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ABSTRACT Enterotoxigenic Escherichia coli (ETEC) is an opportunistic pathogen that
commonly causes foodborne illness. Study of bacteriophages against this pathogen
could be useful to develop alternative treatment approaches. Here, we present the
complete genome sequence of LL11, a T7-like podophage that infects ETEC.

Enterotoxigenic Escherichia coli (ETEC) is a global health concern due to its ability to
cause traveler’s diarrhea, as well as the increase in the emergence of antibiotic-

resistant strains (1–3). The study of bacteriophages that infect ETEC provides insight
into alternative therapeutic and preventative approaches (4, 5). Here, we present the
complete genome sequence of podophage LL11, which infects ETEC.

Podophage LL11 was isolated using a clinical ETEC isolate from a municipal waste-
water treatment plant in College Station, TX, in 2011. Host bacteria were cultured on LB
broth or agar (Difco) at 37°C with aeration. The phage was cultured and propagated by
the soft-agar overlay method (6). It was identified as a podophage using negative-stain
transmission electron microscopy performed at the Texas A&M University Microscopy
and Imaging Center as described previously (7). Phage genomic DNA was prepared
using a modified Promega Wizard DNA cleanup kit protocol as described previously (7).
Phage LL11 DNA was prepared using the GS FLX Titanium general DNA library
preparation kit and sequenced by FLX Titanium 454 pyrosequencing at the Emory GRA
Genome Center (Emory University, GA); trimmed FLX Titanium sequence reads were
assembled into a single contig at 96.3-fold coverage using Newbler 2.5.3 (454 Life
Sciences) with default settings. Contig completion was confirmed by PCR using primers
(5=-AGCAATGCCTTGCCTAAG-3=, 5=-AGTCGTATTCGTCTGGTTAAAG-3=) facing away from the
center of the assembled contig and by Sanger sequencing of the resulting product, with
the contig sequence manually corrected to match the resulting Sanger sequencing
read. GLIMMER 3.0 (8) and MetaGeneAnnotator 1.0 (9) were used to predict protein
coding genes, with manual correction for appropriate gene starts, and tRNA genes were
predicted with ARAGORN 2.36 (10). Rho-independent termination sites were identified
via TransTermHP (http://transterm.cbcb.umd.edu/). Sequence similarity searches were
conducted by BLASTp 2.2.28 (11) against the NCBI nonredundant (nr), UniProt Swiss-
Prot (12), and TrEMBL databases. InterProScan 5.15-54.0 (13), LipoP (14), and TMHMM
2.0 (15) were used to predict protein function. All analyses were conducted at default
settings via the CPT Galaxy (16) and WebApollo (17) interfaces (https://cpt.tamu.edu).

The complete genome of LL11 is 44,185 bp and is most similar to those of the
phages K1-5 (GenBank accession no. NC_008152) and K1E (AM084415) (18) with 74%
and 57% overall similarity at the nucleotide level, respectively, as determined by
BLASTn. LL11 has a GC content of 45.1% and contains 55 protein coding genes, most
of which had homologues in phage T7 (NC_001604). The annotated genes include
those responsible for morphogenesis, such as the tail spike, tail protein, major capsid
protein, portal protein, and scaffolding protein, genes involved in DNA replication, such
as DNA polymerase, RNA polymerase, and DNA primase, lysis genes, such as a class-II
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holin, endolysin with a conserved lysozyme domain, and a separated spanin pair.
Similarly to phage K1-5 (AY370674), LL11 also has two predicted tail fiber proteins
related to tail fiber proteins of K1-5 (NC_008152), with one identical to K5 lyase
(YP_654147) and the other distantly related to K1 endosialidase (YP_654148). These tail
fiber proteins could allow LL11 to infect multiple host strains using different host
receptor proteins in a manner similar to that of phage K1-5 (19).

Data availability. The genome sequence of phage LL11 was submitted to GenBank

under accession no. MH729818. The associated BioProject, SRA, and BioSample acces-
sion numbers are PRJNA222858, SRR9214597, and SAMN11975578, respectively.
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