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Neurofeedback learning modifies 
the incidence rate of alpha 
spindles, but not their duration and 
amplitude
Alexei Ossadtchi1,2, Tatiana Shamaeva3, Elizaveta Okorokova1, Victoria Moiseeva1 &  
Mikhail A. Lebedev4

Although the first experiments on alpha-neurofeedback date back nearly six decades ago, when Joseph 
Kamiya reported successful operant conditioning of alpha-rhythm in humans, the effectiveness of this 
paradigm in various experimental and clinical settings is still a matter of debate. Here, we investigated 
the changes in EEG patterns during a continuously administered neurofeedback of P4 alpha activity. 
Two days of neurofeedback training were sufficient for a significant increase in the alpha power to occur. 
A detailed analysis of these EEG changes showed that the alpha power rose because of an increase 
in the incidence rate of alpha episodes, whereas the amplitude and the duration of alpha oscillations 
remained unchanged. These findings suggest that neurofeedback facilitates volitional control of 
alpha activity onset, but alpha episodes themselves appear to be maintained automatically with no 
volitional control – a property overlooked by previous studies that employed continuous alpha-power 
neurofeedback. We propose that future research on alpha neurofeedback should explore reinforcement 
schedules based on detection of onsets and offsets of alpha waves, and employ these statistics for 
exploration and quantification of neurofeedback induced effects.

Neurofeedback is a form of biofeedback, which allows subjects to observe and ultimately gain volitional control 
over their own brain activity. Neurofeedback settings involve recording of neural activity, extraction of neural 
features of interest, transformation of these features, and feeding the resulting signal back to the subject via one of 
sensory modalities: visual, auditory or tactile. Under these conditions, subjects learn to volitionally modify their 
brain activity, which they are normally unaware of.

One of the first neurofeedback experiments was conducted in the late 1960’s by Joe Kamiya1, 2. His basic neu-
rofeedback design consisted of two stages. During the first stage, called the training session, subjects appreciated 
their own mental state (high/low alpha) using the feedback. During the second stage, they trained to enter the 
target (high alpha) state upon an acoustic prompt. Kamiya reported that after the training session 80% of the sub-
jects managed to successfully classify their mental state and initiate it upon the prompt3. After learning the task, 
subjects reported mental states reflecting relaxation, “letting go” and pleasant feelings associated with cortical 
alpha activity.

A few years later, Barry Sterman demonstrated operant conditioning of cortical oscillations in cats. He studied 
the so-called sensorimotor (SMR) 12–15 Hz rhythm, which normally occurs in the motor cortex when an animal 
is in a state of alert immobility, often before attacking the prey. In Sterman’s study, cats learned to enter the SMR 
state following a conditioning stimulus. Additionally, the animals learned to produce the SMR even without any 
stimulus if food reinforcement was given each time they spontaneously entered the SMR state4. The same cats 
that underwent neurofeedback training were later used in an epilepsy study, and it was unexpectedly found that 
they were significantly less prone to seizures evoked by the epileptogenic fuel component than the cats that did 
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not have the SMR training5. Thus, these experiments of Sterman and his colleagues revealed a potential of neuro-
feedback as a treatment for epilepsy6–8.

Despite these spectacular early findings, the field of neurofeedback remained underestimated and barely alive 
until the mid 1990s, when technological advances, including reasonably priced and efficient computerized EEG 
diagnostic equipment, brought impetus to EEG research, in general, and EEG-based neurofeedback, in particular. 
Since then, the number of studies has been growing on various aspects of neurofeedback in both laboratory and 
clinical settings9.

In addition to treatment of epilepsy, neurofeedback has been employed as a non-pharmacological therapy for 
a broad range of neurological conditions, such as ADHD10–13, depression14, 15 and autism spectrum disorder16, 17. 
Furthermore, neurofeedback therapy has been shown to improve sleep quality18, 19, mood20 and cognitive func-
tion and even enhance performance of sports and arts professionals21–23. Finally, a new and increasingly popular 
line of research employed neurofeedback as a key component of brain-computer interfaces (BCIs), systems that 
connect the brain to computers in order to assist and rehabilitate communication and motor functions to patients 
suffering from different degrees of paralysis caused by injuries and diseases of the brain and the spinal cord24. 
Properly chosen neurofeedback improves and enriches BCI operations25, 26.

The rapid revival of neurofeedback research including the use of various recording27–33, signal processing and 
source-localization techniques34–36, however, came along with a number of skeptical concerns about the validity 
of this approach. Conflicting results on neurofeedback effectiveness, as well as the absence of standardized neuro-
feedback protocols37 hinder our understanding of neurofeedback: what EEG features to use, where in the brain to 
record, and how to process EEG features in experimental studies and clinical applications.

Several recent methodological papers23, 37–39 outline the requirements for any state-of-the-art neurofeedback 
experiment. The temporal specificity of the reinforcement is one of the major concerns raised in these studies. 
Since neurofeedback is a reinforcement learning process40, 41, it is important that the reinforcement is delivered 
at the right time and that it triggers the desired brain adaptation. A reinforcement signal that arrives too late 
may not be properly matched with the desired activity pattern and, as a result, may impair or even prevent learn-
ing42. The choice of a relevant learning metrics for neurofeedback presentation has been a subject of long-lasting 
debate since the early experiments of Kamiya43–45. Typical neurofeedback protocols employ either discrete 
(percent-time) or continuous (integrated) schemes of reinforcement38. Another technique, called the Z-score 
neurofeedback, allows a generalized threshold-neurofeedback presentation based on a population distribution46 
of the EEG parameter used. Other common considerations include the choice of sensory modality47, 48, complex-
ity of reinforcement49, contingency of reinforcement50, 51, secondary reinforcement as an additional motivation 
factor42, and the shaping process for adjusting the feedback throughout an experiment52.

Simple continuous measures of EEG rhythms, which are commonly employed to generate neurofeedback, may 
obscure important details of the dynamical patterns contained in complex and non-stationary EEG signals. For 
example, changes in continuously monitored power of an EEG spectral band (Fig. 1) may be caused by changes in 
any of the three parameters that we employed in this study to quantify EEG patterns: spindle duration, amplitude 
and incidence rate. Accordingly, if EEG band power is used to generate the feedback, it is unclear which of the 
parameters the subjects can volitionally control. In order to achieve the optimal neurofeedback performance we 
need a more detailed knowledge of EEG patterns and their susceptibility to volition.

In this paper, we investigated the detailed spatiotemporal characteristics of EEGs using a traditional para-
digm, where subjects received continuous neurofeedback based on their occipito-parietal (P4) alpha-rhythm 
power and were instructed to increase it. Neurofeedback training continued for two consecutive days in each 
subject and resulted in clear enhancements of alpha activity. Our analysis showed that, although the neurofeed-
back was based on a traditional continuous representation of alpha power, the underlying mechanism for the 
neurofeedback-induced EEG changes was best characterized as discrete. We propose that, taken one step further, 
this result warrants investigation into discrete EEG features as an approach to improve neurofeedback efficiency 
and explore and quantify the neurofeedback-induced effects.

Methods
Participants and settings.  Eighteen healthy right-handed adults (12 females and 6 males) participated in 
the alpha neurofeedback training. The experiment was conducted in accordance with the ethical standards of the 

Figure 1.  A representative EEG trace filtered in the 8–12 Hz band. Due to the inherent non-stationarity of the 
EEG time series, the average increase of the alpha-band power can be explained by changes in the duration of 
alpha spindles, the peak amplitude and the incidence rate of such spindles.
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1964 Declaration of Helsinki. All participants gave written informed consent prior to the experiment. The study 
was approved by the ethics committee of the St.-Petersburg State University.

The participants were randomly split into equally-sized experimental and control groups. The subjects in 
the experimental group received visual feedback that represented their EEG activity. Subjects in the control 
group received sham feedback based on prerecorded EEGs taken from a different subject. The participants from 
both groups received identical instructions from the same experimenter and adhered to the same experimental 
protocol.

The experiment was conducted in an electrically shielded room. Subjects sat in a comfortable chair in front 
of a conventional 14–inch LCD monitor with a 60 Hz refresh rate. The brightness settings were kept identical 
throughout the entire experiment and corresponded to the default (middle) position of the brightness slider.

EEG recording and experimental procedure.  The left panel of Fig. 2 shows the real-time signal process-
ing steps. We recorded EEG from eight channels (F1, F2, C3, C4, P3, P4, O1, O2) with passive Ag-Cl electrodes 
connected to Mitsar-21 amplifiers. The signals ground was set at Afz, and digitally linked ears were used as refer-
ence. Electrode impedance at each site was below 10 kΩ and sampling rate was 500 Hz.

The feedback signal was computed based on the EEG signal x(t) recorded from the P4 electrode placed over 
the right parietal region (marked by a circle in Fig. 2). This signal was band-pass filtered in the 8–12 Hz range, 
using the 4-th order Butterworth IIR filter to obtain the narrow-band process xα(t). To calculate the instantaneous 
power Pα(t) of the band-passed EEG we applied the Hilbert transform53 that produced the complex-valued ana-
lytic signal = +α α αˆz t x t jx t( ) ( ) ( ), and then measured the envelope =α αe t z t( ) ( )  and the instantaneous power 

=α
αp t z t( ) ( ) 2. Figure 1 illustrates the envelope and its relationship to the waveform of the narrow-band process. 

To calculate the feedback signal Pα(t) we then smoothed the instantaneous power values Pα(t) over the window of 
duration Tw = 200 ms as ∫ τ τ= −α α−

P t p t d( ) ( )
T

0

w
. We used the mean mBL and the standard deviation σBL of the 

feedback signal Pα(t) calculated over the baseline interval of duration Tb to obtain the standardized feedback sig-
nal =α σ

−α
P t( ) P t m( ) BL

BL
. This standardized value was then encoded as the intensity of the screen red color and pre-

sented to the subject. The resulting delay between the electrode signal and the change in screen color was in the 
range of 250–350 ms and was caused by filtering, smoothing and the delays induced by the hardware and com-
puter operating system. This delay is within the range of acceptable feedback latency values as reported in ref. 38. 
The subjects were instructed to increase the red color intensity while sitting as still as possible and keeping their 
eyes open.

Figure 2.  Schematic representation of the experimental procedure.
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Each experimental session consisted of five 120-s segments (Tp = 120 s), separated by 30-s breaks (Tr = 30 s). 
Prior to each daily experimental session, a Tb = 60 s long baseline EEG recording was conducted to obtain the 
statistical data needed for standardization of alpha feedback to each individual’s baseline level. The experiment 
was conducted for two consecutive days in each subject, with one experimental session per day. The two days of 
training provided us the opportunity to analyze the effects of neurofeedback during the same day and across days 
and at the same time guaranteed that all the subjects could be consistently tested. As our subsequent analysis 
indicated the P4 site was not always the peak-alpha site and was used for neurofeedback signal calculation in all 
subjects for consistency.

Offline processing.  Prior to any further processing, we utilized the InfoMax ICA procedure to remove ocu-
lar artifacts. Due to the limited number of channels (N = 8), we removed no more than two ICA components that 
captured ocular artifacts. We then processed the EEG data collected during the two experimental sessions (one 
per day) for each subject (Fig. 2, right). Consistent with previous observations on the daily variability of EEG 
recordings due to differences in electrode placement, skin-electrode contact, electrode conductivity, cerebral 
blood flow and electromyographic interference54, we observed that alpha power fluctuated from the first to the 
second recording day. To compensate for these fluctuations, in the analyses where we compared the first day to the 
second day data, as it is formalized in (1), we normalized the daily time series pα(t) by the average magnitude of 
the theta-band θp . The latter band could be used for such calibration because it was affected by recordings insta-
bility factors in the same way.

=α α

θ

Q t
p t

p
( )

( )
,

(1)

Where pα(t) is the instantaneous envelope samples of the alpha-band (8–12 Hz) at time instance t, and θp  is the 
theta-band (3–7 Hz) envelope averaged across all sessions for the same day.

Alpha-band power changes.  We first explored the neurofeedback-related changes in Qα(t) using the P4 channel 
data. The analysis was performed for the experimental and control groups. We used paired permutation test55 to 
assess the significance of the change in the average P4 Qα(t) observed over the two training days. The test was 
applied separately to the experimental and control groups.

Next, to examined the spatial specificity of the neurofeedback-induced changes, we performed the same tests 
on the data from the other seven recording sites, besides P4. To represent these results we employed the topo-
graphic maps of log10 of the uncorrected p-values of the null hypothesis of no difference in the mean alpha-band 
Qα(t) between the two days of training. To correct for multiple comparisons, we used Benjamini-Hochberg proce-
dure56 for each topographic map individually. We used p-value threshold corresponding to q = 0.1 false discovery 
rate (FDR) level. On the topoplots, the electrodes whose p–values were below the threshold (and thus significant) 
are pointed to by the black arrows with the corresponding p-value shown in brackets. To examine the changes in 
the beta rhythm, we used the Qβ(t)-ratio (defined similarly to Qα(t) but using the beta-band (15–25 Hz) filtered 
signal in the numerator of equation 1). We did not run this analysis for the theta-band data because the average 
power in this frequency range was used as a normalizing factor for the Q-ratio.

Alpha band signal morphology.  Alpha band oscillations occur in the form of transient spindles. These patterns 
were described using three parameters, all contributing to the average alpha power: the duration of the alpha 
spindles, their mean amplitude and their incidence rate. An increase in any of these parameters would lead to an 
increase of the average alpha-band power (see Fig. 1). However, from the physiological point of view, each of these 
parameters reflects a unique functional characteristic of the underlying neural activity.

To assess how each of these three parameters was affected by the neurofeedback training, we performed the 
analysis outlined in Fig. 2. Using the trace of P4 Qα(t), we detected alpha-spindles as the envelope spindles that 
exceeded the threshold set at twice the median value of P4 Qα(t) computed over the entire period of training (two 
days). The duration of a spindle was calculated as the number of samples the envelope signal spends above the 
threshold and the spindle amplitude as the maximum value achieved within this segment.

We then determined the amplitude, spindle duration and incidence rate parameters for the alpha spindles. A 
paired permutation test was employed to compare these values between the first and the second days of training. 
This analysis was conducted separately for experimental and control groups. To examine the spatial specificity of 
the observed effects we performed the same analyses for the remaining EEG channels and used the 0.1 FDR level 
to mask significant p–values in the scenario of 8 multiple comparisons in each map.

We have also examined the daily trends of alpha-spindle parameters as a function of the training segment 
index (1–5, first day; 6–10, second day) for each subject in the experimental and control groups. The trend was 
quantified as correlation coefficient between the parameter of interest (average power, spindles incidence rate, 
spindles amplitude, duration) and training segment index. Correlation coefficients were calculated for each day 
separately and then averaged. We then explored the between-group differences in these correlation coefficients 
using non-parametric Wilcoxon rank-sum test.

Results
In the experimental group, we found a significant increase in the average alpha power per training segment Qα(t), 
ρ = . < .p0 69, 0 005. In the control group, no significant change was observed (ρ = . > .p0 15, 0 43). Thus, the 
increase in P4 alpha power was due to the neurofeedback and not to any other possible factors involved, such as 
subjects’ adaptation to the experimental routine.
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Figure 3 shows the scatter plots of the average P4 Qα(t) ratio calculated for each session in the experimental 
(left panel) versus control (right panel) groups. To facilitate comparison between subjects, each value was divided 
by the average P4 Qα(t) from the first session (hence not shown in the plot). The values on the y-axis reflect the 
magnitude of the average Q-metric in the consecutive segments for the first (points 2–5) and second (points 
6–10) days of training. The lines on the plots show the average trends across segments and allow to appreciate the 
effect of each individual training segment.

Next, we investigated the Qα(t) waveform composition, namely the alpha spindles incidence rate, their average 
duration and amplitude (Fig. 1). Figure 4 shows the topographic plots reflecting the changes in these parameters 
between the first and the second day of neurofeedback training. The colors represent the log10 of the p-values, 
obtained using a two-sided permutation test with the null hypothesis of no difference in the parameters between 
day 1 and day 2. The same analysis was conducted for the higher EEG band (beta: 15–25 Hz). All significant and 
marginally significant differences were positive, i.e. day 2 > day 1.

In summary, Fig. 4 shows the following results:

	 1.	 As expected, the statistically significant increase of alpha-band power on the second day (top-row, 
rightmost column) occurred only in the experimental group and was most pronounced at P4 (p = 0.0055) 
which also passes the FDR 0.05 threshold. This effect was not observed in the beta band. At the same time, 
the effect was not spatially specific to P4 only because small but marginally significant changes were found 
in the central and frontal left regions (around C3 and F3). Possibly, neurofeedback training of the P4 alpha 
band led to a concomitant increase of alpha activity in other alpha-specific circuits, including the left sen-
sory-motor regions, where high alpha activity (including the mu-rhythm) is considered to be an indicator 
of a motor idling state57.

	 2.	 As it can be seen in the leftmost column of the topomaps, the incidence rate parameter exhibited the most 
prominent spatially specific (i.e. with a clear peak over P4) and significant (p = 0.002) neurofeedback-in-
duced change that passes the FDR = 0.05 threshold calculated for each map individually. The change in the 
other two parameters (duration and amplitude), for both experimental and control groups, did not exceed 
the significance threshold of 0.05 and was above the FDR = 0.1 threshold.

	 3.	 No significant increase of the incidence rate was observed in the non-targeted by neurofeedback beta band.
	 4.	 At the same time, we observed a marginally significant change in the beta-band burst duration at P3 in 

the experimental group and the duration parameter of alpha-spindles at C3. These small changes possibly 
reflecte alterations of the sensorimotor rythm (SMR) that accompanied the main effects of neurofeedback.

	 5.	 In the control group, a marginally significant increase occurred in the F3 alpha-spindle incidence rate 
parameter in the control group that could possibly relate to frontal asymmetry associated with stress and 
emotional state in response to incongruent feedback58, 59.

Figure 3.  Average P4-alpha power dynamics in the experimental and the control groups during the two days of 
training. The points on the graph represent the mean alpha power during each 2-minute neurofeedback session 
relative to the first session of the first day. Since the first session of the first day was used as a reference point and 
is omitted from the graphs (baseline = 1), the effect of each individual 2-minute session can be estimated as a 
ratio of the observed value to that from the previous session.
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As an additional verification, we tested different thresholds for alpha-spindle detection. We found that the 
results persisted for a large range of threshold values. Figure 5 depicts the p–values for the three parameters of 
the EEG at P4 (spindle amplitude, incidence rate and duration) calculated for different threshold values. The 
dashed lines correspond to the control group and the solid lines to the experimental group. Clearly, alpha-spindle 
incidence rate enhancement persisted for different threshold values, so this effect was robust to changes in the 
spindle-detection algorithm parameters.

For this purpose, we analyzed the P4 EEG signal in both the experimental and the control datasets using a 
sliding window (Fig. 6). The analysis utilized the same procedures as for the alpha band, and covered the range of 
frequencies from 3 to 25 Hz. This analysis showed that the incidence rate changed significantly only for the alpha 
band, but not for the other tested frequencies; and only in the experimental group.

Figure 4.  Statistical analysis of Qα(t) waveform morphology in terms of the incidence rate of alpha spindles 
(first column), their duration (second column), amplitude (third column) and average power (fourth column). 
The electrodes exhibiting significant changes are pointed by the arrows with the corresponding p–values 
specified in brackets. A linear colormap encodes the log10 p-values obtained from the permutation test of no 
difference between days 1 and 2. Non-logarithmic p-values are also shown on the outer side of the colorbar. 
Beta band changes are included in the analysis as a control for frequency band specificity. Significant differences 
that pass the FDR (0.1) correction for multiple comparisons are observed only for the spindles incidence rate 
parameter at P4 (p = 0.002) and for the average power at the same electrode (p = 0.0055). These differences 
correspond to a greater mean value observed on day 2, as compared to day 1. Note that changes in the incidence 
rate parameter are more spatially specific and better correspond to the goal of neurofeedback training of 
enhancing alpha rhythm power at P4 than the average power changes (top row, rightmost column).

Figure 5.  The effect of varying the spindle detection threshold. The p–value for the three parameters (spindle 
amplitude, incidence rate and duration) calculated from P4 electrode data for different threshold values is 
shown. The dashed lines correspond to the sham feedback group and the solid lines to the experimental group. 
The observed significance of alpha spindles incidence rate increase persists for a large range of threshold values.
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Next, we analyzed changes in EEG patterns as a function of training segment for each day separately. The 
top and bottom panels of Fig. 7 show alpha-spindle incidence rate as a function of training segment for the 
experimental and the control groups, correspondingly. In these graphs, the first five points correspond to the 
five segments of the first day, and the last five points correspond to the five segments of the second day. For all 
subjects in the experimental group, alpha-spindle incidence rate had a tendency to increase during each training 
day. Mathematically, we expressed this tendency as a positive correlation between the segment number (index) 
and the spindle incidence rate. We did not observe such a tendency for the control group (bottom panel of Fig. 7), 
where different subjects exhibited different inconsistent direction of changes. Figure 8 summarizes the results 
of the correlation analysis for different alpha-activity parameters for the experimental and control groups. Here 
again, the correlation coefficient was calculated for the relationship between the segment number (1–5; each 
point represents an average for two recording days) and the parameter of interest. For each subject, we plotted the 
points representing daily correlation coefficient for each of the four parameters of alpha activity: average power, 
spindles incidence rate, spindles amplitude and duration. Additionally, the bar plots represent average correla-
tion coefficients for each group (blue for the experimental group; orange for the control group). The statistical 
analysis for the two groups showed statistically significant positive correlations (with the training segment index) 
(p < 0.0001) in the experimental group only for the power and spindles incidence rate, but not for the spindle 
amplitude and duration. No significant correlations were found for any of the parameters in the control group. 
For the statistical comparison of the two groups, average power and spindles incidence rate differed significantly 
(Wilcoxon rank-sum test, p = 0.00016) whereas the other parameters did not. Also, within the experimental 
group the correlation coefficient for the spindle incidence rate was highly significantly different from the one 
for the amplitude (p = 0.0008) and significantly different from the one for spindle duration (p = 0.00203), which, 
once again, shows that the incidence rate was the major parameter affected by the neurofeedback training.

Discussion
This study revealed novel properties of alpha rhythm pattern changes induced by neurofeedback training. We 
examined three characteristics of alpha activity: (1) the number of alpha spindles per unit of time (incidence 
rate), (2) the average spindle duration, and (3) the amplitude of alpha spindles, and found that only the rate of 
alpha spindles changed significantly during P4 alpha neurofeedback training. Seven out of nine (78%) subjects 
responded to training if judged by the between day comparison and all subjects responded to training if quanti-
fied by the within day alpha power increase (see Figures 7 and 8).

The significant and steady increase of the average P4 alpha-power with the number of training segments was 
clearly present in the experimental group and absent in the control group (see Fig. 3). This result was expected 
from the previous literature on alpha neurofeedback (for example, see studies on alpha-band power training)21. 
Our detailed analysis of the EEG patterns did not show a statistically significant increase in the amplitude and 
duration of alpha spindles. Instead, it turned out that the observed increase in alpha-band power was explainable 
solely by the increased incidence rate of alpha spindles. Therefore, what our subjects actually learned during the 
neurofeedback training was the ability to more easily transition to the brain state hallmarked by a pronounced 
alpha activity. Overall, our findings indicate that the analysis of neurofeedback-induced changes in EEG pat-
terns should extend beyond the classical signal-processing metrics. These metrics are suitable for the analysis of 
stationary signals, but they fail to reflect the variability of non-stationary signal features. Taken one step further, 
these results favor the idea of the development of discrete form of reinforcement to improve alpha neurofeedback.

Our result can be considered from a historic perspective of neurofeedback training. From the very early exper-
iments of Kamiya1, 2, it was common to measure neurofeedback learning in terms of two indices: the percent-time 
and integrated amplitude. The percent time metrics, also confusingly referred to as discrete neurofeedback, is 
calculated as the percent of data samples in the feedback signal that exceed a predefined amplitude threshold. The 

Figure 6.  Band specificity study. The plot shows dependence of the main effect’s p– value on the band. Solid 
lines correspond to the experimental group and the dashed lines to the control group. The significant difference 
between days in the incidence rate parameter is observed only in the alpha-band and only in the experimental 
group.
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integrated alpha, on the other hand, is a continuous variable, measured as a time integral of the feedback signal, 
or, equivalently, the average amplitude of the signal. Both metrics could be used as a post processing tool or as a 
trigger for reinforcement in the online mode.

In 1976, Hardt and Kamiya43, sparked a controversy regarding the usage of percent time index. They pointed 
out that most of the successful studies on alpha neurofeedback utilized continuous features of the feedback signal 
(also see Ancoli)60. According to Hardt and Kamiya, percent-time alpha measure is restricted to detecting when 
the state is on or off, but does not demonstrate minor, yet important, changes in EEG activity. This failure of 
percent-time metric to capture the signal dynamics may discourage learners whose volitional EEG modifications 
are discarded by the threshold algorithm. Additionally, this metric may fail to distinguish good learners whose 
EEG modifications substantially exceed the threshold from average learners who barely exceed the threshold.

Lanski et al.61, in their comment to Hardt and Kamia43, proposed that the percent-time metrics, despite its 
failure to capture small changes in the feedback signal, allows for better and more natural alpha spindle detection, 
which is a special feature of the alpha rhythm. They also claimed that threshold based techniques allow better 
tracking of the spindle frequency. By contrast, alpha integration method requires a rather long time frame to 
perform computation: several minutes in Hardt and Kamiya study and, generally, around 300–500 ms in modern 
settings. Such prolonged processing delays reinforcement, masks fast signal dynamics and, as a result, signifi-
cantly hinders learning.

Travis et al.44 investigated alpha enhancement during eyes-closed and eyes-open neurofeedback using both 
metrics. They found that learning with eyes-closed versus eyes-open was more effective with discrete-type neu-
rofeedback, while learning with eyes-open gained from continuous feedback. In an attempt to resolve the con-
troversy with the neurofeedback metrics, Dempster and Vernon45 compared three measures: integrated alpha 

Figure 7.  The dynamics of alpha-spindles incidence rate as a function of the training segment index (1–10) for 
all subjects (n = 9 experimental, n = 9 control) groups. The first five segments correspond to the the first day 
and the last five to the second day of training. For each subject, we normalized the spindles count by the number 
of events observed in the 1st segment (first day). The top panel corresponds to the experimental group and the 
bottom panel represents the data for the control group. All the subjects from the experimental group exhibit 
reliable positive correlation of within day training segment index. For quantification of the between group 
effects see Figure 8.
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amplitude, percent time, and a combination between the two. In the within-session analysis, all three patterns 
produced the same alpha-enhancing result. Their between-session analysis revealed a change in amplitude, but 
not the other two metrics, which Travis et al.44 found consistent with the work of Hardt and Kamiya43.

Our approach to analyzing alpha-activity is different from the two described metrics commonly used in 
the literature. We, for the first time, investigated discrete structural characteristics of EEG patterns. Even the 
“percent-time” metric known as a discrete measure, is, in fact, a continuous variable, representing the percent 
of time, the EEG signal exceeded the threshold over some immediate past time interval. Different from this 
approach, we isolated onsets and offsets of individual alpha spindles as discrete events, which allowed us to meas-
ure two parameters that could affect the overall prominence of alpha activity: incidence rate and duration of alpha 
episodes. We also calculated spindle amplitude that should not be confused with integrated amplitude, since the 
amplitude in our connotation is the characteristic of an individual alpha spindle, whereas the integrated ampli-
tude refers to the averaging technique that does not discriminate between the spindle and non-spindle episodes.

Our findings clarify the results obtained with the previous metrics of neurofeedback. Our experimental con-
ditions were similar to the previous studies: we utilized a continuous neurofeedback based on the integrated 
amplitude of alpha oscillations. In agreement with the literature, training with this neurofeedback resulted in a 
steady increase in the average alpha power, which is consistent with the results reported by Travis et al.44 using 
the integrated amplitude metrics. However, when we examined EEG patterns that underlied this enhancement 
in alpha activity, we found discrete modifications in the signal (i.e. increased frequency of spindle onsets) instead 
of generalized, continuous changes, such as increases in alpha amplitude and longer alpha episodes. Importantly, 
these discrete changes occurred even though we did not reinforce them specifically.

We did not find significant changes in the average duration and amplitude of alpha spindles over the two days 
of training. We also observed significantly stronger statistical association with the training segment index for 
incidence rate of alpha spindles than for their amplitude and duration. This result supports the interpretation that 
alpha spindles represent automatically generated cortical patterns that cannot be volitionally modified once they 
are started, even when aided by a neurofeedback. This suggests that alpha duration and amplitude are either stable 
within a physiological range or depend on the factors not directly related to the neurofeedback intervention. This 
line of reasoning is consistent with the early skepticism regarding EEG neurofeedback measures38, 43, 48.

Several observations suggest that the increase in alpha spindles incidence rate was a true effect of neurofeed-
back. First, this effect was observed only in the experimental group and was absent in the control group, which 
rules out adaptation to the experimental conditions as a possible explanation. Second, the effect was band specific: 
only alpha activity was affected, see Figs 4 and 7, indicating frequency specificity of the significant changes. Third, 
the effect was spatially specific: the strongest enhancement of spindle incidence rate occurred, as expected, at 
P4, the recording location from which neurofeedback was derived (Fig. 4). Furthermore, our results suggest that 
traditional metrics may fail to detect some neurofeedback-induced changes and properly reflect the spatial spec-
ificity of neurofeedback induced effects. For example, the conventional alpha power metric (rightmost column 
of Fig. 4) has poor spatial resolution; in addition to the expected changes for P4 location, it shows marginally 
significant change for F3 and C3. These observations warrant further studies of the neurofeedback induced effects 
with the use of advanced, yet physiologically plausible, metrics. In addition to our approach for the neurofeedback 

Figure 8.  Summary of the results of the correlation analysis for different alpha-activity parameters for the 
experimental and control groups. For each subject, we plotted the points representing daily correlation 
coefficient for each of the four parameters of alpha activity: average power, spindles incidence rate, spindles 
amplitude and duration. Additionally, the bar plots represent average correlation coefficients for each group 
(blue for the experimental group; orange for the control group). Between group comparison shows that the 
experimental group data demonstrate high average correlation coefficients (p < 0.0001) for the power and 
spindles incidence rate parameters. No significant correlations are observed for the control group. Only the 
average power and spindles incidence rate features demonstrate highly significant differences between the 
experimental and control groups (Wilcoxon rank-sum test, p = 0.00016). No statistically significant differences 
are observed between the experimental and the control groups for spindle amplitude (p = 0.136) and spindle 
duration (p = 0.114) features. Only within the experimental group we observe a highly significant positive 
difference between the studied correlation coefficients for the spindle incidence rate and spindle amplitude 
parameter (p = 0.0008) as well as the spindle duration parameter (p = 0.0203).
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aimed at up-regulation of alpha-activity, recent studies demonstrated that training aimed at down-regulating 
occipital alpha oscillations led to a significant increase in the Long Range Temporal Correlations (LRTC)62, 63. 
Notably, in the former study62 an inverse U-relationship between LRTC and alpha oscillations amplitude was 
observed, where the upper point of the U-shape corresponded to an optimal excitation-inhibition balance. These 
studies add to our conclusion that the effects of continuous neurofeedback are not limited to merely changes in 
EEG power at different scalp locations.

Even though we used a traditional continuous neurofeedback in these experiments, our subjects modulated 
the occurrences of alpha-spindle onsets – a discrete characteristic – while spindle duration and spindle amplitude 
did not change. This response to neurofeedback is better described as learning to transition more frequently to 
a discrete alpha-state than achieving a gradual change in alpha power. Based on these findings, it is reasonable 
to suggest that the neurofeedback-susceptible discrete metric that we discovered offline could by itself consti-
tute a new and more efficient type of neurofeedback in future experiments. Tentatively, subjects could be given 
an indicator each time they enter the target EEG state. Such discrete event-based neurofeedback could be also 
delivered in a continuous way if a floating average of spindle rate is provided to the subject instead of individual 
spindle onsets. Irrespective of implementation details, the underlying computation would be very different from 
the previous continuous types of neurofeedback. In addition to exploiting alpha rhythm, discrete structure of 
other EEG rhythms could be utilized to enrich neurofeedback. Previously, a mixture of continuous characteristics 
of different EEG rhythms was used to produce a two-dimensional spatial neurofeedback64. Such an experiment 
could plausibly benefit from using discrete EEG parameters. Using discrete EEG parameters obtained from dif-
ferent electrodes simultaneously is another possibility. We propose that all these ideas be explored in the future.

The ultimate test of the efficiency of discrete neurofeedback should be conducted in real-time setting. The 
future experiments should resolve a number of questions concerning the implementation of spindle onset-based 
metrics of alpha activity. Despite the plausible benefits of informing the user about spindle onset with a discrete 
signal, it still has to be determined whether such discrete neurofeedback should be used alone or, alternatively, 
in combination with continuous types of neurofeedback. Completely replacing the continuous neurofeedback 
with its discrete version may fail to achieve the goal of alpha enhancement because this feedback would not be 
sufficiently smooth65, 66.

Yet another problem related to discrete neurofeedback setting is the choice of the threshold for detecting alpha 
spindle onsets. Proper setting of the threshold is essential to facilitate neurofeedback-based training48 and the 
observed effect of spatially specific spindles incidence rate increase is observed for some specific (yet broad) range 
of threshold values (see Fig. 5). An algorithm with a very low threshold may confuse true alpha spindles with dif-
ferent brain states, whereas a very high threshold may discard true low-amplitude alpha oscillations triggered by 
the subject’s volition, and, as a result, frustrate the subject. In this paper we derived the threshold from the median 
values for the data collected over two days. Such statistics is not available in a typical on-line setting. Additionally, 
a fixed threshold is not suitable for tracking learning-related signal changes and making appropriate adjustments 
to the spindle detection algorithm. Additionally, as noticed by Hardt and Kamiya43, discrete metrics fail to provide 
information about the signal characteristics below or above the threshold. This problem could be addressed, for 
example, by setting multiple time-varying thresholds that increase the information content of the feedback signal.

With these considerations in mind, the future experiments should compare the efficiency of alpha neurofeed-
back training for continuous, discrete and mixed feedback, in order to reveal the type of setting needed to achieve 
fast and long-lasting alpha neurofeedback plasticity, and produce the desired cognitive gains.

Limitations.  Our neurofeedback study has several limitations. The first limitation is related to a relatively 
small sample size (9 participants in each group). A larger size would be desirable for the follow-up studies to fully 
capture the effect of neurofeedback intervention. Additionally, we only tested the effect of neurofeedback during 
the two days of training and did not examine the same subjects several days or months after the intervention. This 
will be done in our future work.

In this study, we investigated the patterns of alpha feedback signal, but we did not employ neurofeedback to 
train the other commonly used frequency bands, such as beta, theta or SMR. The dynamics of the spindles inci-
dence rate, their duration and amplitude could be different for these other frequency ranges or other training con-
ditions, e.g. eyes-closed. It would be also of interest to examine the effect of the delay between the detected EEG 
patterns and neurofeedback on the subjects’ ability to control these patterns. If the feedback is not rapid enough 
subjects may not be able to track pattern changes efficiently. For example a 250–300 ms delay of this study could 
possibly limit the ability to detect alpha-spindles onsets and offsets, hindering the control.

Finally, we still have very limited understanding of how discrete-type reinforcement could be different from 
continuous reinforcement in terms of its cognitive and clinical effects. It might happen that each reinforcement 
type enhances different neural processes, essential for some interventions, but not the others. All these gaps in our 
knowledge should be answered by further investigation. Future work should clarify the pros and cons of discrete, 
mixed and continuous feedback, determine the methods for inducing sustained plasticity and optimize these 
techniques so that desired cognitive gains could be achieved.

References
	 1.	 Kamiya, J. Conscious control of brain waves. Psychology Today (1968).
	 2.	 Kamiya, J. Operant control of the EEG alpha rhythm and some of its reported effects on consciousness. Altered states of consciousness. 

New York: Wiley 1069 (1969).
	 3.	 Nowlis, D. P. & Kamiya, J. The control of electroencephalographic alpha rhythms through auditory feedback and the associated 

mental activity. Psychophysiology 6, 476–484 (1970).
	 4.	 Wyrwicka, W. & Sterman, M. B. Instrumental conditioning of sensorimotor cortex EEG spindles in the waking cat. Physiology & 

Behavior 3, 703–707 (1968).



www.nature.com/scientificreports/

1 1Scientific Reports | 7: 3772  | DOI:10.1038/s41598-017-04012-0

	 5.	 Sterman, M., LoPresti, R. & Fairchild, M. Electroencephalographic and behavioral studies of monomethyl hydrazine toxicity in the 
cat. Journal of Neurotherapy 14, 293–300 (2010).

	 6.	 Sterman, M. & Friar, L. Suppression of seizures in an epileptic following sensorimotor EEG feedback training. Electroencephalography 
and clinical neurophysiology 33, 89–95 (1972).

	 7.	 Sterman, M., MacDonald, L. & Stone, R. K. Biofeedback training of the sensorimotor electroencephalogram rhythm in man: effects 
on epilepsy. Epilepsia 15, 395–416 (1974).

	 8.	 Tan, G. et al. Meta-analysis of EEG biofeedback in treating epilepsy. Clinical EEG and Neuroscience 40, 173–179 (2009).
	 9.	 Evans, J. R. & Abarbanel, A. Introduction to quantitative EEG and neurofeedback (Elsevier, 1999).
	10.	 Zuberer, A., Brandeis, D. & Drechsler, R. Are treatment effects of neurofeedback training in children with adhd related to the 

successful regulation of brain activity? A review on the learning of regulation of brain activity and a contribution to the discussion 
on specificity. Frontiers in human neuroscience 9, 135 (2015).

	11.	 Vernon, D., Frick, A. & Gruzelier, J. Neurofeedback as a treatment for adhd: A methodological review with implications for future 
research. Journal of Neurotherapy 8, 53–82 (2004).

	12.	 Arns, M., de Ridder, S., Strehl, U., Breteler, M. & Coenen, A. Efficacy of neurofeedback treatment in adhd: the effects on inattention, 
impulsivity and hyperactivity: a meta-analysis. Clinical EEG and neuroscience 40, 180–189 (2009).

	13.	 Lofthouse, N., Arnold, L. E. & Hurt, E. Current status of neurofeedback for attention-deficit/hyperactivity disorder. Current 
psychiatry reports 14, 536–542 (2012).

	14.	 Hammond, D. C. Neurofeedback treatment of depression and anxiety. Journal of Adult Development 12, 131–137 (2005).
	15.	 Linden, D. et al. Real-time self-regulation of emotion networks in patients with depression. PloS one 7, e38115 (2012).
	16.	 Lofthouse, N., Hendren, R., Hurt, E., Arnold, L. E. & Butter, E. A review of complementary and alternative treatments for autism 

spectrum disorders. Autism research and treatment 2012 (2012).
	17.	 Coben, R., Linden, M. & Myers, T. E. Neurofeedback for autistic spectrum disorder: a review of the literature. Applied 

psychophysiology and biofeedback 35, 83–105 (2010).
	18.	 Hoedlmoser, K. et al. Instrumental conditioning of human sensorimotor rhythm (12–15 hz) and its impact on sleep as well as 

declarative learning. Sleep 31, 1401 (2008).
	19.	 Cortoos, A., De Valck, E., Arns, M., Breteler, M. H. & Cluydts, R. An exploratory study on the effects of tele-neurofeedback and tele-

biofeedback on objective and subjective sleep in patients with primary insomnia. Applied psychophysiology and biofeedback 35, 
125–134 (2010).

	20.	 Raymond, J., Varney, C., Parkinson, L. A. & Gruzelier, J. H. The effects of alpha/theta neurofeedback on personality and mood. 
Cognitive brain research 23, 287–292 (2005).

	21.	 Gruzelier, J. H. EEG-neurofeedback for optimising performance. i: A review of cognitive and affective outcome in healthy 
participants. Neuroscience & Biobehavioral Reviews 44, 124–141 (2014).

	22.	 Gruzelier, J. H. EEG-neurofeedback for optimising performance. ii: creativity, the performing arts and ecological validity. 
Neuroscience & Biobehavioral Reviews 44, 142–158 (2014).

	23.	 Gruzelier, J. H. EEG-neurofeedback for optimising performance. iii: A review of methodological and theoretical considerations. 
Neuroscience & Biobehavioral Reviews 44, 159–182 (2014).

	24.	 Birbaumer, N., Murguialday, A. R. & Cohen, L. Brain–computer interface in paralysis. Current opinion in neurology 21, 634–638 
(2008).

	25.	 Neuper, C. & Pfurtscheller, G. Neurofeedback training for bci control. In Brain-Computer Interfaces, 65–78 (Springer, 2009).
	26.	 Hwang, H.-J., Kwon, K. & Im, C.-H. Neurofeedback-based motor imagery training for brain–computer interface (bci). Journal of 

neuroscience methods 179, 150–156 (2009).
	27.	 Florin, E., Bock, E. & Baillet, S. Targeted reinforcement of neural oscillatory activity with real-time neuroimaging feedback. 

Neuroimage 88, 54–60 (2014).
	28.	 Caria, A., Sitaram, R. & Birbaumer, N. Real-time fmri a tool for local brain regulation. The Neuroscientist 18, 487–501 (2012).
	29.	 Lawrence, E. J. et al. Self-regulation of the anterior insula: reinforcement learning using real-time fmri neurofeedback. Neuroimage 

88, 113–124 (2014).
	30.	 Ruiz, S., Buyukturkoglu, K., Rana, M., Birbaumer, N. & Sitaram, R. Real-time fmri brain computer interfaces: self-regulation of 

single brain regions to networks. Biological psychology 95, 4–20 (2014).
	31.	 Mihara, M. et al. Near-infrared spectroscopy–mediated neurofeedback enhances efficacy of motor imagery–based training in 

poststroke victims a pilot study. Stroke 44, 1091–1098 (2013).
	32.	 Kober, S. E. et al. Near-infrared spectroscopy based neurofeedback training increases specific motor imagery related cortical 

activation compared to sham feedback. Biological psychology 95, 21–30 (2014).
	33.	 Zotev, V., Phillips, R., Yuan, H., Misaki, M. & Bodurka, J. Self-regulation of human brain activity using simultaneous real-time fmri 

and EEG neurofeedback. NeuroImage 85, 985–995 (2014).
	34.	 Cannon, R. et al. EEG spectral-power and coherence: Loreta neurofeedback training in the anterior cingulate gyrus. Journal of 

Neurotherapy 10, 5–31 (2006).
	35.	 Cannon, R., Congedo, M., Lubar, J. & Hutchens, T. Differentiating a network of executive attention: Loreta neurofeedback in anterior 

cingulate and dorsolateral prefrontal cortices. International Journal of Neuroscience 119, 404–441 (2009).
	36.	 Koberda, J. L., Koberda, P., Bienkiewicz, A. A., Moses, A. & Koberda, L. Pain management using 19-electrode z-score loreta 

neurofeedback. Journal of Neurotherapy 17, 179–190 (2013).
	37.	 Thibault, R. T., Lifshitz, M. & Raz, A. The self-regulating brain and neurofeedback: Experimental science and clinical promise. cortex 

74, 247–261 (2016).
	38.	 Sherlin, L. H. et al. Neurofeedback and basic learning theory: implications for research and practice. Journal of Neurotherapy 15, 

292–304 (2011).
	39.	 Strehl, U. What learning theories can teach us in designing neurofeedback treatments. Frontiers in human neuroscience 8, 894 (2014).
	40.	 Skinner, B. F. Reinforcement today. American Psychologist 13, 94 (1958).
	41.	 Caria, A., Sitaram, R., Veit, R., Begliomini, C. & Birbaumer, N. Volitional control of anterior insula activity modulates the response 

to aversive stimuli. a real-time functional magnetic resonance imaging study. Biological psychiatry 68, 425–432 (2010).
	42.	 Grice, G. R. The relation of secondary reinforcement to delayed reward in visual discrimination learning. Journal of experimental 

psychology 38, 1 (1948).
	43.	 Hardt, J. V. & Kamiya, J. Conflicting results in EEG alpha feedback studies. Biofeedback and Self-regulation 1, 63–75 (1976).
	44.	 Travis, T., Kondo, C. & Knott, J. Parameters of eyes-closed alpha enhancement. Psychophysiology 11, 674–681 (1974).
	45.	 Dempster, T. & Vernon, D. Identifying indices of learning for alpha neurofeedback training. Applied psychophysiology and 

biofeedback 34, 309–318 (2009).
	46.	 Thatcher, R. W. & Lubar, J. F. (eds) Z Score Neurofeedback- Clinical Applications (Elsevier, Amsterdam, 20015).
	47.	 Hinterberger, T. et al. A multimodal brain-based feedback and communication system. Experimental brain research 154, 521–526 

(2004).
	48.	 Vernon, D. et al. Alpha neurofeedback training for performance enhancement: reviewing the methodology. Journal of neurotherapy 

13, 214–227 (2009).
	49.	 Pearce, J. M. & Hall, G. Overshadowing the instrumental conditioning of a lever-press response by a more valid predictor of the 

reinforcer. Journal of Experimental Psychology: Animal Behavior Processes 4, 356 (1978).



www.nature.com/scientificreports/

1 2Scientific Reports | 7: 3772  | DOI:10.1038/s41598-017-04012-0

	50.	 Trowbridge, M. H. & Cason, H. An experimental study of thorndike’s theory of learning. The Journal of General Psychology 7, 
245–260 (1932).

	51.	 Siniatchkin, M., Kropp, P. & Gerber, W.-D. Neurofeedbackâ€”the significance of reinforcement and the search for an appropriate 
strategy for the success of self-regulation. Applied psychophysiology and biofeedback 25, 167–175 (2000).

	52.	 Sherlin, L. H., Larson, N. C. & Sherlin, R. M. Developing a performance brain training™ approach for baseball: A process analysis 
with descriptive data. Applied psychophysiology and biofeedback 38, 29–44 (2013).

	53.	 Bracewell, R. The Fourier Transform and Its Applications (McGraw–Hill, 2000).
	54.	 Bazanova, O. & Vernon, D. Interpreting EEG alpha activity. Neuroscience & Biobehavioral Reviews 44, 94–110 (2014).
	55.	 Nichols, T. E. & Holmes, A. P. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Human brain 

mapping 15, 1–25 (2002).
	56.	 Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of 

the Royal Statistical Society, Series B 57, 289–300 (1995).
	57.	 Pineda, J. A. The functional significance of mu rhythms: translating “seeing” and “hearing” into “doing”. Brain Research Reviews 50, 

57–68 (2005).
	58.	 Quaedflieg, C. et al. The validity of individual frontal alpha asymmetry EEG neurofeedback. Social cognitive and affective 

neuroscience nsv090 (2015).
	59.	 Stewart, J. L., Coan, J. A., Towers, D. N. & Allen, J. J. Resting and task-elicited prefrontal EEG alpha asymmetry in depression: 

Support for the capability model. Psychophysiology 51, 446–455 (2014).
	60.	 Ancoli, S. & Kamiya, J. Methodological issues in alpha biofeedback training. Biofeedback and Self-regulation 3, 159–183 (1978).
	61.	 Lansky, P., Bohdanecký, Z., Indra, M. & Radil-Weiss, T. Alpha detection. Biofeedback and Self-regulation 4, 127–131 (1979).
	62.	 Ros, T. et al. Neurofeedback tunes scale-free dynamics in spontaneous brain activity. Cerebral Cortex 1–12 (2016).
	63.	 Zhigalov, A., Kaplan, A. & Palva, J. M. Modulation of critical brain dynamics using closed-loop neurofeedback stimulation. Clinical 

Neurophysiology 127, 2882–2889 (2016).
	64.	 Jonathan, R. W. & Dennis, J. M. Control of a two-dimensional movement signal by a noninvasive brain-computer interface in 

humans. Proceedings of the National Academy of Sciences of the United States of America 101, 17849–17854 (2004).
	65.	 Bennett, S. A history of control engineering, 1930–1955. 47 (IET, 1993).
	66.	 Zeyda, F., Aranyi, G., Charles, F. & Cavazza, M. An empirical analysis of neurofeedback using pid control systems. In Systems, Man, 

and Cybernetics (SMC), 2015 IEEE International Conference on, 3197–3202 (2015).

Acknowledgements
The study has been funded by the Russian Academic Excellence Project ‘5-100’. The development of an algorithm 
for extraction of narrow-band spindle parameters and exploration of the threshold effects was done by A.O. solely 
under the support of the RNF (grant 14-29-00142) in IPME RAS. The authors would also like to thank Dr. of Sc. 
Yu. Kropotov for his discussions of neurofeedback technology and Alexey Pupyshev for his enthusiasm at the 
early days of this study and for his initial ICA-based preprocessing of the data.

Author Contributions
A.O. and T.S. conceived the experiment, T.S. and A.O. conducted the experiment, A.O. analysed the data, A.O., 
E.O. and V.M. prepared the figures, A.O., E.O., V.M. and M.L. wrote the manuscript. All authors reviewed the 
manuscript and extensively discussed the results and the analysis strategies.

Additional Information
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://creativecommons.org/licenses/by/4.0/

	Neurofeedback learning modifies the incidence rate of alpha spindles, but not their duration and amplitude

	Methods

	Participants and settings. 
	EEG recording and experimental procedure. 
	Offline processing. 
	Alpha-band power changes. 
	Alpha band signal morphology. 


	Results

	Discussion

	Limitations. 

	Acknowledgements

	Figure 1 A representative EEG trace filtered in the 8–12 Hz band.
	Figure 2 Schematic representation of the experimental procedure.
	Figure 3 Average P4-alpha power dynamics in the experimental and the control groups during the two days of training.
	Figure 4 Statistical analysis of Qα(t) waveform morphology in terms of the incidence rate of alpha spindles (first column), their duration (second column), amplitude (third column) and average power (fourth column).
	Figure 5 The effect of varying the spindle detection threshold.
	Figure 6 Band specificity study.
	Figure 7 The dynamics of alpha-spindles incidence rate as a function of the training segment index (1–10) for all subjects (n = 9 experimental, n = 9 control) groups.
	Figure 8 Summary of the results of the correlation analysis for different alpha-activity parameters for the experimental and control groups.




