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Abstract

BP180, also termed collagen XVII, is a hemidesmosomal transmembrane glycoprotein expressed 

in basal keratinocytes, and functions as a cell-matrix adhesion molecule in the dermal-epidermal 

junction of the skin. Its function other than cell-matrix adhesion remains unclear. We generated a 

mouse strain with BP180 dysfunction (termed ∆NC16A), which develops spontaneous skin 

inflammation accompanied by an influx of myeloid derived suppressor cells (MDSCs). We 

utilized the B16 mouse melanoma model to demonstrate that BP180 dysfunction in either skin or 

basal keratinocytes promotes MDSC influx into skin and tumor progression. MDSC depletion 

reduced tumor progression in ∆NC16A mice, demonstrating a critical role for BP180 dysfunction-

driven MDSCs in melanoma progression. This study provides the first direct evidence that BP180, 

a cell-cell matrix adhesion molecule, possesses anti-tumor function through modulating infiltration 

of MDSCs. Basal keratinocytes actively participate in skin microenvironment changes caused by 

BP180 dysfunction. ∆NC16A mice could be a new animal model to study the melanoma 

microenvironment.
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INTRODUCTION

BP180, also known as collagen XVII, is a transmembrane glycoprotein of the 

hemidesmosome 1. The intracellular region of BP180 is linked to the intermediate filament 

network, and its extracellular portion is anchored into the basement membrane zone (BMZ) 

through interacting with extracellular matrix proteins 234. In the skin, BP180 serves as a 

critical cell-cell matrix adhesion molecule to maintain the integrity in dermal-epidermal 

junctions. Loss of BP180 function either by mutations in the BP180 gene in the genetic 

disease termed junctional epidermolysis bullosa (JEB) or by autoantibodies against BP180 

in the autoimmune disease bullous pemphigoid (BP) leads to subepidermal blistering in 

humans and mice 56. BP autoantibodies mainly target the extracellular non-collagenous 16A 

(NC16A) domain of BP180 78. Antibodies against the human NC16A and the corresponding 

mouse NC14A of BP180 are pathogenic in antibody passive transfer models of BP 910.

Currently, the only established function of BP180 is as a cell/ECM adhesion molecule, 

which is supported by the disease JEB, caused by mutations in the BP180 gene COL17A1 
11. Initially, BP180 null (Col17a1−/−) mice were developed as a tool by two groups to 

investigate the function of BP180 in vivo 912. One line, termed Col17m− were developed by 
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Dr. Emi Nishimura et al in Japan 9. With this mouse model, Dr. Nishimura’s group found 

BP180 plays a crucial role in the aging of hair follicle stem cells (HFSC), and maintains a 

functional niche for melanocyte stem cells through the aging process of HFSC 1314. 

However, considering that more than 80% of all Col17m− mice died before two weeks after 

birth, this imposed a significant limitation on using BP180 null mice to investigate the 

function of BP180 in the context of disease progression. Dr. Kaisa Tasanen’s group in 

Finland also developed a BP180 null mouse called Col17a1−/− 12. The Col17a1−/− was 

developed with a similar strategy compared to Dr. Nishimura’s group, and also showed a 

similar mortality rate; 90% of them died within two weeks of birth. Therefore, the high 

mortality rate of BP180 null mice severely restricts its application in investigating BP180 

function in vivo.

Since the 1980s, multiple reports have shown that altered BP180 expression is associated 

with various types of skin cancers, including squamous cell carcinoma (SCC) 151617, basal 

cell carcinoma (BCC) 18, and melanoma 19. Untransformed melanocytes do not express 

BP180; when transformed, melanoma cells acquire the expression of BP180 19. Epidermal 

keratinocytes can modulate the metastasis of nearby melanoma cells 20; however, whether 

BP180 in basal keratinocytes is involved in melanoma and/or other skin cancer progression 

remains to be determined.

To develop the BP passive transfer mouse model, our lab generated a humanized mouse with 

the mouse NC14A domain being replaced with the human NC16A domain (termed hNC16A 

or WT mice). Our lab purposely flanked the NC16A-encoding sequence with loxP sites 10. 

As we crossed the humanized NC16A mice with mice carrying different promoter-driven 

Cre genes, we generated systemic or conditional NC16A deficient mice (termed ∆NC16A) 
21. The ∆NC16A mice can live up to one year after birth, which provided a valuable tool to 

investigate a role of BP180 other than as a cell/ECM adhesion molecule 21. We previously 

reported that ∆NC16A mice develop spontaneous skin inflammation 21 and inflammation 

had been consider as one of the hallmark of cancer2223. Therefore, in this study, we test the 

hypothesis that BP180 in basal keratinocyte may affect melanoma progression. When 

injected with B16 melanoma cells, ∆NC16A mice showed accelerated tumor progression. 

Our findings provide the first direct evidence that BP180 plays a role in modulating the 

tumor microenvironment and melanoma progression.

RESULTS

The generation of the BP180 dysfunctional ΔNC16A Mice.

We generated humanized NC16A mice (termed WT mice) by replacing the mouse NC14A 
domain with the human NC16A counterpart to study the disease mechanisms of BP10. The 

NC16A domain is encoded by exons 18 and 19 of the BP180 gene, which were flanked by 

lox-P sites (Figure 1A). When crossed with germline Cre mice, Cre recombination removes 

the loxP-flanked exons 18 and 19 and maintains the remaining reading frame, resulting in 

mice expressing NC16A domain truncated BP180 (termed ΔNC16A). Lack of the NC16A 
domain in ΔNC16A mice was confirmed by genotyping (Figure 1B), immunoblotting 

(Figure 1C) and immunofluorescence staining (Figure 1D). Similar to previously described 

mice lacking the NC14A domain 24, ΔNC16A mice showed no clinical phenotypes after 
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birth but began to gradually develop various clinical phenotypes starting eight weeks after 

birth, which includes: reduced body size/weight, hair loss, depigmentation and skin 

inflammation (Figure 1E and Figure 1F, panel b). We will only focus on the aspect of skin 

inflammatory microenvironment and melanoma progression in this report.

ΔNC16A Mice Exhibit an Influx of Immune Cells into skin

Histological examination revealed minor skin inflammation starting at the age of 8 weeks 

after birth, accompanied with increased epidermal thickness and a low degree of dermal-

epidermal separation in the skin (Figure 1F, panel d); infiltration of immune cells (Figure 1F, 

panel d), including neutrophils (Figure 1E, panel f), T cells (Figure 1E, panel h), eosinophils 

(Figure 1E, panel j) and mast cells (Figure 1F, panel l).

BP180 is also expressed in many tissues/organs other than skin keratinocytes 25. To 

determine whether the influx of immune cells seen in ∆NC16A was caused by deletion of 

NC16A in the skin, we generated tamoxifen inducible Cre-NC16A mice (termed TamCre-
NC16A mice) by crossing NC16A mice with tamoxifen inducible Cre mice. When treated 

with tamoxifen topically, TamCre-NC16A mice became skin-specific ΔNC16A (termed 

skinΔNC16A) mice and was confirmed by immunoblotting and immunofluorescence 

(Supplemental Figure 1). Skin-specific ΔNC16A mice also exhibit the increased skin 

infiltration of neutrophils, MCs, T cells and eosinophils, starting day 14 post tamoxifen 

treatment (Supplemental Figures 2). WT mice treated with the same dose of tamoxifen did 

not develop immune cell influx, which rules out that the influx of immune cells is caused by 

tamoxifen (Supplemental Figure 2A). Myeloperoxidase (MPO) assay results further 

confirmed that skin-specific NC16A deletion is sufficient to promote the influx of 

neutrophils (Supplemental Figure 2B and 2C)

To determine whether ΔNC16A directly promotes immune cells influx into skin through 

basal keratinocytes, we crossed NC16A mice with K14Cre mice to generate basal 

keratinocyte-specific ΔNC16A (termed K14Cre/ΔNC16A) mice (Supplemental Figure 3). 

Like ΔNC16A and skinΔNC16A mice, K14Cre/ΔNC16A also showed a significantly 

increased influx of MCs, neutrophils, T cells and eosinophils (Supplemental Figure 3).

Mice Lacking NC16A Exhibit Accelerated B16 Melanoma Progression

Inflammatory tumor microenvironment is one of the hallmarks of cancer 22. It is still unclear 

whether untransformed non-immune cells may play a role in tumor progression by 

modulating the tumor microenvironment. Skin is known to be the largest immune-protective 

organ in our body, and keratinocytes play a crucial role in modulating inflammation and 

defense against host infection in the skin 2627. To our knowledge, there are very limited 

reports showing that keratinocytes may play a role in the tumor microenvironment 2028. It 

had been reported that chronic skin inflammation is a risk factor for skin cancer initiation, 

and also promotes a microenvironment which favors tumor progression in skin 293031. 

Because ΔNC16A triggers immune cell influx through basal keratinocytes, we hypothesized 

that BP180 in basal keratinocytes plays a role in melanoma progression through modulating 

immune cells in skin. To test this hypothesis, C57BL/6J and ΔNC16A mice were injected 

with B16 melanoma cells (1×105 cells, s.c) into the flank and monitored for tumor 
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progression for 3 weeks. Melanoma grew significantly faster in ΔNC16A mice compared to 

C57BL/6J mice (Figure 2A and 2B), and ΔNC16A mice showed a reduced survival (Figure 

2C).

Mouse melanocytes are mainly distributed in hair follicles, while human melanocytes are 

located at the basal keratinocyte layer 32. The only mouse sites that are compatible to human 

skin in terms of melanocyte distribution are on the ears and tail 3332. Injection of melanoma 

cells into the ear has been considered a more clinically relevant model for human melanoma 

progression and metastasis 3435. In addition, we switch to hNC16A (WT) mice instead of 

C57BL/6J mice due to they are more genetically relevant to ΔNC16A mice 21. We injected 

B16 melanoma cells (1 × 106 cells) into the ears of hNC16A (WT) and ΔNC16A mice and 

monitored the tumor growth locally on the ears and metastasis on the neck for 3 weeks 

(Figure 2D). Tumor volumes were significantly increased in ΔNC16A mice compared to 

WT mice starting at day 14 and day 21 after injection (Figure 2E). 60% of ΔNC16A mice 

developed lymphatic metastasis compared to none of the WT at 21 days post injection 

(Figure 2F). Taken together, these results suggest that BP180 plays a role in melanoma 

progression.

Skin local and basal keratinocyte conditional ΔNC16A promotes melanoma progression.

Increased melanoma progression in ΔNC16A mice could be caused by local BP180 

dysfunction and/or global deletion of NC16A leading to reduced systemic tumor 

suppression. To distinguish these, the same TamCre-NC16A mice were topically treated at 

the left ear with tamoxifen and right ear with vehicle. Ten days later, both ears were injected 

with the same number of B16 melanoma cells (1×106 cells). Tamoxifen-treated left ears 

showed significantly increased tumor growth and metastasis, whereas the control right ear 

showed no visible tumor growth 21 days after melanoma injection (Figure 3A). Thus, local 

BP180 dysfunction affects B16 melanoma progression. To elucidate whether local skin 

BP180 dysfunction is sufficient enough to promote melanoma progression, we expanded our 

experiments to compare the tumor progression between WT mice treated with Tamoxifen 

(Control) and Tam-CreNC16A (SkinΔNC16A) mice. SkinΔNC16A developed a 

significantly increased tumor volume (Figure 3B) and more lymphatic metastasis compared 

to the control mouse ears at 21 days post melanoma cell injection (77% of SkinΔNC16A vs. 

20% of Control ears, Figure 3C). Melanoma progression in skin-specific ΔNC16A mice is 

similar to whole body ΔNC16A mice (Figure 3B and 3C). These results suggest that BP180 

local dysfunction is sufficient to promote B16 melanoma progression in vivo.

To test whether BP180 dysfunction in basal keratinocytes is sufficient to promote melanoma 

progression, K14Cre/ΔNC16A mice were injected at the ear with B16 melanoma cells. Both 

tumor volumes (Figure 3D and 3E) and metastasis (Figure 3F) in K14Cre/ΔNC16A mice 

were comparable to whole body ΔNC16A mice, but significantly increased compared to WT 

mice starting day 14 after injection. Therefore, we concluded that BP180 dysfunction 

promotes tumor progression through the modulating of the skin tumor microenvironment by 

basal keratinocytes.
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ΔNC16A mice exhibit increased MDSC infiltration in the skin.

To investigate how BP180 dysfunction in skin can leads to increased melanoma progression, 

we deployed cytokine array to explore the microenvironment of the ∆NC16A mice skin. 

Skin cytokine profiles showed that there is a significant increased level of various cytokines 

and chemokines in the skin∆NC16A mice compared to control mice (Figure 4A), which 

includes CXCL1 (KC), CXCL2 and CCL2 (monocyte chemoattractant protein 1(MCP1)). 

CXCL1, CXCL2 and CCL2 are chemokines known to attract myeloid derived suppressor 

cells (MDSCs) 3637. ELISA assay of skin lysates confirmed significantly increased CXCL1, 

CXCL2 and CCL2 in the skin∆NC16A mice compared to control mice (Figure 4B–D). 

K14Cre/∆NC16A and ∆NC16A skin also exhibited a significant increase in these three 

chemokines (Supplemental Figure 4). Therefore, NC16A deletion in basal keratinocytes are 

sufficient to cause increased levels of CXCL1, CXCL2 and CCL2 in vivo. To investigate 

whether keratinocytes are the source of the increased chemokines, we isolated and cultured 

keratinocytes from ΔNC16A and NC16A sufficient WT mice. We found there is a 

significant increase in the amount of CXCL1 in the condition media of ΔNC16A 
keratinocytes as compared to WT control (Figure 4E). Taken together, NC16A deletion in 

basal keratinocytes significantly upregulates expression of CXCL1, CXCL2 and CCL2 in 

skin (in vivo) and expression/release of CXCL1 in vitro.

MDSCs play an important role in the progression of the various solid tumors, including 

melanoma 38 . MDSCs are characterized as CD11b+Gr1+ myeloid cells in mice 36. They are 

a heterogeneous mixture of the immature myeloid cells, and are composed by two groups, 

Ly6G expressing polymorphonuclear like MDSC (PMN-MDSCs, previously also known as 

granulocytic-MDSCs) and monocytic like MDSCs (M-MDSCs) 3940. PMN-MDSCs express 

MPO 36. MDSCs in the microenvironment promote tumor progression by suppressing 

immune surveillance, enhancing angiogenesis and promoting metastasis 4142. Knowing 

increased skin infiltration of neutrophils (Supplemental Figure 2B and 2C) and increased 

levels of MDSC chemoattractants (Figure 4 and Supplemental Figure 4) in mice lacking 

NC16A, we used flow cytometry analysis to determine and quantify MDSCs in the skin of 

ΔNC16A, skinΔNC16A and K14Cre/ΔNC16A mice. All mice lacking NC16A showed a 

significantly increased influx of MDSCs (Figure 5A), with PMN-MDSCs being 

predominant (Figure 5B), and a smaller population of M-MDSCs (Figure 5C). Both PMN-

MDSCs and M-MDSCs isolated from K14Cre/ΔNC16A mice exhibited the ability to 

suppress T-cell proliferation (Supplemental Figure 5). Q-RT-PCR found there is a significant 

increase in Arginase 1 and iNOS, the two major immunoregulatory proteins expressed by 

MDSCs 43, in the skin of ∆NC16A mice (Supplemental Figure 6). These results show that 

BP180 dysfunction leads to significantly increased PMN-MDSC infiltration.

MDSC influx plays a significant role in the melanoma progression in ΔNC16A mice

To determine whether infiltrating MDSCs play a key role in melanoma progression or 

innocent bystanders in ∆NC16A mice, skin∆NC16A mice were treated with anti-Gr1 

antibody to deplete Gr1 positive MDSCs, (Gr1+ cells include both Ly6G+ and 6C+ 

populations). As expected, the skin∆NC16A mice treated with anti-Gr1 antibody showed 

significantly reduced Gr1 positive immune cells in the skin (Figure 6A). Importantly, anti-

Gr1 antibody treatment significantly reduced melanoma tumor volume (Figure 6B) and the 
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rate of developing metastasis (Figure 6C). These results demonstrate that MDSC infiltration 

is crucial for accelerated melanoma progression caused by BP180 dysfunction. In 

conclusion, BP180 dysfunction in basal keratinocytes leads to a tumor-favoring 

inflammatory microenvironment in local skin and MDSCs play a vital role in this 

microenvironment.

DISCUSSION

In this study, we found that mice with dysfunctional BP180 exhibit MDSC influx in skin, 

and accelerated melanoma progression when challenged with B16 mouse melanoma cells. 

Since the 1980s, multiple reports have shown that altered BP180 expression is associated 

with various types of skin cancers, including squamous cell carcinoma (SCC) 154417, basal 

cell carcinoma (BCC) 18, and melanoma 19. Unlike the previous reports that focus on BP180 

expression in transformed cancer cells, we showed that BP180 in basal keratinocytes can 

play a significant role in melanoma progression in vivo. To our knowledge, it is the first 

report demonstrating the following concepts: 1) the hemidesmosomal protein BP180 plays a 

critical role in melanoma progression in vivo, hence JEB patients with BP180 mutations 

may have an increased chance to develop melanoma; and 2) skin basal keratinocytes play a 

role in the tumor microenvironment by modulating MDSC influx into the skin.

JEB is a rare autosomal recessive disorder caused by defects in genes encoding 

hemidesmosomal proteins and hemidesmosome-associated proteins including α6β4 integrin, 

BP230, BP180, laminin 332 and collagen VII 4546. BP180 mutations lead to the partial or 

complete loss of BP180 function, causing JEB, which is commonly termed as non-Herlitz 

JEB 4748. From a study based on 43 European non-Herlitz JEB patients, the patient group 

exhibited a wide spectrum of clinical variabilities, from mild to severe phenotypes of JEB 

symptoms 48. In general, the milder forms of JEB are associated with missense or splice-site 

mutations and the presence of truncated BP180 protein in the skin 48. The symptoms of non-

Herlitz JEB caused by BP180 mutations include itch and the infiltration of proinflammatory 

immune cells into the skin 49, which share phenotypical similarity with our ∆NC16A mice 

and the reported NC14A deficient mice 24. In addition, ∆NC16A mice also exhibit minor 

dermal-epidermal separations starting at around eight weeks after birth, which further 

indicates that lacking the NC16A domain of BP180 significantly jeopardizes the normal 

cell/ECM adhesive function of BP180. These clinical studies support the clinical relevance 

of our ∆NC16A mouse model as the pathological consequence of BP180 dysfunction in JEB 

patients 49.

Due to the rarity of all EB diseases with a prevalence being less than eight per one million 

population, and melanoma only accounting for less than 5% of all skin cancers, only limited 

case reports showed an increased risk of melanoma associated with any types of EB diseases 
5051. But, JEB is linked to significantly increased susceptibility to squamous cell carcinoma 

(SCC) 5251. A study based on clinical data collected between 1986~2002 in the US also 

found children with recessive dystrophic EB have increased susceptibility to melanoma 50. 

Nevertheless, our animal model findings do provide the reverse-genetic evidence, 

implicating that the melanoma in patients with BP180 deficiency, such as JEB, may progress 

more severely, compared to patients with functional BP180. Future clinical studies with 
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more cases of JEB associated with melanoma may provide more definite evidence to support 

our conclusion.

Our study not only highlights the role of BP180, but also points out an important role for 

basal keratinocytes in modulating the tumor microenvironment. It had been reported that 

epidermal keratinocytes can modulate the metastasis of nearby melanoma cells 20; however, 

whether keratinocytes play a role in the tumor microenvironment remains unclear. To our 

knowledge, this is the first report showing that basal keratinocytes directly participate in 

melanoma progression through modulating MDSCs in skin. Whether other hemidesmosomal 

proteins in basal keratinocytes also affect the tumor microenvironment remains to be 

determined. It needs to be pointed out that altered expression or deficiency of BP180 may 

play different roles in the initiation vs. growth phase of melanoma and other skin cancers, 

since B16 melanoma cells injected into ∆NC16A mice express BP180. Future studies would 

directly address this scenario.

It is generally accepted that MDSC migration and accumulation in tumor is mediated by 

tumor-derived factors 3853. It is unclear whether basal keratinocytes or hemidesmosomal 

proteins, such as BP180, affect MDSC migration and accumulation in the tumor 

microenvironment. To our knowledge, our findings are the first report showing that basal 

keratinocytes and BP180 play a role in tumor progression through MDSCs. The BP180 

dysfunction-caused CXCL1 release from keratinocyte could be one of the mechanisms for 

the increased MDSC influx (Figure 4E). However, we also found at least other two MDSCs 

chemoattractants CXCL2 and CCL2 are also increased in the skin of ∆NC16A mice (Figure 

4B_D and Supplemental Figure 4). Therefore, it is highly unlikely that BP180 dysfunction 

promote melanoma progression only through CXCL1 Future studies will determine the 

exact pathway(s) on how BP180 dysfunction in keratinocytes triggers MDSC influx into 

skin which promotes melanoma progression.

In summary, we uncovered that the cell-cell matrix adhesion molecule BP180 also functions 

as a key regulator of MDSC influx and MDSC-driven melanoma progression. We also found 

that BP180 dysfunction leads to a spontaneous skin inflammation, and increased influx of 

MDSCs is the mechanism underlying the increased melanoma progression (Figure 6). Our 

present findings also suggest that any skin inflammation accompanied with a MDSC influx 

should be able to promote tumor growth. Our present studies did not determine potential 

functional interplay between general inflammation and MDSC infiltration. Future studies are 

need to address this scenario. Basal keratinocytes, when losing the NC16A domain, are the 

cell source to either directly or indirectly increase the amount of MDSC attracting 

chemokines and MDSCs. Future studies are need to investigate whether NC16 deficient 

basal keratinocytes directly promote MDSC influx or indirectly, through working with other 

local cells, upregulate MDSC influx and MDSC-driven melanoma progression. With this 

new melanoma model, further elucidating the role of BP180 in MDSC influx at the 

molecular level will help to better understand the mechanisms of melanoma progression and 

to develop new therapeutic strategies for the disease.
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MATERIALS AND METHODS

Generation of mice

Different strains of humanized NC16 mice and ΔNC16A mice were generated 2110. To 

generate skin-specific ΔNC16A mice, NC16A mice were crossed with UBC-Cre-ERT2 mice 

(Jackson Lab #008085). The TamCre-NC16A mice (ERCre+NC16Afl/fl mice) when treated 

topically with tamoxifen (Sigma, 25 μl of 10 mg/ml in 62% EtOH/sunflower oil mixture), 

become skin-specific ΔNC16A (skinΔNC16A) mice. To generate basal keratinocyte-specific 

ΔNC16A mice (K14Cre/ΔNC16 or K14Cre+NC16Afl/fl), NC16A mice were crossed with 

Krt-14 promoter driven Cre mice (Jackson Lab #004782). All of the mice used in 

experiments are between 8~12 weeks after birth. All the mice were bred, housed and 

experiments done at the University of North Carolina at Chapel Hill Animal Facility in 

accordance with the Institutional Animal Care and Use Committee (IACUC) at the 

University of North Carolina at Chapel Hill.

Murine melanoma models with flank and ear injection of B16 melanoma cells

The B16-F10 murine melanoma cell line was acquired from ATCC (CRL6475) and cultured 

in DMEM media (Gibco) supplemented with 10% fetal bovine serum and 1% penicillin/

streptomycin. For the flank injection model, 8 week old mice were injected subcutaneously 

(s.c) into the side flank with 1×105 cells in 100 μl of HBSS buffer. For the ear injection 

model, B16 melanoma cells (1×106) were injected intradermally (i.d) into the ears of 8 week 

old mice in 20 μl of HBSS buffer. Tumor volume was measured with a digital caliper and 

calculated using the following equation: ½ x (length) x (width) (width). Mice were 

terminated 21 days after the initial melanoma cell injection. Lymphatic metastasis was 

monitored by examining tumor growth on the draining lymph nodes of the ears on the neck 
35. No randomization of mice is used in this study. For skin control and ΔNC16A, we ear 

tagged the mice with or without cre for blind analysis and treated with the same dose of 

tamoxifen and the same amount of tumor cells for injection. We checked the ear tag at the 

end of experiments after assessing the outcome. Therefore, we were blinded to the cre 

background of the mice during the experiments.

Myeloid cell depletion was accomplished by the intraperitoneal injection (i.p) of 200mg of 

RB6–8C5 rat anti mouse Gr1 antibody (Biolegend #108402) as previously described 54. 

Normal rat IgG at the same dose (Biolegend #400602) was used as control. The injection 

schedule was day-1, day 0 and then biweekly.

Keratinocyte Culture.

Primary keratinocyte isolation and the generation of ΔNC16A keratinocyte culture were 

described before 5521. Briefly, keratinocytes were isolated from the skin of TamCre-NC16A 
neonatal mice 48 hours after birth and maintained in E medium with 15% FBS and 50 μM 

CaCl2 (low Ca2+ medium). E medium is in house produced and provided by Dr. Scott E 

Williams from UNC-Chapel Hill. Both WT and ΔNC16A keratinocytes were stimulated 

with LPS (5ug/ml in media). Supernatants were collected 4hrs after LPS stimulation and 

used for ELISA analysis.
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Cytokine array analysis and ELISA

Skin lysates from three age and sex matched skin controls, (WT mice treated with 

tamoxifen), and skinΔNC16A (TamCre-NC16A mice treated with tamoxifen) mice were 

extracted with PBS and analyzed with a Proteome Profiler Mouse Cytokine Array Kit, Panel 

A as recommended by the Manufacturer (R&D Systems, ARY006). In addition, skin lysate 

was also used for ELISA from R&D Systems with the procedure recommended by the 

manufacturer (R&D Systems, CXCL1 DY453, CCL2 DY479 and CXCL2 DY279).

MPO activity assay

Infiltrating granulocytic myeloid cells in the skin were quantified by measuring the 

enzymatic activity of the cell marker myeloperoxidase (MPO) 56. Briefly, skin samples were 

extracted by homogenization in an extraction buffer containing 0.1 M Tris-Cl (pH 7.6), 0.15 

M NaCl, and 0.5% hexadecyl trimethylammonium bromide. MPO activity in the 

supernatants was measured by the change in optical density at 460 nm and was then 

normalized with the protein concentrations of skin extract supernatants (expressed as 

mU/mg protein + SE).

Analysis of the infiltrating inflammatory cells in the skin by flow cytometry and MDSC/T 
cell suppression assay.

Isolation, identification, and quantification of skin inflammatory cells were performed as 

described 57. Briefly, ear skin was obtained and rinsed in 70% ethanol, and then was cut into 

1×4-mm sheets and submerged in a 6-well plate containing RPMI 1640 with 25 mM 

HEPES, 10% heat-inactivated FBS and penicillin/streptomycin. The plate was incubated at 

37°C for 4 hours in a 5% CO2 incubator. The cells spontaneously emigrating out of the skin 

sections were pooled for flow cytometry analysis. Cells were identified by characteristic size 

(forward scatter) and granulosity (side scatter) combined with Sytox Orange Dye staining to 

distinguish live and dead cells (Thermo Fisher S34861). Antibody recognizing CD11b, 

Ly6G and Ly6C were also used for flow cytometry analysis (Biolegend 101230, 124614, 

128008). MDSC isolation and suppression assays were performed as described before58. All 

of the flow cytometry analysis were performed using Beckman Coulter CyAn ADP in UNC-

CH Flow Cytometry Core Facility. Data were analyzed with Summit 4.4 software.

Statistical analysis

The tumor volume data are expressed as mean + SEM. Fisher’s exact test is used for 

metastasis rate comparisons, and the Cox regression model is used for survival analysis in 

Figure 2C. The rest of the data analysis is performed using the Mann–Whitney U test and 

the Scheirer-Ray-Hare test, which are rank-based tests used in the place of the Student’s t-

test and two-way ANOVA, respectively, so that the normality and homoscedasticity 

assumptions are not required for the tests. All the statistical analyses are performed using the 

R statistical software.

Details of Immunoblotting and immunofluorescence, RNA isolation and q-RT-PCR. 

MDSC/T cell suppression assay and Statistical analysis are described in the Supplemental 

Material and Method.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviation

BP Bullous Pemphigoid

JEB junctional epidermolysis bullosa

WT wild type

SCC squamous cell carcinoma

BCC basal cell carcinoma

IB immunoblotting

IF immunofluorescence

MDSC Myeloid-derived suppressor cells.

PMN-MDSC Polymorphonuclear-Myeloid-derived suppressor cells.

M-MDSC Monocytic-Myeloid-derived suppressor cells

MPO Myeloperoxidase
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Figure 1. Generation of BP180 dysfunctional ΔNC16A mice.
A, Humanized NC16 mice (WT) with NC16A-encoding exons 18 and 19 (red) flanked by 

loxP sites (9) were crossed with germline Cre mice, resulting in mice expressing NC16A 

truncated BP180 (termed ΔNC16A). Antibodies against NC16A or NC1-3 domain were 

used to distinguish the full-length or NC16A truncated BP180. B, Genomic DNA PCR 

analysis confirmed the absence of the NC16A-encoding exons in ΔNC16A mice. C, 

Immunoblotting of skin protein extracts detected a full-length BP180 in WT and a NC16A-

truncated BP180 in ΔNC16A mice. D, Immunofluorescence (IF) of skin revealed that anti-
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NC16A antibody stained the BMZ of only WT skin, while anti-NC1-3 antibody stained the 

BMZ of both WT and ΔNC16A skin, confirming the NC16A-truncated BP180 were also 

localized in the BMZ of ΔNC16A mouse skin (panel d). E, epidermis; D, dermis; arrows, 

BMZ. E. ΔNC16A mice develop several physiological phenotypes, which include reduced 

size, depigmentation and hair loss starting at 8 weeks after birth. F. Clinical examination 

found that ΔNC16A mice started to develop spontaneous skin inflammation at around 8 

weeks after birth (panel b). Histological examination revealed an inflammatory infiltrate and 

epidermal hyperplasia in ΔNC16A mice (panel d). Lesional skin of ΔNC16A mice showed 

significantly increased infiltrating neutrophils (Ly6G positive, panel e and f), T cells (CD3 

positive, panel g and h) and eosinophils (MBP positive, panel i and j) by indirect IF and mast 

cells by toluidine blue (TB) staining (panel k and l).
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Figure 2. ΔNC16A mice show significantly increased melanoma progression in both flank and ear 
injection models.
Eight weeks old of C57BL/6J and ΔNC16A mice were injected at the flank (A-C) or ear (D-

F) with 1×105 or 1×106 B16 melanoma cells, respectively, and examined at different time 

points post injection. In the flank model, ΔNC16A mice developed significantly larger size 

of tumors (A), significantly increased tumor growth rate starting from day 11 (B) (** 

p<0.05, Scheirer-Ray-Hare test; n=9, for both WT and ΔNC16A mice.) and reduced survival 

rate at day 15 post injection (C).Using the cox regression model, we obtain an expected 2.55 
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fold (95% CI 0.66-9.89) the hazard ratio of NC16A comparing to the wild-type group, with 

p-value of 0.156 in the likelihood-ratio test. In the ear model (D), ΔNC16A mice showed 

significantly faster tumor growth starting day 14 (E) (** p<0.01, Scheirer-Ray-Hare test) 

and significantly increased rate of developing neck lymphatic metastasis at day 21 post 

melanoma cell injection (p<0.05, Fisher’s Exact Test) (F) For ear injection mode, n=10 for 

ΔNC16A, n=22 for WT).
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Figure 3. Skin-and basal keratinocyte-specific BP180 dysfunction are sufficient to promote B16 
melanoma progression.
A, TamCre-NC16A mice were treated at the left ear with tamoxifen (red) and right ear with 

vehicle control (white). B16 melanoma cells (1× 106cells) were injected into both 

tamoxifen-and vehicle-treated ears 10 days post tamoxifen treatment. At 21 days post 

melanoma injection, only the tamoxifen-treated ear developed local tumor and lymphatic 

metastasis. B, Tumors volumes in tamoxifen-treated ears were significantly increased 

starting from day 14 post melanoma cell injection compared to tamoxifen-treated WT ears 
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(skin control) (** p<0.01, Scheirer-Ray-Hare test; n=13 for skinΔNC16A, n=15 for skin 

control). C, A significantly larger proportion (69%) of tamoxifen-treated TamCre-NC16A 
mouse (skinΔNC16A) ears also developed lymphatic metastasis as compared to 20% of skin 

control at 21 days post injection. (p<0.05, Fisher’s Exact Test; n=13 for skinΔNC16A, n=15 
for skin control). D-F, Ears of 8 weeks old basal keratinocyte-specific ΔNC16A (K14Cre/
∆NC16A) mice were injected with B16 melanoma cells (1×106 cells) and monitored for 21 
days. K14Cre/∆NC16A mice developed significantly larger tumors at day 21 (D), and the 
significantly increased tumor growth started at day 14 (** p<0.01, Scheirer-Ray-Hare test; 
n=8 for K14Cre/∆NC16A mice, n=22 for WT) (E). In addition, 80% of K14Cre/∆NC16A 
mice developed lymphatic metastasis as compared to 18% of WT mice at day 21 post 
melanoma injection (Fisher’s Exact Test, p<0.01 n=8 for K14Cre/∆NC16A mice, n=22 for 
WT) (F).
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Figure 4. Dysfunction of BP180 significantly increase the level of MDSC attracting chemokines 
in the skin.
A. Inflammatory cytokine array showed that skin∆NC16A mice exhibited a significant 

increase in the level of various cytokines and chemokines, including MDSC attracting 

CXCL1 (KC), CXCL2 and CCL2 (MCP1). B-D ELISA assay confirmed increased levels of 

CXCL1 (B), CXCL2 (C) and CCL2 (D) in ∆NC16A skin compared to controls. E. LPS 

treatment (5ug/ml) for 4 hr significantly increases the level of CXCL1 in the condition 
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media of ∆NC16A keratinocyte culture compared to the BP180 functional sufficient control 

keratinocytes. (*p<0.05, Mann–Whitney U test; n>=5 for each group).
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Figure 5. Whole body-, skin- and basal keratinocyte-specific ΔNC16A mice have increased 
infiltration of MDSCs in the skin.
MDSCs in the skin of 8 weeks old WT, whole body ΔNC16A and basal keratinocyte-

specific ΔNC16A (K14Cre/ΔNC16A) mice were identified and quantified by flow 

cytometry. Skin control and skinΔNC16A mouse was prepared through 14 days post 

tamoxifen treatment on the ear of WT and TamCre-NC16A mice. Polymorphonuclear-

MDSCs (PMN-MDSCs) are CD11b+Ly6G+ Ly6Clow, while monocytic MDSCs (M-

MDSCs) are CD11b+Ly6G−Ly6C+. A. A significantly increased number of PMN-MDSCs 

(B) and M-MDSCs (C) are present in the skin of ΔNC16A, skinΔNC16A and K14Cre/
∆NC16A mice compared to WT mice. (*p<0.05 for K14Cre/ΔNC16A vs WT and **p<0.01 

for the other two comparisons for both (B) and (C), Mann–Whitney U test, n=3 for K14Cre/
∆NC16A, n=6 KO and skinΔNC16A groups, and n=8 for WT and skin control groups.)
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Figure 6. Anti-Gr1 antibody mediated myeloid cells depletion significantly reduce Gr1 positive 
immune cells in the skin of ΔNC16A mice.
(A) Anti-Gr1 antibody or control antibody was injected to TamCre-NC16A mice two weeks 

after Tamoxifen treatment. IF result showed that myeloid cells are significantly reduced in 

the skin Gr1 antibody injected mice 24 hrs after antibody injection. MDSC depletion (i.p. 

injection anti-Gr1 antibody) significantly reduce the tumor volume starting from day 14 (B) 
(**p <0.01, Scheirer-Ray-Hare test; n=6 for skin∆NC16A+αGr1 Ab, n=9 for skin∆NC16A
+control Ab). In addition, MDSC depletion reduced the rate of developing neck metastasis 

(C) in skinΔNC16A mice (p= 0.31, Fisher’s exact test; n=6 for skin∆NC16A+αGr1 Ab, n=9 

for skin∆NC16A+control Ab).
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