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Abstract
Signaling complexes typically consist of highly dynamic molecular 
ensembles that are challenging to study and to describe 
accurately. Conventional mechanical descriptions misrepresent 
this reality and can be actively counterproductive by misdirecting 
us away from investigating critical issues.

A cell must constantly monitor cues from its environment 
and adjust its activities accordingly. Faithful and reliable 
signal transduction is not only essential for normal life, but 
its malfunctioning underlies many human health 
problems. Enormous strides have been made in the past 
several decades toward understanding how this process 
works at the molecular level. It is notable that when 
describing the fruits of that work, those of us who work on 
cell signaling would be hard-pressed to avoid terms such as 
‘machinery’ and ‘mechanism’. The analogy between cell 
signaling and man-made machines is all-pervasive, 
frequently adopting the imagery of elaborate clockwork 
mechanisms or electronic circuit boards. This perception is 
undoubtedly shaped by what we know: the machines that 
we use in our everyday life and the ways that we describe 
such machines in diagrams or in words. But is this really 
an accurate, or useful, description of the actual processes 
used by cells? We will argue that signaling complexes 
typically consist of pleiomorphic and highly dynamic 
molecular ensembles that are challenging to study and to 
describe accurately. Conventional mechanical descriptions 
not only misrepresent this reality, they can be actively 
counterproductive by misdirecting us from investigating 
critical issues.

First, let us define what we mean by a bona fide manmade 
machine. A key property of such a structure is that it can be 
described in terms of a parts list and a diagram or blueprint 
for how those parts fit together. Any machine, from a can-
opener to a computer chip to an Airbus, can be rendered in 
a diagram with sufficient detail that someone who has 
never seen one could make it from the component parts. 

Using the diagram, one could assemble any number of 
individual machines, each of which would be virtually 
identical in appearance and performance.

Cells contain a number of structures that conform quite 
well to this idea of a machine (see Box 1). Ribosomes, for 
example, or proteasomes, or nuclear pores, all have a 
clearly defined structure. Indeed, the ribosome has been 
subjected to X-ray crystallography, and the complex 
interlocking relationship of its many component proteins 
and structural RNAs has been revealed in molecular detail. 
The same list of components, in the same stoichiometry 
and physical relationship, is found in every ribosome in the 
cell (of course posttranslational modifications and accessory 
factors provide some variation, but the basic plan is the 
same). Because the parts interlock in a unique configura-
tion, with multiple interactions between multiple compo-
nents, the assembly of such structures is highly 
co operative. This means that partly assembled structures 
are unstable and transient, whereas the fully assembled 
structure is very stable and unlikely to fall apart.

Now let us compare these machine-like structures with the 
complexes that mediate signal transduction in the cell. As 
an example, consider a transmembrane receptor for a 
mitogen such as platelet-derived growth factor (PDGF). 
How this receptor transduces signals has been worked out 
in great detail [1], and will briefly be summarized here 
(Figure 1). The receptor has intrinsic tyrosine kinase 
activity (that is, it can catalyze the transfer of phosphate 
from ATP to tyrosine groups on substrate proteins), but 
this activity is quiescent in the unstimulated receptor. 
Once the receptor binds its ligand, however, receptor 
dimerization or oligomerization increases the likelihood of 
transphosphorylation of the receptor by its new-found 
neighbors. Phosphorylation at a critical site in the catalytic 
domain induces conformational changes that lock the 
domain into an active conformation that can go on to 
phosphorylate other receptors, as well as other substrate 
proteins in the vicinity.
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Heterogeneity due to phosphorylation status
So far so good - the receptor itself seems to be acting as a 
molecular machine, and indeed receptor catalytic domains 
have been crystallized, revealing in exquisite detail the 
conformational changes involved in activation. But here is 
where it gets tricky. The typical receptor has many different 
potential autophosphorylation sites (in the case of the 
PDGF receptor at least ten), and it is highly unlikely that 
all sites can be phosphorylated at the same time. 
Furthermore, abundant intracellular phosphatases are 
constantly working to remove phosphates as soon as they 
are added, so at any time a particular activated receptor 
molecule is likely to be phosphorylated only on a subset of 
the ten possible sites. If each of the 10 sites can be 
phosphorylated or dephosphorylated independently of the 
others, the total number of potential phosphorylation 
states per receptor will be 210 (1,024). But because 
receptors must dimerize in order to activate, each activated 
receptor dimer has a much larger number of potential 
states - in this case, more than 500,000 different unique 
combinations of phosphorylation states (which is given by 
the expression Y [Y + 1]/2, where Y = 210).

The state of phosphorylation is critically important because 
it is these very phosphorylation sites that serve to transmit 
downstream signals from the activated receptor. They do so 
by binding to cytosolic effector proteins with phospho-
tyrosine-binding motifs, most commonly Src homology 2 
(SH2) domains [2]. By binding to the receptor, these 
signaling proteins are brought into close proximity to their 
substrates (which in many cases reside exclusively on the 
membrane), and they may also be phosphorylated by the 
receptor, which can modulate their activity. There are more 
than 100 of these cytosolic effector proteins that can bind to 
the receptor, but each of them binds to only a subset of the 
sites on the receptor with reasonably high affinity [3,4]. 
Thus, which effectors ultimately bind to the receptor will 
depend on the local concentration of each of the effectors 
and on which sites on the receptor are phosphorylated. 
Steric clashes and cooperativity among different binding 
partners may also affect which effectors are bound.

Effector binding leads to a tremendous increase in the 
number of potential states for the receptor. Even if we 
oversimplify and assume that each phosphorylated site can 
bind to only one effector (so the possible states for each 
site are now three: unphosphorylated; phosphorylated but 
unbound to effector; and phosphorylated and bound to 
effector), the total potential number of states for each 
receptor monomer increases to 310 (around 60,000) and 
for the receptor dimer to almost 2 billion! This does not 
even take into consideration the possibilities that any 
bound effector may or may not be phosphorylated by the 
receptor, or be simultaneously bound to yet another 
effector. Clearly, the theoretical number of possible states 
is virtually infinite, certainly far more than the actual 
number of receptors in the cell (which is generally on the 
order of tens of thousands of receptor molecules). Of 
course, the actual number of possible states might be 
smaller because of steric clashes and other mechanical and 
physical constraints, but in most cases the experimental 
data necessary to eliminate improbable states are lacking.

This combinatorial explosion of possible states makes it very 
difficult to pin down exactly what we mean by ‘activated 
PDGF receptor’: each receptor dimer or cluster of activated 
receptors is likely to be different from other activated 
receptors in terms of exactly which sites are phosphorylated, 
and which effectors are bound to those sites. In reality, the 
activated receptor looks less like a machine and more like a 
pleiomorphic ensemble or probability cloud of an almost 
infinite number of possible states, each of which may differ 
in its biological activity. In this sense, the activated receptor 
is rather like the genomes of RNA viruses, which because of 
the inherent inaccuracy of their replication can only be 
described in terms of ‘average’ sequence, from which each 
individual genome will deviate to some extent [5]. Although 
not explicitly discussed here, the same arguments could be 
applied to other complex but heterogeneous assemblies that 
regulate such diverse cellular processes as adhesion to the 
extra cellular matrix and other cells, mRNA splicing and 
transport, localized actin remodeling, and many others (see 
Box 1).

Box 1 
Different classes of molecular assemblies
Molecular machines Pleiomorphic ensembles
•	 Stoichiometric	 •	 Non-stoichiometric
•	 Specific	interactions	 •	 Combinatorial	interactions
•	 Fixed	size	 •	 Heterogeneous	size
•	 discrete	molecular	states	 •	 Spectrum	of	molecular	states
•	 Functional	assembly	requires	complete	set	of	subunits		 •	 Lifetime	of	assembly	greater	than	subunit	residency 
 (assembly highly cooperative)  (assembly may or may not be cooperative)
•	 Amenable	to	structural	biology	tools	 •	 New	experimental	and	mathematical	tools	needed
•	 Examples:	ribosomes,	molecular	motors,	nuclear	pore		 •	 Examples:	receptor	complexes,	adhesion	complexes,	 
	 complex,	flagella,	proteasomes…	 	 mRNA	splicing	complexes,	trafficking	intermediates…
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Despite the many potential states of the receptor, we 
might safely ignore this complexity if it had no real 
impact on signaling. This might be the case if only a few 
of the many possible states were actually populated (that 
is, present in significant amounts in the cell). Alter-
natively, we would not need to account for the precise 
state of each of the individual receptors if the effective 
output from the many individual receptors in the cell is 
averaged over the whole population. So it is worth looking 
at what is known about these two possibilities. 
Unfortunately, the short answer is very little: virtually all 
the analytical methods now used to study signaling 
proteins can only tell us about the average state of the 
population, not the state of individual molecules. Such 
methods necessarily fail to capture information on the 
distribution of different states (Figure 2). The technique 
of top-down mass spectrometry is just beginning to be 
used to quantify different post translationally modified 
isoforms of histones [6,7], but this approach has yet to be 
applied to signaling molecules such as activated 
receptors. So for the moment, we really do not have the 
kind of experimental data we need to estimate the 
seriousness of the problem.

We do know enough, however, to suggest that we ignore 
this issue at our peril. Let us consider a few specific cases. 
Things would not be so bad if the receptor, for example, 
actually existed in only two predominant states: inactive, 
in which no sites are phosphorylated; and active, in which 
all possible sites are phosphorylated. This is not an 
unreasonable idea, and in fact many quantitative models of 
receptor tyrosine kinase (RTK) signaling make just this 
assumption [8]. But there really is no solid experimental 
evidence to support this model, and even if it were true, at 
the next level of signaling (the binding of SH2-containing 
effectors), it is almost certain that the relatively low affinity 
of such interactions, and the likely steric clashes with 
multiple proteins trying to bind to a number of closely 
spaced sites, would make it unlikely that all sites would 
ever be fully occupied by a complete set of effectors. Thus, 
it is hard to escape the conclusion that activated receptors 
are, by necessity, heterogeneous, non-stoichiometric 
ensembles.

We still might be able to ignore this heterogeneity if signal 
output depended only on the aggregate or average state, 
summed over all of the activated receptors in the cell. In 

Figure 1

Signaling by the platelet-derived growth factor (PDGF) receptor. The unliganded receptor is monomeric and its tyrosine kinase catalytic 
activity	is	low	(left).	On	binding	to	dimeric	PDGF,	the	receptor	dimerizes,	its	catalytic	activity	increases,	and	receptors	transphosphorylate	
each other on a number of different sites, represented by pink circles (center). These phosphorylated sites (with one exception) serve to 
recruit cytosolic effector proteins (gray) that contain phosphotyrosine-specific modular binding domains (right). The exception is the activating 
phosphorylation, located on the catalytic domain of the receptor adjacent to the active site (red circle). Representative effectors depicted are: 
Src, Src-family non-receptor tyrosine kinases; PI3K, regulatory subunit of phosphatidylinositol 3-kinase; GAP, RasGAP, a GTPase-activating 
factor	for	Ras;	PLC,	phosphatidylinositol-specific	phospholipase	C-γ;	Shp2,	SH2-containing	tyrosine	phosphatase;	Grb2,	adaptor	protein	that	
recruits the Ras guanine-nucleotide exchange factor Sos.
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other words, if half the receptors bound effector 1 and half 
bound effector 2, signal output would be equivalent no 
matter how those effectors were distributed among the 
individual receptors - for example, half of the receptors 
bound to both 1 and 2 and the other half bound none, 
versus half bound to 1 and the other half bound to 2 
(Figure 3). While this may be true in some situations, in 
others it clearly is not. For example, different effectors 
often interact positively or negatively, reinforcing or 
canceling out each other’s activity. Take the case of Grb2 
(an adaptor that recruits Sos, which in turn activates a key 
downstream effector, Ras), and RasGAP, which inactivates 
Ras (Figure 3a). Clearly, the extent and spatial distribution 
of Ras activity would be quite different if both Grb2 and 
RasGAP were recruited to the same receptor, compared 
with the case when the two are recruited to different 
spatially separated receptors (Figure 3c). Another example 
illustrates the importance of the temporal order of assembly 
of complexes. The effector phospholipase C-γ (PLC-γ) 
cleaves the phospholipid phosphatidylinositol 4,5-diphosphate 
(PI(4,5)P2) into two second messengers (diacylglycerol and 
inositol trisphosphate (IP3)), whereas a second effector, 
phosphatidylinositol 3-OH-kinase (PI 3-kinase), uses the 
same substrate but phosphorylates it, generating yet another 
second messenger, PI(3,4,5)P3. It is known that the products 

of each of these effectors cannot be used as substrates by the 
other. This implies that whichever effector is recruited first 
will rapidly deplete the substrate in the vicinity of the 
receptor before the second one is recruited.

Heterogeneity due to protein-protein 
interactions
In the example of RTK signaling we have emphasized the 
complexity and heterogeneity induced by differential phos-
phorylation. A second major source of heterogeneity in 
signaling complexes is protein-protein interactions. Often 
these two are inextricably linked, as one of the major roles 
of posttranslational modifications such as phosphory lation 
is to regulate protein-protein interactions [9]. But more 
generally, we know that signal processing almost always 
involves the regulated assembly of multi-protein complexes, 
often mediated by modular protein binding domains [10]. 
Such interactions can be highly specific, but in many cases 
a particular site may bind to several (or many) different 
proteins with similar affinity - for example, the binding of 
tyrosine-phosphorylated peptides to the SH2 domains of 
multiple proteins [3]. It is self-evident that if more than 
one of these potential partners is present in the local 
environment, the actual complexes formed will be a 
mixture of different species.

Figure 2

Averaging leads to loss of information. In the panel on the right, each pixel is the average of the properties of all the individual pixels in the 
panel on the left. By averaging, all information on the range of properties of individual pixels, and their spatial distribution, is lost. Most 
biochemical methods used to probe signaling complexes, such as immunoprecipitation followed by immunoblotting or mass spectrometry, 
average the properties of complexes over the entire population.
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Again, the tools at our disposal to study protein inter-
actions make it difficult to ascertain how big a problem this 
might be. But it is important to keep in mind that any 
binding inter action is dependent on the concentration of 
the partners, and the affinity (dissociation constant, KD) of 
each interaction. Strong interactions can be insignificant if 
the concentration of the partners is very low, or if many 
competing binders are present; conversely, relatively weak 
interactions can be critically important for biological 
processes when the local concentration of the partners is 
sufficiently high (this is often seen, for example, when 
relatively weak intramolecular inter actions hold a protein 
in one conformation until they are disrupted by compe-
tition with another binding partner in trans). Furthermore, 
cooperative interactions among multiple binding partners 
can also strongly affect the complexes that form prefer-
entially [11,12].

For these reasons, comprehensive lists of protein-
protein interactions (or more grandiosely, the so-called 
‘inter actome’) should be viewed with some skepticism. 
Such data are almost always based on some simple assay 
(such as yeast two-hybrid, or pull-down of one compo-
nent followed by mass spectrometry), and anything 
rising above the detection limit for that particular assay 
is scored as positive. Although thinking of binding in 
binary terms (binds/does not bind) makes sense in a 
mechanical world (a part either fits or it does not), it 
really does not make sense in a world where the amount 
of a specific complex can only be predicted if we know 
the local concentration and affinity of all possible 
interaction partners. More important, it is rare that such 
interaction data can be validated for functional 
relevance. In the absence of independent evidence that 
the proposed interaction has real biological conse-
quences, such as a known genetic interaction that is 
consistent with the observed biochemical interaction, 
global interaction maps provide only a crude guide to 
what is possible.

Once again we should ask whether this is really a serious 
practical concern, or whether it can safely be swept under 
the rug. This issue has been addressed more or less directly 
in the case of SH3 domains, another modular protein-
binding domain of which there are more than 300 
examples in the human proteome [13]. Because most SH3 
domains bind to a common peptide consensus of PxxP (P 
is proline, x is any amino acid), usually flanked by a basic 
residue, and early studies with purified domains and 
peptide ligands showed clearly overlapping specificities, it 
was long suspected that these domains may be rather 
promiscuous in their binding in vivo [14]. Lim and 
colleagues looked at specificity of SH3 domains in the yeast 
Saccharomyces cerevisiae (which has fewer than 30 SH3 
domains in total), and their results suggested that, for the 
most part, each SH3 domain binds non-overlapping targets 

in vivo. They suggested that this specificity arose not only 
by positive selection for useful interactions, but also 
through negative selection against nonproductive or 
counter productive competing interactions [15]. A more 
recent comprehensive study of the yeast SH3 binding 
repertoire partially supports this conclusion, showing that 
while the majority of putative SH3 binding partners are 

Figure 3

Individual receptor states can influence signal output. (a) Grb2 and 
RasGAP (GAP) bind to distinct sites on the PDGF receptor (blue 
line). For clarity, only one receptor molecule is shown; the actual 
activated	form	of	the	receptor	is	a	dimer.	The	consequence	of	Grb2	
binding is Ras activation, through the Ras guanine-nucleotide 
exchange	factor	Sos.	The	consequence	of	GAP	binding	is	Ras	
inactivation (by stimulating its intrinsic GTPase activity). Thus, these 
two effectors have opposing effects on Ras activity. (b) Three 
different possible distributions of GAP and Grb2 on receptors are 
depicted; in all cases, an average of 0.5 molecule of Grb2 and 0.5 
molecule of GAP are bound per receptor. Left, binding of Grb2 and 
GAP are positively correlated; middle, binding of Grb2 and GAP are 
independent; right, binding of Grb2 and GAP are negatively 
correlated. (c) Effects of different distribution of effectors on Ras 
activity are depicted. Left, where binding of GAP and Grb2 are 
positively correlated, Ras activity will be relatively low and uniform. 
Right, where binding of Grb2 and GAP are negatively correlated, 
areas of high Ras activity and low Ras activity will be interspersed.
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likely to interact with high affinity with only a single SH3 
domain, a significant fraction have multiple possible partners 
[16]. One can, however, imagine that in human cells, 
endowed with ten times the number of SH3 domains (and 
a proportional increase in potential binding partners), the 
likelihood of multiple competing partners is considerably 
higher. Furthermore, as mentioned above, most interaction 
screens cannot detect relatively low-affinity interactions 
that may nonetheless be biologically important. Thus, the 
experimental data now available are equivocal, and 
certainly are consistent with competition among binding 
partners during the assembly of signaling complexes.

The ephemeral nature of signaling complexes
Another important and underappreciated attribute of 
signaling complexes is their ephemeral nature. Many of the 
protein-protein interactions that drive signaling are of 
modest affinity (typically high nanomolar to low micro-
molar KD values), and this necessarily implies that such 
complexes are highly dynamic, with half-lives on the order 
of seconds or less. Posttranslational modifications such as 
phos phorylation are likely to be similarly transient, as 
kinases and phosphatases continually battle it out in the 
cytosol. In the case of tyrosine phos phory lation, this 
dynamic nature is illustrated by what happens when the 
phosphatase inhibitor vanadate is added to cells: there is an 
enormous and quite rapid increase in levels of protein 
tyrosine phosphorylation, implying a very rapid cycle of 
phosphorylation and dephos phorylation under normal 
conditions. Thus, signaling com plexes, formed by post-
translational modifications and protein interactions, are 
unlikely to be stable in any traditional sense of the word, 
but will rather flicker rapidly between many different states.

Perhaps the most significant barrier to appreciating the 
dynamic, heterogeneous aspect of signaling complexes is 
the lack of a good analogy from our daily experience. This 
contributes to a second related problem, our inability to 
depict such interactions diagrammatically. Indeed, the 
typical ‘cartoons’ of signaling pathways, with their reassur-
ing arrows and limited number of states (as seen here in 
Figure 1), could be the real villain of the piece. Instead of 
simplifying an inherently complex system so that the key 
points can be grasped, we would argue that such diagrams 
actively mislead, implying a specificity and homogeneity 
that does not at all reflect the messy reality of actual 
signaling complexes. To some extent this can be blamed on 
historical precedents (those yellowed diagrams of meta-
bolic pathways hanging on the wall), and on the prosaic 
demands of publishing our results. It is much easier to 
write and publish a paper suggesting Protein X is necessary 
for transmitting a signal from A to B, than one showing 
that Protein X is one of many potential components of a 
heterogeneous ensemble of signaling complexes that 
together couple A to B. Two currently popular represen-
tations, protein-interaction networks or reaction network 

diagrams, are little better. Protein-interaction networks 
capture the heterogeneity of possible interactions, but in 
most cases the connections (edges) between proteins 
(nodes) provide no information on the likelihood of 
interaction between proteins, or how those interactions 
may depend on others, or any temporal aspect of inter-
actions. Reaction network diagrams are clear and 
unambiguous, but fundamentally are similar to cartoons 
such as Figure 1. Details pertaining to the heterogeneity of 
complexes are lacking, and adding more details only adds 
to the confusion by making the diagram unreadable.

Are there any answers?
Is there a way around this conceptual hurdle? One approach 
is to use a unified, consistent graphical notation standard - 
Systems Biology Graphical Notation (SBGN) - to depict 
functional relationships among components in signaling 
pathways and networks [17]. This is a promising develop-
ment, but the complexity of this task has already led to 
several distinct formats of SBGN - ‘Process Diagrams’, 
‘Entity Relationship Diagrams’ and ‘Activity Flow Diagrams’, 
each of which captures only some aspects of complexity. 
Furthermore, quantitative aspects of interactions such as 
affinities cannot be captured and depicted in these formats, 
as SBGN aims merely at capturing qualitative, or functional, 
relationships among entities.

Computational models may provide another approach to 
capturing the dynamic, heterogeneous aspect of signaling 
complexes. For such models to provide an accurate and 
comprehensive representation of the system and its inter-
connections, each biological component (protein, RNA, and 
so on) would have attributes specifying its physical and 
chemical activities and interactions with all other compo-
nents (such as on-rates and off-rates of binding interactions, 
Km of enzymatic reactions, coopera tive relation ships). 
Development of community standards for data exchange 
among databases can greatly facilitate the construction of 
models. These could include standards (such as BioPAX) to 
access qualitative data within multiple pathway databases, 
as well as standards for exchange of quantitative data (such 
as models encoded in the SBML or CellML formats) among 
multiple model databases (for example, the Virtual Cell 
Database and BioModels.net) [18-22].

Thus, computational models can serve not only as tools for 
quantitative predictions of experimental outcomes, but 
also as repositories of precisely the kind of detailed 
information that is lacking in a typical cartoon diagram of 
a signaling mechanism. One can envisage logging in to a 
public model where clicking on a component of interest 
brings up a battery of potential modifications, inter actions 
and activities, and the likelihoods and potential conse-
quences of each under a variety of ‘typical’ sets of 
conditions, or specific conditions set by the user. Although 
designing user interfaces that would be helpful and 
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intuitive for experimental biologists may be a challenge, 
surely this goal is achievable in the relatively near future.

Using quantitative models that fully account for the 
heterogeneity of signaling complexes to actually predict 
signaling outputs is still rather challenging, however, in 
part because the proliferation of possible states for the 
system makes calculating the concentrations of each of 
these states extremely computationally intensive. Tricks 
now being developed to get around the specific enumera-
tion of each state, such as rule-based modeling, are likely 
to help in this regard [18,23]. Stochastic and on-the fly 
simulations that can include all populated states is a 
particularly promising approach that can accommodate 
the concept of pleiomorphic ensembles instead of signaling 
machines. Given the ubiquity of cooperative interactions 
among proteins in signaling, we are also likely to need new 
mathematical tools to predict and quantitatively estimate 
the effects of cooperativity on the composition and activity 
of signaling complexes.

In addition to the development of quantitative models that 
can more accurately predict what can happen, new analytic 
methods are also urgently needed to expand our ability to 
monitor what actually does happen, at the single-molecule 
level, in the cell. Mass spectrometry and other approaches 
have begun to be able to quantify the number of molecules 
with specific combinations of posttranslational modifica-
tions, or specific binding partners, under different 
conditions. Imaging methods and biosensors with single-
molecule resolution will begin to provide similar 
information within the spatial and temporal context of the 
living cell [24].

The pleiomorphic, heterogeneous, non-stoichiometric 
nature of signaling complexes provides a serious 
conceptual challenge for biologists, who are naturally more 
comfor table thinking of mechanical devices with states 
that are clearly defined and limited in number. But the 
current practice of avoiding these properties because they 
are difficult to study and to describe is likely to be a 
mistake. Only by confronting this issue head-on will be 
able to assess, once and for all, its real impact on signal 
transduction.
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