing of 96 malaria-negative

fever cases by real-time reverse transcriptase-polymerase chain reaction (rRT-PCR) was priori-

tized, followed by serologic testing of all samples with remaining material for DENV and

CHIKV. Genomic sequencing could be accomplished from the same nucleic acid extraction as

rRT-PCR testing.

rRT-PCR testing. Total nucleic acids were extracted from DBS on an EMAG instrument

(bioMérieux, Durham, NC) by first placing 6mm punches into 400μL of Nuclisense lysis buffer

and incubating overnight at room temperature on a tube rocker. Eluted nucleic acid (5μL) was

immediately tested by multiplex rRT-PCR for ZIKV, CHIKV, and DENV, [30] and DENV-

positive samples were subsequently tested in a DENV multiplex assay to determine the sero-

type (S1 Fig). [31,32]
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DENV genome sequencing and phylogenetic analysis. Seven samples underwent unbi-

ased metagenomic sequencing followed by DENV-specific analysis. Reads underwent metage-

nomic classification and DENV genome assembly. For phylogenetic analysis, all complete

DENV2 genomes were downloaded from NCBI on 7/3/22 (N = 3,229), and a maximum likeli-

hood phylogenetic tree was constructed as described in S1 Text. After Cameroon sequences

were confirmed to cluster with other DENV2 sequences of the Cosmopolitan genotype from

West Africa (S2 Fig), a subset of 29 West African DENV2 Cosmopolitan sequences were used

for further analysis (S2 Table). Sequence GQ398264 (Indonesia, 1976) was included as an out-

group. Maximum-likelihood and time-scaled Bayesian phylogenetic analyses were performed

as described in the Supplementary Methods.

Viruses and cells. DENV WHO reference strains DENV1-4 and CHIKV strain 181/

clone25, [33] which is a live attenuated vaccine strain compatible with BSL-2 work, were used.

DENV stocks were prepared in C6/36 Aedes albopictus mosquito cells (American Type Culture

Collection (ATCC) no. CRL-1660) and CHIKV stocks in Vero Cercopithecus aethiops monkey

cells (ATCC no. CCL-81).

Antigen capture IgG ELISA. Binding IgG to DENV or CHIKV was measured by antigen

capture ELISA as previously described. [34,35] Virus-reactive monoclonal antibody was used

to capture virus antigen. Serum IgG binding to viral antigen was detected by an alkaline phos-

phatase-conjugated goat anti-human IgG secondary Ab and p-nitrophenyl phosphate

Table 1. Sociodemographic characteristics of study population and association with DENV infection outcomes.

RT-PCR+ DENV (N = 96) DENV IgG+ (N = 387)

Positive Negative X2 Seropositive Seronegative X2

Number of participants who tested positive n(%) 13 (13.54) 83 (86.46) 96 (24.81) 291 (75.19)

Demographics

Age
<10 2 (18.18) 9 (81.82) 0.8806� 7 (14.58) 41 (85.42) 0.0687

10–14 0 (0) 6 (100) 3 (17.65) 14 (82.35)

15–49 8 (13.56) 51 (86.44) 60 (24.29) 187 (75.71)

>50 3 (15) 17 (85) 26 (34.67) 49 (65.33)

Gender
Female 7 (11.67) 53 (88.33) 0.5453 56 (24.78) 170 (75.12) 0.9882

Male 6 (16.67) 30 (83.33) 40 (24.84) 121 (75.16)

Level of Education
Primary 6 (12.77) 41 (87.23) 0.9235� 56 (30.27) 129 (69.73) 0.0443

Secondary 2 (12.5) 14 (87.5) 7 (15.56) 38 (84.44)

Tertiary 5 (15.15) 28 (84.85) 33 (21.02) 124 (78.98)

Presence of Water Source (Within 2 min. walk)
Yes 1 (5.56) 17 (94.44) 0.4505� 15 (29.41) 36 (70.59) 0.3846

No 12 (15.79) 64 (84.21) 78 (23.78) 250 (76.22)

Don’t know 0 (0) 2 (100) 3 (37.50) 5 (62.50)

Type of Water Source
Stream 0 (0) 4 (100) – 5 (41.67) 7 (58.33) –

Pond/Lake 0 (0) 7 (100) 3 (17.65) 14 (82.35)

Swamp/Marsh 1 (14.29) 6 (85.71) 7 (35) 13 (65)

No Answer 12 (15.79) 64 (84.21) 78 (23.64) 252 (76.36)

Don’t know 0 (0) 2 (100) 3 (27.27) 5 (72.73)

�Fisher’s exact test was used

https://doi.org/10.1371/journal.pntd.0010790.t001
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substrate. Absorbance at 405 nm (optical density, OD) was measured. The cut off for positivity

was calculated for each plate as the average OD of negative control serum + three standard

deviations + 0.1. [23,28,29]

Neutralization assays. Neutralization titers were determined by 96-well micro focus

reduction neutralization test (microFRNT) as previously described. [23,36,37] Serial dilutions

of DBS eluate were mixed with approximately 75–100 focus-forming units of virus. After 24–

72 hr (depending on virus), intracellular viral protein was detected by 4G2 [38] (for DENV2)

or CHK-48 [39] (for CHIKV), foci were quantitated, and neutralizing antibody titers calcu-

lated (GraphPad Prism 7).

Map creation. Data were summarized by study site (S3 Table) and were mapped to study

site locations using pie charts. All maps were made using ArcGIS version 10.7.1 with Camer-

oon boundary shapefiles obtained from GADM.org.

Data management and statistical analysis

Clinical and sociodemographic data were collected at enrolment and were entered into the

study database. Descriptive statistics were used to report prevalence of DENV cases and

DENV and CHIKV seroprevalence. Associations between DENV infection outcomes and

sociodemographic data were investigated by analysing cleaned data in Statistical Analysis Soft-

ware (SAS). A logistic regression was performed to analyse the relationship between the

parameters of interest and each of the infection outcomes. However, due to the highly dimen-

sional data, the analysis model was prone to overfitting. Thus, a Chi-square test was conducted

to compare the categorical variables to the outcome of interest. Fisher’s exact test was con-

ducted for variables with less than 5 observations when appropriate.

Results

ARBV infection

Of 96 subjects with fever and negative malaria testing, 13 (13.5%) tested positive for DENV by

ZCD assay [30] (Table 2). DENV2 was identified in 9 samples (75%), and DENV3 was identi-

fied in 4, with a single sample testing positive for both serotypes. No samples were positive for

ZIKV or CHIKV RNA, and all 96 samples yielded a positive signal for the RNase P target (S4

Table). One sample could not be serotyped.

Samples with the lowest Ct values for DENV2 were sequenced. Approximately 1 million

unbiased metagenomic sequencing reads were generated per sample (range 850,949 to

1,097,048, S5 Table). Complete DENV genomes were assembled from samples DSG2020_345

and DSG2020_061, confirming serotype 2. No DENV reads were detected in the other five

samples (S5 Table), which can be attributed to their relatively low DENV RNA content (CT

values ranging from 34.95 to 42.90 in the ZCD assay), combined with our low-depth, unbiased

sequencing approach; although a DENV-targeted approach likely would have yielded some

DENV reads, it would be unlikely to allow full-genome sequencing and phylogenetic analysis

for low-input samples such as these. Although one sample (DSG2020_346) contained GB virus

C, no other potential pathogens were identified by metagenomic analysis. The two DENV2

genomes belonged to the Cosmopolitan genotype, and fell within a sub-lineage with sequences

that have been circulating in West Africa for 20–35 years. [40,41] Interestingly, these

sequences were distinct from and ancestral to sequences obtained from Burkina Faso, Cote

d’Ivoire, and Senegal between 2016 and 2019 (Fig 1A). The Cameroon sequences, which were

from samples collected in 2020, shared a common ancestor in approximately 2017 and

diverged from other West African sequences in approximately 2013 (Fig 1B).
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To better understand the extent of ARBV transmission in the region, we tested for IgG anti-

bodies to DENV and CHIKV, which revealed a seroprevalence of 24.8% (96/387) for DENV

and 15.7% (67/427) for CHIKV (Fig 2A–2D). The ELISA testing approach was validated by

testing a small random subset of samples for neutralizing antibodies (Fig 2E and 2F). All 15

DENV IgG+ samples exhibited neutralizing antibodies to DENV2, the most prevalent DENV

serotype identified among non-malarial acute fever cases tested by rRT-PCR. To assess for

coherence in ARBV infection, we analyzed the proportion of samples positive for one virus

Table 2. rRT-PCR results for DBS samples positive for DENV RNA.

ZCD Assay DENV Multiplex Assay

Sample Number DENV CHIKV ZIKV RNase P DENV-1 DENV-2 DENV-3 DENV-4a Final Result

DSG2020_061 19.67 N N 22.91 N 21.92 N N DENV-2b

DSG2020_345 22.34 N N 24.61 N 24.95 N 28.40 DENV-2b

DSG2020_346 35.58 N N 26.93 N 38.74 N 41.10 DENV-2

DSG2020_007 37.03 N N 24.30 N 39.24 N 40.52 DENV-2

DSG2020_262 37.55 N N 24.15 N 38.15 N 41.11 DENV-2

DSG2020_013 37.95 N N 24.24 N 38.46 N 41.66 DENV-2

DSG2020_012 38.68 N N 24.22 N 40.80 N 41.17 DENV-2

DSG2020_341 40.59 N N 23.62 N 43.09 N 42.69 DENV-2

DSG2020_003 35.03 N N 23.51 N 36.51 40.13 39.54 DENV-2/-3

DSG2020_429 34.95 N N 27.87 N N 37.23 N DENV-3

DSG2020_263 39.96 N N 24.98 N N 36.88 N DENV-3

DSG2020_197 42.90 N N 25.96 N N 38.43 N DENV-3

DSG2020_075 41.56 N N 26.45 N N N N Negative

Abbreviations: CHIKV, chikungunya virus; DENV, dengue virus; ZIKV, Zika virus
aKnown cross-reactions occur with DENV-2, results in a low-fluorescence curve that crosses the threshold in DENV-4 channel.
bWhole genome sequences obtained

https://doi.org/10.1371/journal.pntd.0010790.t002

Fig 1. Phylogenetic analysis of DENV2 Cosmopolitan genotype sequences from West Africa. A) Maximum likelihood tree. Scale bar indicates genetic distance.

Nodes in the ancestral lineage of Cameroon sequences are labeled with percent bootstrap support. B) Time-scaled maximum clade credibility tree. Nodes are labeled

with posterior probability for the most recent common ancestor of Cameroon sequences (red) and its most proximal ancestor with other West African sequences (gray).

Text boxes indicate the median node age and 95% HPD in years prior to 2020.

https://doi.org/10.1371/journal.pntd.0010790.g001
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grouping by serostatus for the other virus (Fig 2C and 2D). There was a significant relation-

ship between DENV and CHIKV seropositivity (χ2 (1, n = 383) = 16.777, p�0.00005), consis-

tent with the hypothesis that risk for multiple Aedes-borne viruses would be concentrated

among some individuals.

Fig 2. Seroprevalence (% shown on graph) for DENV (A, n = 387) and CHIKV (B, n = 427) by IgG ELISA are shown. The assay cutoff was determined by negative

controls on each plate; a single dotted line, which is the average OD cutoff for all plates, is shown for better visualization. C) DENV IgG positivity is shown for samples

(n = 383) grouped by CHIKV serostatus, and D) CHIKV IgG positivity is similarly shown for samples (n = 383) grouped by DENV serostatus. E-F) Neutralizing

antibodies were assessed for DENV (E) and CHIKV (F) by focus reduction neutralization testing (FRNT). E) A subset of sera was selected based on DENV IgG serostatus

(n = 15 DENV IgG- in upper portion of graph and n = 15 DENV IgG+ in lower portion of graph) and tested at a single dilution (1:80) in duplicate for neutralization of

DENV2. AVE123 is a positive control (run at 1:40) and negative controls included TWS50, AVE132, and AVE133. All other wells forming the perimeter of the plate

received virus only (marked through with thick bar). F) A subset of sera (n = 10) was selected based on CHIKV IgG serostatus (n = 7 CHIKV IgG- and n = 3 CHIKV IgG

+) and tested over eight 4-fold dilutions in singleton for neutralization of CHIKV. CHIKV IgG ELISA results (OD, optical density) is shown across the bottom of each

column, Positive ODs (OD>0.2) are shown in red.

https://doi.org/10.1371/journal.pntd.0010790.g002
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Risk factors for ARBV infection

There was no clear geographic clustering by site for DENV cases or seroprevalence (Fig 3A

and 3B). A Chi-square independence test showed that there were no significant differences

between the sociodemographic factors and the epidemiologic outcomes of DENV case or sero-

positivity (p> 0.05) (Table 1). Analysis of a larger sample may reveal interesting differences in

seroprevalence stratified by age, but no statistically significant relationships could be detected

in the sample available for this study for age and DENV seroprevalence, χ2 (3, N = 387) = 7.10,

p = 0.0687.

Discussion

In this study, we demonstrated that DENV is clearly an important cause of AFI in SSA (at least

in Cameroon). However, there may be substantial local and regional heterogeneity. Our study

captured an outbreak driven primarily by DENV2 during 2020. The age distribution of DENV

seroprevalence is consistent with endemic or intermittent transmission of DENV for at least

several decades in the region. The seroprevalence of CHIKV further indicates that local ecol-

ogy is amenable to human infection by multiple viruses transmitted by Aedes aegypti. Our two

DENV2 genomes are important contributions to the scant phylogeographic data on DENV in

SSA and suggest that a distinct lineage of the Cosmopolitan genotype of DENV2 may have

been circulating unrecognized in western Cameroon for several years.

Our study adds to the limited existing evidence of DENV (including serotypes 1, 2 and 3)

transmission in Cameroon in several regions. [3,17,42–51] CHIKV has been less commonly

reported in Cameroon, [48,52–54] with exception of a notable outbreak in 2006. [53,54] The

modest seroprevalence (~15%) of CHIKV but lack of cases in the AFI cohort illustrates a few

important points. It is characteristic of many ARBV to exhibit unpredictable periodic out-

breaks with intervening periods of low or absent transmission. The absence of detection of an

ARBV like CHIKV in a single cohort study does not exclude this virus from being an impor-

tant consideration in the etiology of AFI in this region. In fact, the seroprevalence data from

Fig 3. Distribution of rRT-PCR-positive DENV cases (A), and DENV (B), and CHIKV (C) seroprevalence were mapped by

study site in Dschang Health District. Pie chart sizes were proportional of the number of samples tested for each assay. The

abbreviated name of each study site appears next to each point with the number of samples positive for DENV via rRT-PCR (A),

DENV IgG (B) or CHIKV IgG (C) in parentheses. For the DENV rRT-PCR results, sections of the chart corresponded to positive

versus negative rRT-PCR results; for the DENV and CHIKV serology charts, sections corresponded to single infections (DENV or

CHIKV only), DENV and CHIKV co-infections, and no DENV or CHIKV detected.

https://doi.org/10.1371/journal.pntd.0010790.g003
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our study and the sustained circulation of CHIKV in certain regions of Africa indicate the rele-

vance of this pathogen. The second point is that diagnostic capacity is essential to support clin-

ical practice and public health management of the myriad causes of fever in SSA. The

association of DENV and CHIKV seropositivity strongly argues that common risk factors

exist for Aedes-borne ARBV in this area, and there are several reasons why a comprehensive

understanding of ARBV transmission dynamics is critical. As demonstrated by our study,

ARBV such as DENV are important causes of fever, but attack rates can vary broadly from sea-

son to season or between relatively small distances. For example, 17.4% of 682 non-malaria

febrile cases in a large health facility in Gabon were diagnosed as DENV, [18] and in Madagas-

car, DENV was the most common cause of AFI in one recent study. [55] Local epidemiology

determines pre-test probability of a given diagnosis, which affects clinical decision making.

Moreover, epidemiologic data permit priority setting and resource allocation by public health

authorities. Detecting the true prevalence and incidence of ARBV infections can advocate for

enhancing diagnostic capacity. Finally, the burden of ARBV infection represents a solvable

global health problem. Vaccinology continues to advance, and it is likely that safe and effective

vaccines could soon be available for ARBV including DENV, CHIKV and ZIKV. [56–60]

There has also been reinvigoration of control efforts targeting mosquito vectors. [61–65] Effec-

tive implementation of these requires thorough knowledge of the local transmission ecology to

design, monitor and maintain the benefit of novel interventions.

Limitations of our study include the relatively low sample amount, precluding more exten-

sive serologic testing for other ARBV. For example, we did not test for IgM, which could have

increased sensitivity for capturing acute ARBV infections. A longer longitudinal study would

be necessary to capture cases of other ARBV, given the typical sporadic epidemic transmission

patterns of these pathogens. Also, we were unable to collect follow up data on clinical out-

comes of our DENV cases. Despite this constraint, we were able to generate a robust data set

and provide new insight into ARBV transmission dynamics in SSA. DBS are an innovative

tool that allows convenient sampling of large numbers of people in resource limiting setting.

We and others have used DBS-based serology to study the epidemiology of arboviruses or

other infectious diseases in both standard ELISA as well as multiplex platforms. [23,28,29,66–

72] We have recently generated data on the stability of ARBV genomic RNA on DBS for

RT-PCR diagnostic testing as well as metagenomic sequencing, [73] which will expand the

possibilities for clinical studies and surveillance activities.

Conclusion

In conclusion, this work highlights the need to consider DENV and other ARBV in the differ-

ential diagnosis of AFI in SSA. Our data indicate that western Cameroon is likely not hyperen-

demic for DENV, but sustained transmission of at least the DENV2 serotype in this region has

likely been established for many years. Further study could also clarify if there is ongoing spill

over from non-human mammalian hosts [48] or involvement of vector spp. other than Aedes
aegypti and albopictus mosquitoes. [19,74] The methods used in this study provide an example

of robust approaches to study ARBV. Optimal clinical management of febrile patients, along

with efficiency and effectiveness of public health interventions such as vector control, would

be strengthened were diagnostic capacity and surveillance systems improved and prioritized.
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