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Abstract

Resting-state functional magnetic resonance imaging (rs-fMRI) is widely used in connectomics for 

studying the functional relationships between regions of the human brain. rs-fMRI connectomics, 

however, has inherent analytical challenges, such as how to properly model negative correlations 

between BOLD time series. In addition, functional relationships between brain regions do not 

necessarily correspond to their anatomical distance, making the functional topology of the brain 

less well understood. Recent machine learning techniques, such as word2vec, have used 

embedding methods to map high-dimensional data into vector spaces, where words with more 

similar meanings are mapped closer to one another. Inspired by this approach, we have developed 

the graph embedding pipeline rest2vec for studying the vector space of functional connectomes. 

We demonstrate how rest2vec uses the phase angle spatial embedding (PhASE) method with 

dimensionality reduction to embed the connectome into lower dimensions, where the functional 

definition of a brain region is represented continuously in an intrinsic “functional space.” 

Furthermore, we show how the “functional distance” between brain regions in this space can be 

applied to discover biologically-relevant connectivity gradients. Interestingly, rest2vec can be 
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conceptualized in the context of the recently proposed maximum mean discrepancy (MMD) 

metric, followed by a double-centering approach seen in kernel PCA. In sum, rest2vec creates a 

low-dimensional representation of the rs-fMRI connectome where brain regions are mapped 

according to their functional relationships, giving a more informed understanding of the functional 

organization of the brain.
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1. Introduction

Neuroimaging data acquired from magnetic resonance imaging (MRI) tend to be vast and 

high-dimensional. In particular, resting-state functional MRI (rs-fMRI) produces temporal 

snapshots of the brain’s default activity in the absence of tasks, offering a window into the 

functional macroscale organization of the brain. As computational tools have become more 

widely available over the past two decades, researchers have applied graph theory-based 

models to neuroimaging data to study the network properties of the brain, which has grown 

into the field of connectomics (Sporns et al., 2005). In connectomics analyses, the brain can 

be represented as an N × N matrix, where the rows and columns are N brain regions of 

interest (ROI), and the elements of the matrix represent some measure of connection 

between them (e.g., number of white matter fibers, Pearson correlation of blood oxygenation 

level-dependent (BOLD) time series). Given this volume of high-dimensional data, however, 

one quickly runs into the “curse of dimensionality.” Originally coined by Bellman (1961), 

the term refers to the challenge of visualizing and analyzing high-dimensional data. Because 

the number of points in a Cartesian space grows exponentially with increasing dimensions, 

high-dimensional spaces become extremely sparse, an effect known as the “empty space 

phenomenon.” Consequently, this makes understanding the properties of these data more 

difficult, as metric comparisons become less effective with increasing dimensionality (Lee 

and Verleysen, 2007).

There are a variety of dimensionality reduction techniques that address this problem. These 

methods work by embedding a high-dimensional manifold, represented by the discrete 

points of the data, into a lower dimension (e.g., two or three dimensions), which can then be 

visualized. This process becomes complicated, however, if the manifold of the underlying 

data is nonlinear, as is thought to be the case with neuroimaging data (Gerber et al., 2010; 

McClurkin et al., 1991; Wolz et al., 2012; Ye et al., 2015). One of the most well-known 

example cases of a nonlinear manifold is the 3D Swiss roll. Nonlinear dimensionality 

reduction techniques, such as isometric mapping (isomap), address the characteristic Swiss 

roll problem by preserving the intrinsic geometry of nonlinear manifolds (i.e., unrolling the 

Swiss roll) in lower-dimensional spaces (Tenenbaum et al., 2000; Ye et al., 2015).

Negative correlations also remain a challenging factor in rs-fMRI connectomics, as they are 

more difficult to interpret using network models. Simpler models generally either threshold 

or apply other transformations, such as taking the absolute value, to remove negative 
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correlations; this process, however, likely removes substantive dynamics of brain 

connectivity (Rubinov and Sporns, 2011). Although some analyses account for negative 

correlations, these often introduce additional parameters that must be arbitrarily set to 

determine their relative contribution (Rubinov and Sporns, 2011). Previously, we introduced 

probability associated community estimation (PACE) (Zhan et al., 2017) and phase angle 

spatial embedding (PhASE) (Morrissey et al., 2018) to address these challenges. These 

methods take inspiration from the Ising model from statistical mechanics, where magnetic 

ions are designated with either in-phase or out-of-phase spin state configurations (Pȩkalski, 

2001). We adapted this model to describe the phase relationship between regions of the 

brain, where each brain region is an N-dimensional vector whose elements are defined by its 

phase coupling with every other region in the brain.

Having generated this embedding space, how might the organization of the functional 

connectome best be visualized and understood? In the domain of natural language 

processing, Mikolov et al. (2013) created the word2vec method to map words with similar 

meanings near one another in a vector space (e.g., “king” is close to “man,” “queen” is close 

to “woman”). Inspired by this approach, we propose a novel graph embedding pipeline, 

rest2vec, that uses this phase angle representation with the nonlinear dimensionality 

reduction method isomap to embed the functional connectome in a lower-dimensional 

embedding based on its functional relationships. In this space, the functional connectome is 

arranged by its intrinsic geometry, where the regions of the brain are mapped according to 

their functional connectivity independent of anatomical constraints. Here, the Euclidean 

distance between regions in this space can be thought of as an intrinsic “functional 

distance,” with similar regions having a short functional distance between one another and 

dissimilar regions having a large functional distance between one another.

We show how this vectorized approach has implications for detecting connectivity gradients 

by linking rest2vec to the maximum mean discrepancy (MMD) metric. The MMD was 

originally developed as a metric describing the distance between probability distributions 

(Gretton et al., 2012). Here, we treated the MMD as a modularity index, similar to Q-based 

maximization methods (Blondel et al., 2008), such that, when maximized, it detects the sets 

of brain regions with the most dissimilar functional connectivity. By reformulating this 

connectome modularity problem in a probabilistic sense, we are able to generate continuous 

community assignment values for each region, as opposed to a binary classification. Finally, 

we also show how brain regions in the rest2vec embedding space can be mapped to 

behavioral metrics using the Neurosynth meta-analysis database (Yarkoni et al., 2011). 

Together, rest2vec uses nonlinear dimensionality reduction and manifold learning techniques 

to create a low-dimensional representation of the rs-fMRI connectome where brain regions 

are mapped according to their functional relationships, giving a more informed 

understanding of the functional organization of the brain.

2. Materials and methods

2.1. Dataset description

Two independent and publicly available rs-fMRI connectome datasets composed of healthy 

subjects were used: one from the Functional 1000 (F1000) Connectomes Project (Biswal et 
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al., 2010) with 177 regions of interest (ROI) available through the USC Multimodal 

Connectivity Database (1000_Functional_Connectomes study, http://

umcd.humanconnectomeproject.org/umcd/default/index), and one by Diez et al. (2015) with 

2514 ROIs available through the NeuroImaging Tools & Resources Collaboratory (NITRC) 

(https://www.nitrc.org/projects/biocr_hcatlas/). Each of these studies were performed in 

accordance with their institution’s respective ethics committees. These are referred to as the 

“F1000” and “Diez” datasets hereafter.

The F1000 dataset has data from 986 subjects collected across multiple sites using a 

common scanning and preprocessing protocol. Data were motion corrected and spatially 

smoothed with a 6 mm FWHM Gaussian kernel. A band-pass filter was applied between 

0.005–0.01 Hz. Nuisance parameters, CSF, white matter, and the average global signal were 

regressed out prior to spatial normalization to the MNI152 template. Spatially constrained 

spectral clustering was used to determine the ROIs (Craddock et al., 2012). The average 

difference in age between male (N = 426, M ± SD = 28.7 ± 12.7) and female (N = 560, M ± 

SD = 27.9 ± 12.7) subjects in the F1000 dataset was 0.83 years and was not statistically 

significant (t(984) = 1.025, p = 0.306).

The Diez dataset has 12 subjects (6 male) with a mean age of 33.5 ± 8.7 years; no individual 

subject ages were reported. An interleaved gradient-echo EPI sequence was used to acquire 

BOLD T2* images (scanning time = 7.28 min, 200 volumes total). Motion correction, slice-

timing correction, and smoothing (6 mm FWHM Gaussian kernel) were applied. A band-

pass filter was applied between 0.001–0.08 Hz; linear and quadratic trends were also 

removed. Motion, CSF, white matter, and average global signal were regressed out prior to 

spatial normalization to the MNI152 template. Spatially constrained clustering (Craddock et 

al., 2012) was used to determine the 2514 ROIs. Finally, the Pearson correlation coefficient 

of the BOLD time series between ROIs was calculated as the measure of functional 

connectivity between ROIs (Diez et al., 2015).

2.2. rest2vec

The pipeline for rest2vec is shown in Fig. 1. Rest2vec aims to create a graph embedding of 

rs-fMRI connectomes by transforming positive and negative edges into N-dimensional phase 

angle vectors that can then be represented in a low-dimensional embedding using nonlinear 

dimensionality reduction. Briefly, we first computed the probability of observing a negative 

edge between all pairs of regions across all subjects to form the probability matrix P−. This 

probability is then used to determine the phase angle Θi,j between regions to create the phase 

angle spatial embedding (PhASE) matrix Θ. This process embeds the phase relationship 

between all regions in an N-Euclidean space and transforms the values between 0 (fully in-

phase) and π/2 (fully out-of-phase). The intrinsic geometry of the connectome was then 

visualized in two dimensions using the nonlinear dimensionality reduction method isomap 

(Tenenbaum et al., 2000). Finally, we use kernel functions to link rest2vec to the maximum 

mean discrepancy MMD metric (Gretton et al., 2012) to demonstrate how rest2vec can be 

used to study functional connectivity gradients. The representative matrices for each step are 

displayed in Figure A.1.
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2.2.1. Phase angle spatial embedding (PhASE)—A functional connectome derived 

from rs-fMRI is defined as an undirected graph G(V, E), composed of a set of vertices V 
representing the brain regions of interest (ROI), and signed, weighted edges E describing the 

measure of connectivity between them based on their BOLD time series. Typically, some 

measure of correlation, e.g., Pearson correlation, between BOLD time series is used to 

describe the functional connectivity between ROIs.

Previously, we introduced probability associated community estimation (PACE) (Zhan et al., 

2017), and phase angle spatial embedding (PhASE) (Morrissey et al., 2018) for encoding 

resting-state fMRI connectomes based on the phase relationship between brain regions 

(Morrissey et al., 2018) to account for negative correlations in functional connectomes. We 

begin by briefly summarizing these procedures in the context of rest2vec.

Let W be an N × N ×S array (i.e., a tensor) composed of N ×N weighted, signed functional 

connectomes for N regions and S observations. In our case, we consider the observations 

from a group of S subjects. Given some weight of functional coupling between regions i and 

j (e.g., Pearson correlation), we define the probability of negative correlation matrix P− 

where each element Pi, j
−  is the probability of observing a negative edge between i and j 

defined as Pi, j
− = Prob W i, j < 0 , where, in the case of S subjects, we subjects estimate this 

probability by the following

Pi, j
− = 1

S ∑
s

S
W i, j, s < 0 , (1)

where Wi,j,s is the edge between regions i and j for the sth subject, and the Iverson bracket 

expression [Wi,j,s < 0] equals 1 if Wi,j,s < 0, and 0 otherwise. Because Pi, j
− ∈ 0, 1 , it also 

follows naturally that Pi, j
− + Pi, j

+ = 1.

One advantage of this procedure is that the probability measure defined in Eq. (1) can be 

defined by the user for their specific context. By taking advantage of this relationship, we 

then define the phase angle spatial embedding (PhASE) matrix Θ, where the phase angle Θi,j 

between regions i and j is defined as

Θi, j = arctan Pi, j
−

Pi, j
+ . (2)

Thus Θi, j ∈ 0, π/2 , where 0 represents a fully in-phase (co-activating) relationship and π/2 

represents a fully out-of-phase (anti-activating) relationship. Each column of Θ is a vector 

embedding each region in an N-dimensional Euclidean space such that 

Θ: , i = Θi, 1 Θi, 2 ⋯ Θi, N
T ∈ 0, π/2 N.

2.2.2. Relation of PhASE to the maximum mean discrepancy—Here we describe 

how PhASE can be linked to the maximum mean discrepancy (MMD) developed by Gretton 

et al. (2012) to address the connectome modularity problem. Following the formulation 
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defined in Gretton et al. (2012), consider the random variables x and y defined on a metric 

space X equipped with the metric d, with the corresponding Borel probabilities p and q (i.e., 

x ∼p and y ∼q). Given observations X ∶= {x1, …, xm} and Y ∶= {y1, …, yn} drawn from the 

probability distributions p and q, p = q if and only if Ex f x = Ey f y ∀ f ∈ C X  where 

C X  is the space of bounded continuous functions on X Next, given a class of functions ℱ
such that f:X ℝ, the maximum mean discrepancy (MMD) between p and q with respect 

to ℱ is defined as

MMD ℱ, p, q : = sup
f ∈ ℱ

Ex f x − Ey f y . (3)

This can be empirically estimated given X and Y as

MMD ℱ, X, Y : = sup
f ∈ ℱ

1
m ∑

i = 1

m
f xi − 1

n ∑
i = 1

n
f yi , (4)

where m is equal to the number of observations in X and n is equal to the number of 

observations in Y .

To apply these definitions in the context of connectomics, we use the same definitions of x, 
y, p, q, X and Y defined above to assign each region to one of the two distributions p or q. 

Under the working assumption that the distributions of functional modules in the 

connectome are far apart (i.e., their within-module connections are greater than their 

between-module connections (Fortunato, 2010)), we thus seek to discover the arrangement 

of regions such that the MMD between them is maximized.

Using a reproducible kernel Hilbert space (RKHS), the squared form of Eq. (4) can be 

evaluated using kernel functions as

MMD2 ℱ, X, Y : = 1
m m − 1 ∑

i = 1

m
∑
j ≠ 1

m
k xi, xj + 1

n n − 1 ∑
i = 1

n
∑
j ≠ 1

n
k yi, yj

− 2
mn ∑

i = 1

m
∑
j = 1

n
k xi, yj .

(5)

From Eq. (5), kernel functions can be used, in our case, to compute the kernel matrix K 
where the similarity Ki,j between regions i and j, in the case of the radial basis function 

(RBF) kernel kRBF, is given by

Ki, j = kRBF Θi, : , Θj, : = exp −σ ∑
l = 1

N
Θi, l − Θj, l

2 , (6)

for phase angle Θ between regions i and j in reference to all other regions indexed by l, for 

N regions, using the scaling factor σ.

Similarly, we let the cosine kernel kcos evaluating the similarity between regions i and j be 

defined as
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Ki, j = kcos Θi, : , Θj, : = 1
N ∑

l = 1

N
cos Θi, l − Θj, l , (7)

using the same variable definitions as RBF kernel. Because the RBF kernel has an additional 

parameter, and the cosine kernel has a geometric relation to angles, the cosine kernel is used 

here; the Taylor expansion of both these kernels can be shown to have similar leading terms.

2.2.3. From the maximum mean discpreancy to rest2vec connectivity 
gradients—Following the kernel definitions above and the equation as described by 

Gretton et al. (2012) (with a modified notation for our purposes), assuming a two-

community partition, let the maximum mean discrepancy (MMD) between two modules VA 

and VB be defined as

MMD V A, V B
2 = 1

m2 ∑
i, j ∈ V A

m
Ki, j − 2

mn ∑
i ∈ V Aj ∈ V B

m, n
Ki, j + 1

n2 ∑
i, j ∈ V B

n
Ki, j, (8)

Where V A = m, V B = n, V = m + n = N, V A ∪ V B = V , V A ∩ V B = ∅, and i is allowed to 

equal j.

We seek to find a partition between VA and VB such that Eq. (8) is maximized. First, we can 

rewrite MMD V A, V B
2 = yTKy for y ∈ ℝN × 1 and K ∈ ℝN × N, where

yi =

1
m if i ∈ V A

− 1
n if i ∈ V B

. (9)

Thus we define the optimal partition Modularity(V) into modules VA and VB as

Modularity V = argmax
V A, V B
V A ∪ V B = V
V A ∩ V B = ∅

MMD V A, V B
2 .

(10)

This maximization problem can be approximated in a simplified way by relaxing Eq. (10) to 

a Rayleigh quotient maximization problem. Letting y be defined as above, where

y = N
mn

1/2
, (11)

we perform change of variables to the unit length vector v, where

v = mn
N

1/2
y, (12)
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and ||v||2 = 1, vT1 = 0, where 1 = [1 ··· 1]T, 1 ∈ ℝN × 1. Then we can rewrite Eq. (10) in terms 

of v to define the partition that maximizes MMD(VA, VB)2 as

Modularity V = argmax
v = 1vT1 = 0

N
mnvTKv . (13)

To compute MMD(VA, VB)2 in Eq. (13), in the context of connectomics, requires ground 

truth knowledge of m and n in advance. Thus, to account for this, we assume that N is large 

and that the two communities VA and VB are approximately the same size such that |m–n| ∈ 
o(N). The normalization factor in Eq. (13) can then be simplified to

Modularity V ≈ 4
N argmax

v = 1vT1 = 0
vTKv . (14)

Finally we relax the constraints of v from vi ∈
V B

N V A
, −

V A
N V B

 taking only two values to 

taking any real values such that v* ∈ ℝN. These relaxed constraints allow us to conveniently 

reframe Eq. (13) as a Rayleigh quotient maximization problem. We account for arbitrary 

origin for the Rayleigh quotient maximization by centering the kernel similarity matrix K to 

K = CNKCN, where the centering matrix CN = IN − 1
N JN, CN ∈ ℝN × N, IN ∈ ℝN × N is 

the identity matrix, and JN ∈ ℝN × N is the ones matrix (i.e., 11T).

Rather than finding MMD(VA, VB)2 as a function of the partition, we approximate the 

optimal partition Modularity(V) by finding the vector v* that maximizes the Rayliegh 

quotient such that

Modularity V ≈ 4
N argmax

v* ≠ 0v* ∈ ℝN
v*TKv*

v*Tv
. (15)

We can then compute the mapping vector v* that maximizes the Rayleigh quotient by 

computing the eigenvector q of K corresponding to the largest eigenvalue λmax of K. Similar 

to the Fiedler vector in spectral clustering methods (Weisstein, 1999), the elements of q 
assign both community affiliation based on its sign (+ or −) as well as magnitude. Further, q 
can be binarized to determine discrete community labels for each region as

v* =
i ∈ V A if qi ≥ 0
i ∈ V B if qi < 0, ∀i = 1, 2, 3, …N . (16)

In sum, these derivations suggest that connectivity gradients informed by rest2vec can be 

extracted by considering the top eigenvectors of the centered kernel matrix K.

2.3. Visualizing rest2vec in 2D using nonlinear dimensionality reduction

Isomap (Tenenbaum et al., 2000) was used to reduce the PhASE matrix Θ as a manifold 

ℳ ∈ ℝN × N to a d-dimensional embedding Y ∈ ℝN × d, where d < N. Isomap is 

advantageous for this procedure as it is a nonlinear technique, using methods such as 
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Dijkstra’s algorithm (Dijkstra, 1959) to compute the geodesic distances between vertices in 

high-dimensional space. Nonlinear methods importantly address the Swiss roll problem 

faced by traditional linear methods such as PCA and MDS (Tenenbaum et al., 2000).

In our case, we used k = 12 and k = 50 nearest neighbors, for the F1000 and Diez datasets, 

respectively, to reduce to two dimensions using the Isomap implementation in the Scikit-

learn version 0.21.3 library (Pedregosa et al., 2011). To account for any bias due to the 

choice of nearest neighbors, we also re-calculated the isomap embedding using k = {20, 40, 

60, 80, 100} with the Diez dataset as an example. The residual variance (Tenenbaum et al., 

2000) 1 − R2 Dℳ, DY  was used to quantify how similar the pairwise distances were between 

the original and low-dimensional spaces, and was shown to be consistent across a reasonable 

range of values for k (Figure A.3).

Because the isomap procedure centers data about the origin, and by Eq. (2) the phase angle 

between perfectly in-phase regions is zero, we analyzed each region’s Euclidean distance to 

the origin in this space to observe how the phase relationship between regions is preserved 

with respect to its low-dimensional embedding. After generating the isomap embedding, the 

distance Di to the origin of the isomap space 0⋯0 ∈ ℝ1 × d for the ith region was calculated 

using the Euclidean distance in the 2D isomap embedding.

Because of its natural representation for distance to the origin, the data was transformed to 

polar coordinates of radius r and angle θ using the polar transformation

r = x2 + y2 (17)

θ = atan2 y, x (18)

to visualize the functional embedding space.

2.4. Statistical analysis of rest2vec

2.4.1. Functional community mapping analysis—We used the Louvain community 

algorithm (Blondel et al., 2008) as implemented in the Brain Connectivity Toolbox (Rubinov 

and Sporns, 2010) to independently evaluate the mapping of functional communities in the 

low-dimensional embedding, as well as the contribution of negative edges on functional 

community clustering. The Louvain algorithm was applied on the group average Pearson 

correlation connectome (W), the thresholded connectome with only positive weights (W+) 

and the absolute value of the thresholded connectome (|W|). The parameter γ was set to 1 

for each connectome. For W, the negative weights were treated symmetrically.

The silhouette score (Pedregosa et al., 2011; Rousseeuw, 1987), a metric commonly used to 

evaluate clustering algorithms such as k-means, was used to assess the clustering 

performance of the functional communities in the embedding space. We also computed the 

silhouette score from a random permutation of the Louvain labels from W as a negative 

control for comparison. Because the Louvain algorithm returns different results with each 
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run, we performed 100 iterations of the algorithm to compute the mean and standard 

deviation of the overall silhouette coefficient for each connectome.

2.4.2. Using k-means clustering to define gradient clusters in the rest2vec 
embedding—k-means clustering was used to formally classify clusters for regions (such 

as the precuneus) that had heterogeneous mappings in the isomap embedding. The k-means 

clustering algorithm was performed using the Scikit-learn implementation (Pedregosa et al., 

2011) for k = 2 clusters in the isomap embedding. The same seed value was used to ensure 

reproducible results.

To determine how affiliated other (non-precuneus) regions were to either of the two clusters, 

regions were first assigned to the precuneus cluster they were closest to in the isomap 

embedding. A diverging cluster affiliation scale was computed based on the Euclidean 

distance of each region to its precuneus cluster’s centroid in the isomap embedding, which 

we termed “intrinsic functional distance,” such that regions with more positive or negative 

values were closer to the centroid of their respective precuneus cluster. The cluster affiliation 

ai was defined as

ai =
max dC0 − dC0, i if i ∈ C0

dC1, i − max dc1 if i ∈ C1
, (19)

where d is the intrinsic functional distance from region i to the centroid of cluster C.

2.4.3. rest2vec consistency with Neurosynth meta-analysis association 
terms—The Neurosynth meta-analysis database (Yarkoni et al., 2011) was used to search 

for behavioral and psychiatric terms to obtain a NIfTI image containing the association 

measured between the key term and fMRI activity across studies in the database. For this 

study, we used the “association test” images provided by Neurosynth, which provides the z-

score describing the association between the key term and each voxel.

In order to map this data to the rest2vec embedding, we used the MNI coordinates from the 

Diez dataset as a lookup value to obtain the z-score of the corresponding voxel in the 

Neurosynth association test NIfTI file. The glass brain and embedding data was then plotted 

such that the regions with z-scores > 0 were mapped to a color gradient; all other regions 

were set to a uniform gray value in the background.

2.5. Code and data availability

All code used to produce the results and figures is available online via GitHub (https://

github.com/zmorrissey/rest2vec) and our laboratory website (http://brain.uic.edu/). We also 

provide the MNI (x, y, z) coordinates and the rest2vec embedding (x, y)-coordinates for each 

dataset.

2.5.1. Statistics—The StatsModels library version 0.10.1 for Python (Seabold and 

Perktold, 2010) was used for statistical analyses. Student’s independent t-test was used to 

test if there were any differences in age between male and female subjects for the F1000 

dataset. The ordinary least squares (OLS) method was used to fit the parameters for the 

Morrissey et al. Page 10

Neuroimage. Author manuscript; available in PMC 2021 March 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/zmorrissey/rest2vec
https://github.com/zmorrissey/rest2vec
http://brain.uic.edu/


linear regression between isomap distance to origin and phase angle. For silhouette score 

analyis, a one-way ANOVA followed by Tukey’s post hoc test was used.

2.5.2. Visualization—Graphics were drawn using the Matplotlib version 3.1.1 (Hunter, 

2007) and Seaborn version 0.9.0 (Seaborn, 2019) libraries using Python version 3.7.3 from 

the Anaconda distribution (Anaconda, 2018). Glass brain figures were visualized using the 

plot_connectome function from the Nilearn version 0.6.2 library (Abraham et al., 2014). 

Inkscape version 0.92 was used for final arrangement of some figures (Albert et al., 2019).

Brain surface plots were created by representing the N × 4 array, consisting of the MNI (x, y, 
z)-coordinates for all N-regions, and the N × 1 vector containing the data value associated 

with each region, as a 3D volume. For brain distance maps, the intrinsic functional distance 

vector was made by computing the Euclidean distance between the mean (x, y)-coordinates 

of the anatomical region in the isomap embedding and all other regions. For regions that had 

heterogeneous mapping (i.e., multiple clusters) in the isomap space, k-means clustering was 

performed to calculate cluster affiliations for each region as described above in Eq. (19).

The 3D volume containing the original data was then interoplated using a linear grid 

interpolation and registered to the MNI template volume with 12 degrees of freedom using 

the FLIRT tool in the FSL (Jenkinson et al., 2012) interface from the Nipype version 1.3.0-

rc1 library (Gorgolewski et al., 2011). The interpolated 3D volume was mapped to the 

Freesurfer pial surface template using the vol_to_surf function from the Nilearn library. The 

surface data was then visualized using the plot_surf_stat_map function from the Nilearn 

library.

3. Results

3.1. Functional connectivity gradients with rest2vec

3.1.1. The maximum eigenvector from rest2vec defines a principal functional 
connectivity gradient—After applying the rest2vec pipeline to the F1000 and Diez 

datasets, we used the maximum eigenvector of the double-centered kernel similarity matrix 

K to extract the principal connectivity gradient of the functional connectome (Fig. 2). We 

visualized the anatomical and functional embedding by anatomical lobe to visualize how 

each lobe participates in the principal gradient. We observed a symmetrical partition when 

viewed in the functional embedding space (Fig. 2, middle), primarily demarcating between 

the task-negative network (TNN) and the default mode network (DMN). When the brain is 

faceted by lobe affiliation, several notable patterns emerge. For example, the frontal lobe is 

demarcated into the prefrontal cortex (PFC) and pre-motor areas and dorsolateral PFC 

anatomically, which are respectively situated in opposite quadrants of the functional 

embedding. In addition, the parietal lobe is split largely into default mode network (DMN) 

regions – including regions of the inferior parietal lobule and precuneus – and primary and 

secondary unimodal areas, including somatosensory cortices and areas involved in visual 

processing. Consistent with this observation, the occipital lobe has the largest proportion of 

regions belonging to the putative TPN at 83.4%. Similar demarcations can be observed in 

the F1000 dataset as well (Fig. A.7).
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In addition, the second and third eigenvalues of the kernel similarity matrix K account for a 

notable portion of the variance of the data (Fig. A.5), so we also examined the gradients 

given by these two eigenvectors (Figure A.8, Figure A.9). The second eigenvector gradient 

revealed a rostral-caudal gradient, most notable for the sub-lobar, limbic, and temporal 

lobes, and a medial-lateral gradient for the parietal and frontal lobes. The third eigenvector 

gradient revealed a largely anterior-posterior gradient across all lobes except for the parietal 

and occipital lobes, which were dominated by a single community. Interestingly, there is a 

notable hemispheric asymmetry in the frontal lobe in areas of the left hemisphere, suggestive 

of language and speech regions of the brain. Taken together, these data suggest that rest2vec 

is able to recover biologically-relevant connectome gradient properties, while also 

accounting for the presence of negative edges, thereby removing heuristic steps that may 

bias downstream analyses as a result.

3.1.2. Region-specific gradients defined by intrinsic functional distance in 
the rest2vec space—While the kernel similarity matrix eigenvectors from rest2vec can 

reveal unbiased functional connectivity gradients, we then asked whether one could 

investigate specific brain regions of interest (ROIs) to query region-specific gradient 

connectivity information. We hypothesized that the Euclidean distance within the rest2vec 

isomap embedding space could be used as a metric of “intrinsic functional distance” 

between brain regions, where if two regions are close together in the embedding space they 

are more functionally coupled. From Eq. (2), lower values of Θi,j indicate a more in-phase 

relationship between regions. Thus we hypothesized that more in-phase regions would be 

embedded closer to the origin of the isomap space, whereas more out-of-phase regions 

would be embedded further from the origin. The 2-norm of each N-dimensional vector of 

the PhASE matrix Θi, :  was used as a summary measure of each region’s overall phase. 

For each dataset, there was a statistically significant positive correlation between each 

region’s Θi, :  and its distance from the origin of the 2D isomap embedding (F1000 

dataset: F (1, 175) = 87.55, R2 = 0.33, r = 0.58, p < 0.0001; Diez dataset: F(1, 2512) = 340.2, 

R2 = 0.119, r = 0.34, p < 0.0001) (Figure A.2, left). This pattern can be seen when the rows 

and columns of the PhASE matrix are sorted by ascending Θi, :  values, in particular for 

the coarser parcellation from the F1000 dataset (Figure A.2, right). Together this suggests 

that regions mapped closer to the origin were more in-phase with other regions, whereas 

more out-of-phase regions were mapped further from the origin.

To examine this relationship further, we faceted the anatomical and functional embeddings 

of the Diez dataset by anatomical lobe affiliation ranked by ascending distance to the origin 

(Fig. 3). Notably, the brainstem displayed the most centrally embedded regions (median 

distance = 6.9), followed by (in ascending order): sub-lobar, limbic lobe, temporal lobe, 

frontal lobe, cerebellum, parietal lobe, and occipital lobe regions. At the other extreme, the 

occipital lobe displayed the most distant and densely clustered representation in the 

embedding space (median distance = 24). Examination of the phase angle vectors for 

occipital lobe regions revealed highly in-phase relationships within the occipital lobe, while 

regions outside the occipital lobe were mostly out-of-phase (Fig. A.10). Since the occipital 

lobe and large portions of the parietal lobe (e.g., motor cortices), and cerebellum are mapped 

further in the periphery, this suggests that regions involved in primary sensory processing are 
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mapped further in the periphery, while regions such as the brainstem, thalamus, and 

heteromodal areas have more in-phase relationships and are mapped closer to the origin. 

Interestingly, some lobes, such as the frontal lobe, appeared to have non-normal distance 

distributions. Further inspection revealed this bimodal distribution to be composed of 

primarily ROIs from the middle frontal gyrus below the median, and superior and medial 

frontal and precentral gyri, above the median, among other regions (Figure A.11). 

Additionally, those regions above the median were more strongly affiliated with different 

functional communities, whereas those below the median were less affiliated with either 

functional community, discussed in more detail below.

The F1000 dataset also showed the occipital lobe being furthest from the origin and densely 

clustered in the embedding space (Figure A.4). Although there were fewer brainstem ROIs 

in the F1000 dataset, the brainstem, sub-lobar, and temporal regions likewise were more 

centrally-embedded in the F1000 dataset. Interestingly, the coarser parcellation of the F1000 

dataset showed similar median distances across the parietal, frontal, and limbic lobes. This 

suggests that while the overall distance distributions are similar across parcellations, finer 

parcellations may intrinsically be able to detect more subtle differences in how regions are 

mapped in the embedding space. Furthermore, the Diez dataset also include ROIs from the 

cerebellum, which are likely to influence the topology of the embedding space compared to 

the F1000, which does not include the cerebellum. Together, these results suggest that the 

overall distance distributions reveal consistent trends in different parcellations, and that more 

granular parcellations, as well as contribution of brainstem and cerebellum may contribute 

additional information to the embedding topology.

Given that the distance to the origin of the isomap embedding preserved phase coupling 

characteristics across anatomical regions, we next asked if the intrinsic functional distance 

between regions in this space could reveal biologically-relevant connectivity patterns. As a 

proof of concept, we computed the intrinsic functional distance for regions that occupy 

distinct locations in the embedding space, namely the occipital lobe, which was densely 

clustered in the periphery, and the hippocampus, which was clustered centrally in the 

embedding. When the intrinsic functional distance to the occipital lobe was mapped as a 

color gradient on the brain surface, the dorsal and ventral visual streams (Goodale, 2011; 

Goodale and Milner, 1992; Ungerleider, 1982) became apparent (Fig. 4, left), consistent 

with the hypothesis that distance in this embedding space preserves functionally relevant 

information. In contrast, the hippocampus also had a relatively homogeneous cluster in the 

isomap embedding, but showed a much more distributed surface map gradient to regions of 

the default mode network (DMN), such as the precuneus, prefrontal cortex, thalamus, and 

inferior parietal lobule (Fig. 4, right).

While certain anatomical regions showed a relatively homogeneous clustering in the isomap 

embedding, such as the occipital lobe, others showed heterogeneous clustering patterns. 

Thus we hypothesized that rest2vec could be used to identify functional subnetworks within 

individual regions based on their clustering within the isomap embedding. As a test case, we 

examined the isomap embedding pattern for the precuneus, which is known to participate in 

different networks across its dorsal-anterior/ventral-posterior axes (Cavanna and Trimble, 

2006; Zhang and Li, 2012). The bivariate kernel density estimate plot of the precuneus ROIs 
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in the Diez dataset suggested the presence of two primary clusters (Fig. 5, top left). To 

investigate this further, we used kmeans clustering to formally assign precuneus ROIs to one 

of two clusters (Fig. 5, top middle). A meta-cluster was made that included all other regions 

in the Diez dataset by assigning regions to the precuneus cluster they were closer to. We then 

measured the intrinsic functional distance between each region to its precuneus cluster 

centroid to assign an affiliation value to each region (Fig. 5, top right). The brain surface 

map projection of these data demarcated these two cluster centroids into the dorsal-anterior 

precuneus and the ventral-posterior precuneus (Fig. 5, bottom). The dorsal-anterior cluster of 

the precuneus was most strongly affiliated with the occipital and superior parietal regions, as 

well as the paracentral lobule, middle and superior temporal cortices, and thalamus (Fig. 5, 

middle). The ventral-posterior cluster of the precuneus was most strongly affiliated with the 

hippocampus, cuneus, cerebellum, parahippocampal cortex, posterior cingulate cortex, 

calcarine cortex, amygdala, and superior occipital cortices. Thus we showed that performing 

clustering analyses on a particular region in this space (e.g., precuneus) revealed multiple, 

distinct connectivity gradients, which have been previously reported in the literature. 

Together, this demonstrates how rest2vec’s intrinsic functional distance can be used to 

discover functional connectivity gradients.

3.2. rest2vec provides a framework for functional connectome parcellation

Since rest2vec could identify functionally relevant connectivity gradients within anatomical 

lobes, we next asked if rest2vec could be used to study functional community parcellation. 

We hypothesized that if the rest2vec embedding is preserving the functional organization of 

the connectome, then these functional communities would be clustered together in the 

embedding. Additionally, the contribution of negative edges should also yield the best 

clustering in the embedding space.

To test this, we computed the community assignment labels for the group average Pearson 

correlation connectome (W) using the Louvain community algorithm (Blondel et al., 2008; 

Rubinov and Sporns, 2010). We did the same procedure using the connectome with negative 

edges removed (W+) and the absolute value of the connectome (|W|). We calculated the 

silhouette coefficient (Rousseeuw, 1987) as a metric of clustering performance for each 

connectome, as well as a random permutation of the labels from W as a negative control, 

across 100 iterations of the Louvain algorithm. One-way ANOVA followed by Tukey’s post 
hoc test revealed that the silhouette coefficient was statistically significantly higher in both 

datasets for the Louvain community partition using the original connectome W, followed by 

W+,|W|, and randomly assigned labels having the lowest silhouette score (p < 0.001 for all 

pairwise comparisons) (Fig. 6, bottom).

These results indicate that (i) the rest2vec embedding preserves functional modularity, as 

demonstrated independently using the Louvain community algorithm, and (ii) the 

contribution of negative edges yields the highest silhouette score, indicative of better 

clustering of functional communities. Together, this suggests that rest2vec is able to map 

functional community relationships into a lower-dimensional embedding space, and that the 

contribution of negative edges best preserves this mapping.
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In addition to the Louvain community algorithm, which provides discrete comunity labels 

for each ROI, we also used the primary eigenvector q of the centered kernel similarity 

matrix K as a way to partition the connectome into the first two communities, similar to the 

Fiedler vector in traditional spectral clustering methods. To set the partition, the index of 

regions corresponding to qi ≥ 0 were assigned to community VA, and the index of regions 

corresponding to qi < 0 were assigned to community VB . This approach was validated by 

iteratively evaluating the maximum mean discpreancy (MMD) across 50 threshold values of 

q (Figure A.6). The results suggest that the MMD is maximized when the partition yields 

communities of approximately equal size, which occurs for both datasets when the partition 

threshold for qi ≈ 0.

When the magnitude and sign of qi are mapped to a diverging colormap in the isomap space, 

it was observed that regions closer to the vertical axis appeared more neutral, whereas 

regions further from the vertical axis were polarized into either community, suggesting these 

regions are more strongly mapped into that community. As observed earlier in Fig. 2, we 

found that the partition demarcated into the putative task-positive network (TPN) and task-

negative network (TNN, also called default mode network (DMN)). This relationship can be 

seen when the primary eigenvector gradient is used to sort the Θ matrix for each datasets, 

where the resulting grid communities show out-of-phase relationships with the other 

community (Fig. 7, right). This can also be observed anatomically when the eigenvector 

gradient is mapped to the brain surface (Fig. 7, bottom).

Taken together, these data suggest that rest2vec is able to recover functional community 

information, while also accounting for the presence of negative edges, thereby removing 

heuristic steps that may bias downstream analyses as a result. Finally, we show that rest2vec 

can model these communities using a continuous gradient mapping, going beyond 

traditional discrete community labeling methods.

3.3. rest2vec is consistent with Neurosynth meta-analysis association terms

Finally, we sought to connect rest2vec to behavioral metrics. We used meta-analysis terms 

from the Neurosynth database (Yarkoni et al., 2011) to obtain brain MR images containing 

the FDR-corrected z-score association of each voxel to the key term. Then, we were able to 

query each MNI coordinate of the Diez dataset with the Neurosynth images to map each 

region’s association z-score in the embedding space (Fig. 8).

We examined the embeddings for a selection of behavioral, psychiatric, and physiological 

terms to show a range of different traits: “anxiety,” “auditory,” “decision making,” “default 

mode,” “motor control,” “reward,” “speech,” and “visual.” Interestingly, “reward,” 

“anxiety,” and “decision making” were centrally located, suggesting that they are mapped 

with more in-phase regions and cluster together within the embedding space. As a 

comparison, more physiological terms mapped closely to their respective anatomical 

clusters, such as “visual,” “auditory,” and “speech.” “Auditory” and “speech” share notably 

similar mappings, suggestive of their shared function in language processing. Finally, the 

“default mode” and “motor control” mappings are consistent with both the MMD gradient 

and Louvain modularity results. Together, this demonstrates that rest2vec can be used to map 
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Neurosynth meta-analysis terms in the embedding space, offering additional insight into 

how the organization of the functional connectome can be linked to behavior.

4. Discussion

There have been many diverse and interesting approaches using dimensionality reduction 

and gradient mapping for studying brain organization. Margulies et al. demonstrated the 

diffusion map embedding method (Margulies et al., 2016), revealing a principal 

unimodaltransmodal gradient. In addition, there have been studies linking cytoarchitecture to 

macroscale neuroimaging data for informing cortical gradient mapping (Huntenburg et al., 

2018; Paquola et al., 2019), as well as seeing how conditions such as ischemic stroke affect 

the gradients within the embedding space (Bayrak et al., 2019). Zhang et al. constructed 

intrinsic connectivity maps using network motifs reported in the literature with MDS to 

create a low-dimensional embedding, identifying three gradients across external-internal, 

modulation-representation, and anatomical centrality features (Zhang et al., 2019). Recently, 

Bethlehem et al. (2020) investigated how the functional communities in their diffusion map 

embedding space change across age using a novel dispersion metric. In a different approach, 

Shafiei et al. (2020) have proposed using tools from the time series analysis field to perform 

feature extraction on the temporal dynamics of functional connectivity to study the intrinsic 

dynamics of cortical gradients. Interestingly, the principal gradient identified across many of 

these techniques bear a striking similarity, suggesting this gradient accounts for much of the 

variance of intrinsic functional connectivity.

In this study, we presented a novel graph embedding approach for rs-fMRI connectivity 

using rest2vec. Rest2vec improves upon current methods by using the full range of 

correlative information and representing the functional relationships of the brain in a low-

dimensional embedding. Previous studies have suggested that negative correlations may 

have important – but still not fully understood – biological roles (Rubinov and Sporns, 

2010). There is evidence that weak functional connections signficantly contribute to the 

explanation of cognitive functions in both health and disease (Bassett et al., 2012; 

Santarnecchi et al., 2014), and have been shown to be important in other types of complex 

networks (Csermely, 2004; Granovetter, 1983; Ma and Gao, 2012; Onnela et al., 2007; 

Santarnecchi et al., 2014).

Previous work from our group has demonstrated that using a probability-based divisive 

approach with permutation testing could recover the hierarchical community structure of rs-

fMRI connectomes while preserving negative edges, which we called probability-associated 

community estimation (PACE) (Zhan et al., 2017). In addition, our previous study (Ye et al., 

2015) demonstrated how nonlinear dimensionality reduction and manifold learning 

techniques could be used to investigate the intrinsic geometry of structural connectomes 

derived from diffusion imaging. Inspired by these approaches, we sought to develop a 

method by which rs-fMRI functional connectomes could be represented in their intrinsic 

geometry while also preserving negative edge relationships. We chose to use the isomap 

method because it uses a geodesic distance metric for generating the lower-dimensional 

embedding (Tenenbaum et al., 2000). By doing so, distance in the lower-dimensional 
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embedding conveys meaningful information, and also yields consistent results across each 

run, in comparison to stochastic methods, such as t-SNE (van der Maaten and Hinton, 2008).

In the context of functional connectivity, converting the embedding coordinate system to a 

polar representation was an intuitive visualization decision, as it centers the data around the 

origin, where regions with lower Θi,j values are mapped closer to the origin and regions with 

higher Θi,j values are mapped in the periphery. Interestingly, regions with a greater number 

of high Θi,j values (i.e., more out-of-phase relationships) tended to be unimodal and also 

have low within-cluster Θi,j values, as seen most clearly in the occipital lobe (Fig. A.10). In 

contrast, more centrally-embedded regions tended to be located in brainstem and sub-lobar 

regions, and also situated in the “transition zone” of the MMD gradient. This suggests that 

these regions may be important for between-module communication.

By using lower-dimensional embedding distance metrics, we were able to recover 

functionally relevant relationships. In the case of the occipital lobe, mapping the intrinsic 

functional distance to its cluster centroid in the isomap embedding generated a gradient map 

in the anatomical space of the dorsal and ventral visual streams (Goodale, 2011; Goodale 

and Milner, 1992). On the dorsal surface, the gradient proximal to the occipital lobe can be 

seen going to the posterior parietal regions, whereas on the ventral surface the proximal 

gradient extends from the occipital lobe to the inferior temporal lobe (Fig. 4, left). In another 

example, the precuneus had two primary clusters in the isomap embedding. When projected 

onto the brain surface, these two clusters demarcated the dorsal-anterior and ventral-

posterior portions of the precuneus (Fig. 5). The dorsal-anterior gradient appeared to 

primarily consist of the superior parietal, somatomotor, and occipital cortices. The ventral-

posterior gradient appeared to be composed of the posterior cingulate, parahippocampal, and 

superior occipital cortices and the hippocampus.

There is evidence for the dorsal-anterior and ventral-posterior portions of the precuneus 

being involved in different functions. A rs-fMRI study by Zhang and Li (2012) identified the 

dorsal and anterior portions of the precuneus having stronger connectivity with the occipital, 

somatomotor, and posterior parietal cortices and the superior temporal gyri. In addition, they 

identified the ventral precuneus as being more strongly associated with the middle frontal 

gyrus, posterior cingulate cortex, cuneus, and calcarine sulcus. This demarcation is thought 

to be due to the diverse roles of the precuneus. In particular, the dorsal-anterior portion of 

the precuneus, which has strong connectivity with the occipital and superior parietal 

cortices, is involved in processing polymodal imagery and visuospatial information, whereas 

the ventral-posterior precuneus is thought to be more involved in episodic memory retrieval 

(Cavanna and Trimble, 2006). While the study by Zhang and Li (2012) further subdivided 

the precuneus into eight clusters in their study, our results were largely consistent with their 

observations, suggesting that rest2vec can detect heterogeneous connectivity patterns within 

individual regions.

In addition to representing the intrinsic geometry of functional connectomes, we proposed 

using the maximum mean discrepancy (MMD) method by Gretton et al. (2012) to partition 

the connectome into maximally functionally distinct modules. The MMD was originally 

implemented to detect how different two probability distributions were to test if they were 
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from the same population (Gretton et al., 2012). For our use case, we maximized the MMD 

as an objective function to find two populations of brain regions such that their distributions 

are as distant as possible to identify functional communities. One advantage is this is a 

vectorized approach and does not rely on iterative methods. In addition, this method offers 

flexibility in the choice of probability and kernel similarity measures used as input, and so 

are not limited to only Pearson correlation measures.

When the functional connectome is represented in its intrinsic embedding using nonlinear 

dimensionality reduction, the MMD gradient elicited a strikingly symmetric representation. 

Upon closer observation, these two communities were split approximately between the 

canonical task-positive network (TPN) and the default mode network (DMN), consisting of 

the precuneus, inferior parietal lobule (IPL), posterior cingulate cortex, hippocampus, and 

areas of the prefrontal cortex (PFC), among others (Buckner et al., 2008). This initial 

bifurcation gradient is consistent with previous studies (Margulies et al., 2016; Zhan et al., 

2017; Zhang et al., 2019), and is a validation that this embedding procedure is capturing 

functionally-relevant characteristics. In addition, we showed lobe-specific affiliations for the 

two communities. These results were consistent with the putative DMN/TPN split. Notably, 

the IPL and precuneus are shown in contrast to the postcentral regions within the parietal 

lobe; similarly, the PFC and pre-motor areas show clear boundaries. In addition, the 

contribution of the second and third eigenvectors offer additional insight into the functional 

demarcations of the connectome. Together, these results demonstrated that using this MMD 

maximization approach yielded reproducible and biologically-meaningful connectome 

partition gradients, and that the properties of these communities can be represented using 

dimensionality reduction.

In this study, we focused on analyzing the resting-state connectome’s intrinsic geometry 

with rest2vec, as it is thought to represent the brain’s inherent functional connectivity. In 

principle, rest2vec could be applied similarly to task fMRI connectomes to study how the 

architecture of the embedding space is altered due to task activity. Cole et al. have 

previously suggested that there is a “task-general” architecture of the functional connectome 

that is shared across a variety of tasks (Cole et al., 2014). Future work investigating how task 

embedding spaces are dis- tinct from rest could lead to interesting insights into the gradient 

organization of the brain as it engages between rest and task states.

An open question is how the functional embedding space may relate to structural 

connectivity. For example, structural connectomes have an intuitive relationship to network 

navigation (Seguin et al., 2018). Seguin et al. (2018) discovered that the navigation routing 

score for brain regions is negatively correlated with their functional connectivity strength. In 

our present study, we demonstrated the link between Euclidean distance in the functional 

embedding space and gradients in the anatomical space. An interesting approach for future 

work would be to determine the relationship between structural network navigation and 

intrinsic functional connectome geometry.

Allard and Serrano (2020) recently published a study using hyperbolic space to study 

structural connectome navigation across multiple species. Of particular interest, the 

hyperbolic representation of the structural connectome with the Yeo 17 functional network 
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labels (Yeo et al., 2011) revealed a noticeable segregation of the functional communities. 

Together, this suggests that representing both structural and functional networks in their 

intrinsic geometries is preserving organizational properties that are otherwise obscured by 

the anatomical spatial embedding of the brain; future work that could integrate or compare 

the structural and functional connectome embeddings may help to shed more light on the 

brain’s communication properties as inferred by these two modalities.

4.1. Limitations and future directions

In this paper, we used rs-fMRI connectomes from a group of subjects in order to compute 

the probability of there being a negative correlation between each pairwise edge between 

regions. While this approach led to consistent results across two independent datasets, we 

did not assess how robust this procedure was to inter-subject variability or the size of groups. 

In addition, while average rs-fMRI connectomes yield a wealth of functional connectivity 

information, they are a static representation of a dynamic process. Furthermore, there has 

been increasing emphasis on individual connectome analysis with aims towards personalized 

medicine (Finn et al., 2015; Miranda-Dominguez et al., 2014). To that end, future 

improvements on these methods will need to incorporate dynamic as well as subject-specific 

analyses of functional connectivity. Recent works by Betzel and Bassett (2017) and Gosak et 

al. (2019) have suggested the concept of hierarchical or multi-scale networks, which could 

lead to natural extensions of this work via subject embedding spaces which are in turn 

composed of network embedding spaces.

While we show how rest2vec can be linked to the maximum mean discrepancy and show the 

partition gradients for the first three eigenvectors of the kernel similarity matrix, further 

work will need to be done to develop a hierarchical way to detect N communities with this 

approach. In addition, more robust methods could be used for maximizing the MMD 

objective function to avoid the possibility of local maxima to achieve better accuracy. While 

we highlight the theoretical relationship between rest2vec and the MMD, as rest2vec is a 

low-dimensional embedding technique users are not limited to using the MMD to study 

functional communities in the embedding space, as we demonstrated with the widely-used 

Louvain community algorithm (Fig. 6).

4.2. Conclusions

Rest2vec incorporates both positive and negative edge connectivity using a model inspired 

by statistical mechanics to transform functional connectome data into phase angle 

relationships. This representation of the connectome can be combined with nonlinear 

dimensionality reduction techniques to represent the intrinsic geometry of the functional 

connectome in a lower-dimensional embedding. Together, these methods allow for a 

vectorized approach to investigate the functional relationships and connectivity gradients of 

rs-fMRI data. In addition, we connected rest2vec to the maximum mean discrepancy metric 

to demonstrate how rest2vec can be used to address the modularity problem as a kernel two-

sample test. Finally, we show how rest2vec can be connected to behavioral data using the 

Neurosynth meta-analysis database to project behavioral scores in the embedding space. In 

summary, we presented a rs-fMRI connectome graph embedding technique that uses 
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nonlinear dimensionality reduction and statistical learning methods to create a low-

dimensional representation of the intrinsic geometry of the functional connectome.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
rest2vec processing pipeline. (Top) The frequency of observing a negative edge between 

regions i and j across all subjects in the N × N × S array W of rs-fMRI connectomes is 

computed to form the probability of negative correlation matrix P−. (Middle) The phase 

angle transformation is applied to compute the phase angle spatial embedding (PhASE) 

matrix Θ. (Bottom) Dimensionality reduction and the maximum mean discrepancy (MMD) 

are used to analyze the properties of the new embedding space, where the functional 

connectome is represented by its intrinsic geometry.
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Fig. 2. 
Visualizing the principal rest2vec gradient. Anatomical and functional embedding of the 

Diez dataset faceted by anatomical lobe affiliation. (Top) Merged representations of all 2514 

regions in anatomical embedding (columns 1–3), functional embedding (column 4), and the 

percentage of regions within each community for each lobe (column 5). (Bottom) Facet of 

data for each anatomical lobe. Rows are arranged from top to bottom in ascending order of 

median distance from the origin. Color indicates community affiliation. Vertical gray 

reference line for each stacked barplot indicates 50%.
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Fig. 3. 
Anatomical and functional embedding of the Diez dataset faceted by anatomical lobe 

affiliation and ranked by ascending distance to origin. (Top) Merged representations of all 

2514 regions in the anatomical embedding (columns 1–3), functional embedding (column 4) 

and kernel density estimate of distance to origin for all regions within each lobe (column 5). 

(Bottom) Facet of data for each anatomical lobe. Rows are arranged from top to bottom in 

ascending order of median distance from the origin. Color indicates lobe affiliation. Higher 

saturation indicates increasing distance from the origin. Dashed gray lines in kernel density 

estimate plots indicate the median distance.
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Fig. 4. 
Intrinsic functional distance mapping with rest2vec. (Left) Occipital lobe. (Right) 

Hippocampus. (Top) Kernel density estimate plots of the occipital lobe and hippocampus in 

the isomap embedding. The intrinsic functional distance was then computed from the mean 

embedding coordinate of either the occipital lobe or the hippocampus to all other regions in 

the brain. Darker color indicates the region is closer to the mean coordinate of the occipital 

lobe or hippocampus, respectively. (Bottom) Intrinsic functional distance gradient projected 

onto the Freesurfer pial surface template. A: anterior. P: posterior.
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Fig. 5. 
Identifying subnetwork clusters within the precuneus using rest2vec. (Top, left) Kernel 

density estimate of the precuneus in the isomap embedding. (Top, middle) k-means 

clustering results are indicated in blue and orange. (Top, right) Cluster affiliations for all 

other regions based on their minimum intrinsic functional distance to their precuneus cluster 

centroids. Darker color indicates that region is closer to the centroid of its cluster. (Middle) 

Strip plot of the ten regions with the greatest mean affiliation for each cluster. Points 

represent individual ROI. Vertical bars indicate the mean. (Bottom) Brain surface map of 

cluster affiliations for the precuneus. The precuneus is outlined by a dashed line in the 

medial view. A: anterior. P: posterior.

Morrissey et al. Page 28

Neuroimage. Author manuscript; available in PMC 2021 March 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Evaluating functional community mappings in the isomap embedding. (Top) For each 

dataset, the top row indicates the Louvain community assignment by distinct colors. The 

silhouette score for each ROI is shown below the respective community assignment plot. 

(Bottom) The overall silhouette coefficient for each connectome, computed across 100 

iterations of the Louvain algorithm on each connectome. Bars represent the mean. Error bars 

indicate the standard deviation. Asterisks indicate Tukey’s post hoc pairwise comparison p-

values < 0.001.
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Fig. 7. 
Visualizing the primary eigenvector partition for the F1000 and Diez datasets. (Top) F100 

dataset. (Middle) Diez dataset. (Left column) Glass brain plots showing each ROI. Color 

indicates community affiliation based on the magnitude of the maximum eigenvector q of 

the kernel similarity matrix K. (Middle column) Visualization of the 2D embedding in polar 

coordinates. (Right column) PhASE matrix Θ sorted by the values of the maximum 

eigenvector q. (Bottom) Brain surface map of the primary eigenvector partition gradient for 

the Diez dataset projected onto the Freesurfer pial surface template. Color indicates the 

interpolated value of qi. A: anterior. P: posterior.
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Fig. 8. 
Mapping Neurosynth meta-analysis terms to the rest2vec embedding. Glass brain and 

isomap embedding are shown for each Neurosynth term. Regions with z-scores > 0 are 

colored; other regions are displayed in gray. The Neurosynth data was acquired from the 

“association test” maps for each term.
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