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ABSTRACT Short-amplicon 16S rRNA gene sequencing is currently the method of
choice for studies investigating microbiomes. However, comparative studies on differen-
ces in procedures are scarce. We sequenced human stool samples and mock commun-
ities with increasing complexity using a variety of commonly used protocols. Short
amplicons targeting different variable regions (V-regions) or ranges thereof (V1-V2, V1-
V3, V3-V4, V4, V4-V5, V6-V8, and V7-V9) were investigated for differences in the compo-
sition outcome due to primer choices. Next, the influence of clustering (operational tax-
onomic units [OTUs], zero-radius OTUs [zOTUs], and amplicon sequence variants [ASVs]),
different databases (GreenGenes, the Ribosomal Database Project, Silva, the genomic-
based 16S rRNA Database, and The All-Species Living Tree), and bioinformatic settings
on taxonomic assignment were also investigated. We present a systematic comparison
across all typically used V-regions using well-established primers. While it is known that
the primer choice has a significant influence on the resulting microbial composition, we
show that microbial profiles generated using different primer pairs need independent
validation of performance. Further, comparing data sets across V-regions using different
databases might be misleading due to differences in nomenclature (e.g., Enterorhabdus
versus Adlercreutzia) and varying precisions in classification down to genus level. Overall,
specific but important taxa are not picked up by certain primer pairs (e.g., Bacteroidetes
is missed using primers 515F-944R) or due to the database used (e.g., Acetatifactor in
GreenGenes and the genomic-based 16S rRNA Database). We found that appropriate
truncation of amplicons is essential and different truncated-length combinations should
be tested for each study. Finally, specific mock communities of sufficient and adequate
complexity are highly recommended.

IMPORTANCE In 16S rRNA gene sequencing, certain bacterial genera were found to
be underrepresented or even missing in taxonomic profiles when using unsuitable
primer combinations, outdated reference databases, or inadequate pipeline settings.
Concerning the last, quality thresholds as well as bioinformatic settings (i.e., cluster-
ing approach, analysis pipeline, and specific adjustments such as truncation) are re-
sponsible for a number of observed differences between studies. Conclusions drawn
by comparing one data set to another (e.g., between publications) appear to be
problematic and require independent cross-validation using matching V-regions and
uniform data processing. Therefore, we highlight the importance of a thought-out
study design including sufficiently complex mock standards and appropriate V-
region choice for the sample of interest. The use of processing pipelines and param-
eters must be tested beforehand.
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The human gut microbiome is a complex environment hosting a large number of
different bacteria. A cost-effective method to determine the bacterial composition

of, e.g., human fecal samples is to sequence amplicons targeting the 16S rRNA gene.
Microbial compositions of diverse environments, which are influenced by different fac-
tors or conditions (e.g., sampling time point, targeted rRNA region, response to health
or disease, sequencing strategy, machinery, depth, and read lengths), were also stud-
ied with this method (1–7).

The 16S rRNA gene spans about 1,500 bp and is structured in highly conserved
regions interspersed with nine variable regions (V-regions), V1 to V9 (8, 9). The con-
served regions can be used for primer binding and thus allow for capturing a greater
number of different bacterial taxa, sometimes including or not including archaea, while
the variable regions permit the discrimination of these taxa within different microbial
environments (10). However, differences between the conserved regions and, there-
fore, differences in primer annealing result in an unequal amplification of bacteria pres-
ent in a sample (11). Depending on the particular V-region that was targeted, differen-
ces in the sequencing results and taxonomic outcome occurred, which led to
misinterpretation (12, 13). Further, not every variable region has the same sensitivity,
i.e., allowing separation of closely related taxa (14). Concerning archaea, the applicabil-
ity of certain primer pairs has been covered well in previous studies (12, 15, 16).

Second-generation sequencers, e.g., Illumina’s MiSeq, enable sequencing of ampli-
cons up to 600bp with high accuracy. This length allows targeting about one to three
adjacent variable regions of the 16S rRNA gene using “universal” primers for the con-
served regions. In a subsequent PCR, sequencing adapters are added to the amplicons
(17). After a cleanup step, the amplicon libraries are sequenced. The resulting reads are
used to analyze similarities and differences between samples with different microbial
compositions (e.g., alpha- and beta-diversity) (18). In contrast, full-length 16S rRNA
gene sequencing is possible by using third-generation sequencers, for instance, Oxford
Nanopore MinION (19) and the PacBIOs Sequel (20), which were introduced in 2009
and 2008, respectively. The greatest advantage is the long read length (up to
10,000 bp) and sequencing on a single-molecule level in a short time. These long reads
enable an improved identification of bacterial taxa, as shown in several recent studies
(21–27). Nevertheless, significant drawbacks include the relatively high error rate (up
to 15% per sequence) (28, 29), limited applicability in high-throughput studies, higher
general costs, and even less standardization of protocols and analysis pipelines.
However, despite the widespread use of 16S rRNA gene sequencing, there is a need to
better understand the differences between the targeted region and the data analysis
pipeline chosen in amplicon sequencing of the 16S rRNA genes.

For short-amplicon sequencing, a literature survey showed that the regions V1-V2/
V3 (30, 31), V3-V4/V5 (32–34), and V4 (35, 36) are most commonly used. However, the
taxonomic classification differs considerably when targeting different variable regions
(37), affecting attempts to perform cross-study comparison and leading to further
biases in compositional analysis, where short-amplicon primers are not as universal as
desired (11, 38). Since the taxonomic resolution seems to differ for some phyla for dif-
ferent variable regions (39), closely related bacterial species and genera might be indis-
tinguishable (40). Moreover, the choice of bioinformatic processing pipelines and anal-
ysis tools is known to influence the results (41–44). Different 16S rRNA gene-specific
taxonomic classification methods, such as Mothur (45), Qiime (46), Qiime2 (47), DADA2
(48), and others, were developed. During data processing, sequences are clustered into
operational taxonomic units (OTUs) at a threshold of 97% sequence similarity. Sequence
representatives, i.e., sequences with the least mismatches to other sequences in a cluster,
are used for taxonomic assignment. Amplicon sequence variants (ASVs) or zero-radius
OTUs (zOTUs) have been suggested as alternatives to OTUs (48, 49), as they correct for
sequencing errors by different denoising approaches. In contrast to OTUs, these clusters
are supposed to contain reads originating only from the same bacterial species, enabling a
cross-study comparison (49, 50). In any case, after clustering, sequences are classified for

Abellan-Schneyder et al.

January/February 2021 Volume 6 Issue 1 e01202-20 msphere.asm.org 2

https://msphere.asm.org


taxonomic assignment using databases of known 16S rRNA gene sequences, e.g.,
GreenGenes (GG) (51), the Ribosomal Database Project (RDP) (52), Silva (53), the genomic-
based 16S rRNA Database (GRD) (54), or The All-Species Living Tree (LTP) (55). Not only dif-
ferent pipelines and reference databases but also settings of a given pipeline influence the
results and are an often-overlooked bias in microbiome studies (42, 56–58). Nevertheless,
some biases occurring in 16S rRNA gene amplicon sequencing have already been
addressed in the past. Well-studied biasing factors, for instance, include sampling and stor-
age procedures (59–63), DNA extraction methods (64–68), choice of variable region and
primers (12, 36, 69–72), library preparation and sequencing strategies (73–76), and
sequence data processing, including denoising, taxonomic classification, and the use of
distinct bioinformatic tools (42, 56–58). Further, the use of negative controls and mock
communities as internal standards to detect contamination or aberrancies in the sequenc-
ing results was proposed (77–79).

In this study, we joined several of these separate issues to raise awareness that the
combination of primer sequence choice, clustering methods, reference database, and
analysis parameters must be considered thoroughly to avoid increased bias. Thus, we
created a large benchmark data set of 16S rRNA gene amplicon sequences, targeting
different V-regions of the 16S rRNA gene, and systematically tested different software
tools with different sets of parameters for the analysis. We sequenced three mock com-
munities of increasing complexity with known composition, along with complex
human fecal samples for comparison.

RESULTS

We systematically assessed the global influence of multiple parameters in mock com-
munities of known composition and in human samples (Fig. 1). First, the choice of primers
targeting different variable regions of the 16S rRNA gene was evaluated. We show that
primer choice influences the taxonomic composition, visible in a multidimensional scaling
(MDS) plot of samples originating from the same donor (Fig. 2). Second, we investigated
how, and in what magnitude, the use of different clustering approaches and taxonomy
assignment methods influences the results for the classification of bacterial taxonomies.

Primer choice influences the estimated microbial composition. A set of different
16S rRNA gene sequencing primer pairs covering one, two, or three of the variable
regions V1 to V9 is commonly used for the analysis of microbial compositions.
Depending on the input material (e.g., human gut samples, water analysis, sludge, food
research, etc.), different primer pairs are used. In this study, we investigated seven differ-
ent primer pairs, 27F-338R (V1-V2), 27F-534R (V1-V3), 341F-785R (V3-V4), 515F-806R (V4),
515F-944R (V4-V5), 939F-1378R (V6-V8), and 1115F-1492R (V7-V9), for the analysis of
human gut samples and mock communities (Fig. 1 and Table 1). The use of different
primer pairs led to primer-specific and not mainly donor-specific clustering of human
stool samples (Fig. 2). These differences varied according to the analyzed taxonomic
level. Differences were found to be less pronounced at higher taxonomic levels, e.g.,
phylum level compared to genus level (Fig. 2A and C). When analyzing samples from the
same human donor but sequenced using different primer pairs, some taxa are unique
for certain primer pairs. For instance, when analyzing human sample 1 (Fig. 3),
Verrucomicrobia was detected only when using 341F-785R (V3-V4), 515F-806R (V4), 939F-
1378R (V6-V8), and 1115F-1492R (V7-V9) primers and not 27F-338R (V1-V2), 27F-534R
(V1-V3), or 515F-944R (V4-V5). Comparisons of samples derived from the same human
donor but sequenced using different primer pairs become even more difficult at the ge-
nus level (see Fig. S2 in the supplemental material). This was mainly due to differences in
the prevalence of genera when using different V-regions. A large number of reads were
not classified down to genus level in either one or several V-regions and were thus con-
sidered “unknown.” Importantly, the 515F-944R (V4-V5) primer pair seemed to produce
results with only a few overlaps with other primer pairs (Fig. 2) and displayed a low
abundance of Bacteroidetes (Fig. 3; Fig. S2). We analyzed whether this was due to a much
lower theoretical coverage of known bacterial species. Therefore, all primers were
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evaluated in silico for their theoretical coverage on all bacterial genera using the Silva
database. While the theoretical coverage for 515F-944R (V4-V5) primers was lower than
for the primer pairs 27F-338R (V1-V2), 27F-534R (V1-V3), 341F-785R (V3-V4), and 515F-
806R (V4), we found the theoretical coverage for primer pairs 939F-1378R (V6-V8) and
1115F-1492R (V7-V9) to be even lower (Table S2). Thus, we believe that the low coverage
of Bacteroidetes is the main reason for primer pair 515F-944R (V4-V5) to form an outlier.

Clustering approaches have minor influence on taxonomic profiles. In addition
to the 97%-identity OTU approach, ASV clustering gained a lot of attention in the latest
studies (43). Due to its improved resolution and thus better comparability of results
between different studies, it is nowadays a popular and often favored method. In this
study, we tested whether different clustering approaches have an influence on the
assigned taxonomic profiles for the ZIEL-I mock community. Thus, we compared ASVs,
zOTUs, and OTUs. Overall, the clustering methodology seemed to have only a minor
effect on the assigned taxonomic composition compared to the effect of primer choice
(Fig. 4A). Again, the 515F-944R (V4-V5) primer pair showed profiles distinct from those
found for all other primer pairs used, no matter which clustering was used. Differences
observed for each clustering approach were mainly due to identification problems at
the genus level. When using the ASV approach for clustering the data, Bacillus could
not be classified down to genus level. In contrast, this was possible when using zOTU
and OTU approaches. Similarly, Enterococcus was not assigned correctly by the 27F-
534R (V1-V3) primer pair using the ASV approach. Overall, we found that ASVs

FIG 1 Overview of the analysis strategies used in this study. DNAs from different sample types with increasing complexity (i.e., 3
mock communities and 33 human stool samples) were extracted. Amplicons were generated using different primer pairs
targeting different V-regions and sequenced on an Illumina MiSeq. Afterwards, the impacts of different clustering approaches and
reference databases on the microbial profiles were investigated.
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performed best for most of the other genera, as differences between theoretical values
and expected amounts of the distinct taxa were the smallest here (Table S3). The addi-
tional analysis of a human sample subset resulted in results comparable to those for
the ZIEL-I mock community (example of one representative sample is shown in
Fig. 4B). Differences in taxonomic profiles are more dependent on primer pairs used
than on clustering approach. Smaller variations occurred mostly due to problems
assigning genera; e.g., identification of members of the Lachnospiraceae family on the
genus level is not possible for zOTUs when using primer pairs 515F-944R (V4-V5) and

FIG 2 NMDS plots for the microbiome composition of human samples. Sample similarity is shown at phylum level (A and B) and at genus level (C and D).
Different primer pairs are indicated to the right for all panels. Top panels (A and C) include processing the V4-V5 region, while for the bottom panels (B
and D) this region has been omitted since results using 515F-944R primers (blue squares in panels A and C) fall separately from all other clusters. Labeling
of the samples in the bottom panels (B and D) is based on donor number.
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1115F-1492R (V7-V9). Still, neither OTU nor zOTU clustering caused a larger bias, and
thus, the influence of clustering is limited.

Sample taxonomies are influenced by reference databases. Ideally, the 16S rRNA
gene sequences should reflect the organism the sequence came from. However, this
depends not only on the primer pairs used or how sequence data were extracted from
the raw data but also on the quality of the reference database and thus the taxonomic
classification. We systematically tested five different databases commonly used: GG,
RDP, Silva, GRD, and LTP.

When analyzing the Zymo mock community, which includes only eight different bac-
teria, we observed just a few minor differences in the assigned taxonomy for different V-
regions used. Further, differences were relatively minor using different reference data-
bases in the analysis (Fig. 5A). Using RDP for primer pair 515F-806R (V4), Bacillus could
not be classified at the genus level but was at least assigned to Bacillales at the family
level. The classification of Escherichia/Shigella was most accurate when using Silva or
RDP as a reference database; thus, it displayed the lowest deviation from the ideal com-
position of the mock community. GG could not identify Escherichia/Shigella and Listeria
at the genus level and showed poor results. When using the Zymo mock community, GG
might be dismissed as an inferior database, but all other parameters seemed to have no
major impact. However, as a mock community of only eight bacterial species provides
only limited insights, we used two further, more complex mock communities.

The ZIEL-I mock community consists of 13 species in 13 genera (Fig. 5B) and uses bac-
teria, which would be expected in the gut. Analyzing this, GG performed worst again. No
genus-level classification for Acetatifactor, Bacillus, Clostridium, and Pseudomonas was pos-
sible using GG as a reference. GRD classified neither Bacillus nor Pseudomonas down to ge-
nus level. The other databases worked reasonably well but with some differences between
V-regions. As before, 515F-944R (V4-V5) data performed worst. Only 4 to 8 taxa were classi-
fied at genus level, whereas between 9 and 13 taxa (Table 2) were identified when analyz-
ing the data generated by using the primer pair 341F-785R (V3-V4). Actinomyces, Alistipes,
Bacteroides, Cellulosimicrobium, Parabacteroides, and Flavonifractor were not detected with
the primer pair 515F-944R (V4-V5) at the genus level irrespective of the reference database
used.

The ZIEL-II mock community increased the complexity of the comparison by includ-
ing 19 bacteria in 18 genera. Furthermore, we purposely included species which
showed difficulties in past experiments (data not shown). Again, the 515F-944R (V4-V5)
primer pair showed inadequate performance irrespective of the database. Using the
Silva database, 14 to 18 taxa were classified at genus level for primer pair 341F-785R
(V3-V4), whereas only 7 to 9 taxa were found for data corresponding to primer pair
515F-944R (V4-V5) at genus level (Table 2). Akkermansia could not be identified using
the 27F-338R (V1-V2) primers (Fig. 5C). Microbacterium was underrepresented when
using the 341F-785R (V3-V4) primers. Enterobacter and Ruminococcus were best classi-
fied by Silva. Generally, most accurate taxonomic classifications were possible when
using Silva or RDP as the reference database. Silva even had the smallest amount of
unknown genus-level identifications, followed by RDP, LTP, GRD, and GG.

TABLE 1 V-region-specific forward and reverse primers and annealing temperature for 1st step PCR

V-region
Forward
primer

Reverse
primer Forward sequence (59–39) Reverse sequence (59–39) Specificity

Annealing
temp (°C) Reference

V1-V2 27F 338R AGA GTT TGA TYM TGG CTC AG GCT GCC TCC CGT AGG AGT Universala 57 Salter et al. (115)
V1-V3 27F 534R AGA GTT TGA TYM TGG CTC AG ATT ACC GCG GCT GCT GG Universal 57 Walker et al. (84)
V3-V4 341F 785R CCT ACG GGN GGCWGC AG GAC TAC HVG GGT ATC TAA TCC Universal 55 Klindworth et al. (70)
V4 515F 806R GTG CCA GCM GCC GCG GTA A GGA CTA CHV GGG TWT CTA AT Universal 53 Caporaso et al. (116)
V4-V5 515F 944R GTG CCA GCM GCC GCG GTA A GAA TTA AAC CAC ATG CTC Bacterial 53 Fuks et al. (117)
V6-V8 939F 1378R GAA TTG ACG GGG GCC CGC ACA AG CGG TGT GTA CAA GGC CCG GGA ACG Bacterial 58 Lebuhn et al. (118)
V7-V9 1115F 1492R CAA CGA GCG CAA CCC T TAC GGY TAC CTT GTT ACG ACT T Bacterial 51 Turner et al. (119)
aUniversal, binds to archaea and bacteria.
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Specific pipeline settings have minor influences on taxonomic classification. As
clustering methodologies showed a minor influence and the use of different reference data-
bases a more severe impact on taxonomical profiles, we also assessed the potential influ-
ence of specific pipeline parameters. As ASVs performed slightly better than zOTUs and
OTUs, we focused our comparison on ASVs. Processing steps include removal of primers
and adapters, trimming of low-quality reads, chimera removal, and merging of paired-end
reads. The removal of all primer and adapter sequences is required for ASV production.
Incorrect removal or insufficient trimming leads to loss of sequences in the merging and

FIG 3 Presence-and-absence map of human samples on phylum level for different V-regions. Gray represents present taxa, and white represents absent
taxa. Primers and their V-region spanning are given in Table 1.
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FIG 4 Comparison of the influence of the clustering method on taxonomic designation for the ZIEL-I mock community (A) and an
example of a representative human sample T1 (B). The genus-level composition is shown according to ASVs, zOTUs, and OTUs as
indicated. “Other” represents taxa not matching the composition of the mock community, while “unassigned” represents reads that
could not be assigned to any taxonomic classification (RDP was used as a reference database). Primers and their V-region spanning
are given in Table 1.
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FIG 5 Comparison of mock communities sequenced over different V-regions, processed using different databases as references (GG,
GreenGenes; RDP, Ribosomal Database Project; GRD, the genomic-based 16S rRNA database; LTP, The All-Species Living Tree Project) at
genus level. Primers and their V-region spanning are given in Table 1.
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TABLE 2 Number of ASVs and number of assigned taxaa

aAssigned taxa are at the genus level; brackets indicate that taxa are unknown at the genus level. The Zymo,
ZIEL-I, and ZIEL-II mock communities contain 8, 13, and 19 bacterial species, respectively (for ZIEL-II, 18 at genus
level, when Escherichia/Shigella fall into one cluster). Shading in green indicates good identification (the darker
the better), while yellow and darker shading indicates inferior outcomes.
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chimera removal steps. Ambiguous nucleotides would, for example, cause a problem, as
default merging settings require a minimum overlap length of 20bp and identical sequen-
ces in forward and reverse reads. Still, we expected the truncation step to have the largest
impact on the results. In general, truncation is important to reduce the influence of low-
quality bases at the end of the sequence reads. The truncated length for forward and
reverse reads can be decided based on two factors: quality scores and amplicon length.
However, there is a trade-off between read quality and read length for efficient merging. In
this study, we performed the truncation step with different combinations of truncated
length for forward and reverse reads for the ZIEL-I mock community for the V4 region
(primer pair 515F-806R). Different ranges of forward (250 to 280bp) and reverse (180 to
250bp) read lengths were selected based on the quality (q) score ($20) and amplicon
length. We found that changes in the forward and reverse truncated lengths directly influ-
ence the percentages of sequence counts retained after that step (Fig. 6A). For instance,
when the forward read length is set to 250bp and the reverse read length to be 180bp,
90% of the input reads were retained. The percentage of retained reads gradually decreased
from 90% to 68% when increasing the reverse read length. The same trend was observed
for forward 260-bp and reverse truncated length combinations (180 to 250bp). However,
using a forward read length of 270bp or 280bp combined with a reverse read length
between 180 and 250bp resulted in a lower percentage of retained reads, ranging from
85% to 65%. The lower number and, thus, reduced percentage of retained reads are mostly
due to a decreased number of reads passing the filter. Subsequently, only this decreased
number of reads was processed during denoising and merging steps (see Table S3).

The association between the percentage of reads retained and the number of ASVs
obtained after those processing steps was also evaluated. The slight differences in the
retained percentage of reads for different truncated length combinations did not drastically
affect the number of features obtained. The total number of ASVs varied from 10 to 20 for
different combinations of truncated lengths for the ZIEL-I mock community. Using trun-
cated lengths of 250bp and 180bp for forward and reverse reads, respectively, resulted in
20 ASVs, while other length combinations obtained only 10 to 15 ASVs (Fig. 6B).

To check whether the observed differences in detected ASVs (e.g., 10 versus 20) arose
from contaminated reads not corresponding to bacteria included in the ZIEL-I mock com-
munity, we performed a local BLAST search. We checked the reads produced by different
forward and reverse read combinations against the reference sequence and used a cutoff
of$97% identity,$90% coverage, and E value of#0.00001. BLAST results of each forward
and reverse read combination showed that 91 to 100% of the ASVs were mapped against
the reference sequence of the mock community. The highest number of mismatches was
found to be 1 (Fig. 6C). Only a very few nonhits, which did not reach the above-mentioned
BLAST cutoffs, were obtained. Nevertheless, truncation for each amplicon length should
be tested since low-quality bases impair read clustering.

Mock communities will, irrespective of the number of species added, never fully
reflect complex microbial communities. Thus, we analyzed whether truncation showed
an impact on a complex microbial community similar to that for the mock community
used before. To this end, we used the previously analyzed 33 human stool samples as
the test set. We found that the percentage of reads retained after truncation showed
lower variations than for the mock community. The largest number of reads retained
was identified for setting 250bp and 180 bp for forward and reverse reads, respectively
(Fig. 6D). Interestingly, when using 250bp for the forward read, the percentage of
retained reads decreased from 89% to 67% when increasing the reverse read length
from 180 to 250 bp. Thus, insufficient removal of low-quality read sections (i.e., wrong
bases) inhibits merging. The number of ASVs varied from 1,219 (250 bp forward/250 bp
reverse) to 2,363 (for 270 bp/180 bp) for different combinations of truncated lengths
(Fig. 6E), which led us to investigate whether different numbers of ASVs affect taxo-
nomic assignments at genus level. Toward this end, we analyzed the number of gener-
ated ASVs for 280-bp forward reads in combination with different reverse read lengths.
The number of ASVs varied from 2,057 (for 280 bp/250 bp) to 2,231 (for 280 bp/180 bp).
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FIG 6 (A and B) The effects of different lengths of forward and reverse reads after truncation on the percentage of sequences retained after denoising (A)
and number of features obtained (B) for the ZIEL-I mock community. The numbers of mismatches obtained after local BLAST search against reference sets
are shown; these were used in order to test the accuracy of the ASV predictions (C). (D and E) Analysis of human data set on retained reads after
denoising and truncation (D) and number of features obtained (E) for each read-length combination.
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The number of different genera (including unknown and unclassified entries) varied
from 131 (for 280 bp/250 bp) to 143 (for 280 bp/190 and 200 bp).

Selection of primer, pipeline, parameters, and complexity of the ecosystem
influences taxonomic classification. Using three different mock communities, we
were able to show differences in taxonomic compositions that were due to differences
in used primer pairs, reference databases, clustering methods, or specific settings. We
determined a set of bacterial taxa which are biased due to primer choice as well as the
reference database (Table 3). Of note, we observed that there is a strong association
between the correct assignment of taxa and the complexity of the mock community.
For example, Staphylococcus was included in all three mock communities. This species
was well characterized when using the Zymo mock community but poorly represented
when using the more complex mock communities ZIEL-I and ZIEL-II (Table S3).
Moreover, we evaluated the influence of specific primers and their comparability in a
large population-based cohort (n=1,976 subjects). Amplicon sequencing was per-
formed targeting the V1-V2 and the V3-V4 regions of the 16S rRNA gene (1). For the
V3-V4 region, the same primer set as in this work was used. However, for V1-V2, the
same primer region was used but the forward primer (27F) did not include the degen-
erated bases Y and M (80). This led, for example, to a complete loss of identification of
Bifidobacterium but to an identification of Akkermansia. These findings strengthen our
hypothesis that methodological settings influence the outcome and, thus, the results
that are generated out of 16S rRNA gene sequencing data. We would like to highlight
the need for transparency to increase reproducibility and comparability.

TABLE 3 Bacterial taxa at genus level influenced by primer choice and selected reference
databasea

aRDP (left column for each V-region) and Silva (right column for each V-region) were used as reference
databases.1,,5% difference from reference (shaded green); *, 5 to 25% difference from the reference
(shaded white),2,.25% difference from the reference (shaded light brown);�, not detected at genus level
(shaded dark brown). In bold are bacterial genera present in more than one mock community; therefore, mean
values were calculated for these species to estimate their performance.
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DISCUSSION

For short-amplicon 16S rRNA gene sequencing, primers spanning more than one V-
region are commonly used, which enhances precision in identifying bacteria compared to
a single region. Some of the most frequently used primer pairs enclose V1-V3, V3-V4, and
V3-V5, which were used in large population-based cohorts, e.g., the Human Microbiome
Project and others (1, 33, 34). Nevertheless, each different primer pair or V-region used will
cause bias in the data. In addition, sampling and sample storage, sample processing
(including DNA extraction and amplicon generation), sequencing analysis, and data proc-
essing introduce further bias. In the last 10 years, many of these factors were studied for a
variety of ecosystems, e.g., the human gut (31, 40, 59, 68, 74, 81–84), oral and skin micro-
biomes (64, 85, 86), food-related ecosystems (87, 88), and environmental microbiomes
such as water, marine environments, and sludge (16, 69, 72, 89–91). Nevertheless, the
combination of different bias-causing factors was rarely studied. In this study, we analyzed
the effects of choice of primer, reference databases, clustering method, and specific pipe-
line settings in combination on human stool samples and mock communities with increas-
ing complexity using recent approaches. We wanted to highlight the contribution of each
these factors to the precision of taxonomic assignment, providing the scientific commu-
nity with up-to-date guidelines for experimental design and data analysis. Anticipating
conclusions, each experimental setting (e.g., cohort and environment) needs to be tested
up front for best performance using different experimental settings and strategies.

First, the effect of different primer pairs on the corresponding microbial profile was
evaluated. Irrespective of the reference database, the primer pair 341F-785R (V3-V4)
slightly outperformed the other combinations and is, therefore, a justified choice for
human gut samples. This is also in accordance with Thijs et al. (71), who suggested the
primer pair 341F-785R to be a good match for soil and plant-associated bacterial micro-
biome studies, and Rausch et al. (92), who recommended the use of the V3-V4 region
over V1-V2. The sequences produced by using the primer pair 515F-944R (V4-V5) per-
formed well when analyzing the microbiota profile of the Zymo mock community but
showed poor performance on the more complex ZIEL-I and ZIEL-II mock communities,
suggesting that the primer combination may not be suitable for complex microbial eco-
systems at all. This highlights also the importance of including mock communities in rou-
tinely performed 16S rRNA gene analysis, as a theoretical sequence analysis by Yang et
al. (14) suggested the V4-V5 region to be a good match based on its robustness in repre-
senting the full-length 16S rRNA sequences and, therefore, theoretically seemed to be a
good primer pair. However, it did not perform well when real samples were used.

Obviously, mock communities do not fully reflect the complexity of a microbial com-
munity as it is seen in, e.g., human stool samples. Therefore, we included 33 human fecal
samples in our analysis as well. Here, phylum-level classification is robust across the use
of different primer pairs targeting different V-regions for Bacteroidetes (except 515F-944R),
Proteobacteria, and Firmicutes. In contrast, the detection of Actinobacteria, Tenericutes,
Lentisphaerae, and Verrucomicrobia varied across the use of different primer pairs, high-
lighting that the choice of primer should be considered carefully. Intraindividual compari-
son at genus level showed a high degree of variability across the different targeted
regions. This was due to many unknown or unclassified taxa at genus level as well as a
generally large number of different taxa. This highlights the need for ecosystem-specific
reference databases (93, 94) and new bioinformatic tools that can integrate data across V-
regions by taking into account region-specific bias. Here, we notice a need for large-scale
studies covering multiple V-regions, which would allow for training taxonomic classifiers
that can dynamically account for any region-specific bias. This would possibly be obsolete
by sequencing the full-length 16S rRNA gene, although sequencing would still be influ-
enced by the primer choice, i.e., 27F and 1492R, for nearly full-length sequencing. Full-
length 16S rRNA gene sequencing is possible by using third-generation sequencing strat-
egies (24, 26, 27) or by the generation of short reads that are later de novo assembled to
a synthetic full-length sequence (95). Those methods seemingly offer taxonomic identifi-
cation down to species or even strain level (27). Both approaches are not yet well
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established for high-throughput sequencing and are not cost-efficient, reproducible, or
easy in handling and thus need further investigation to be competitive. Further, long-
read sequencing still suffers from comparably high error rates (29, 96).

It is known that the use of different bioinformatic pipelines can have an impact on
the determined microbiota composition (40, 43, 65, 97). However, the influence of refer-
ence databases for taxonomic prediction was, to our knowledge, not intensively studied.
In this study, we evaluated the performance of five different databases using three differ-
ent mock communities. We tested the ability of each database to identify the correct tax-
onomy and assessed how well the known diversity of the mock samples could be cap-
tured by each database. Our finding illustrated that the Silva and RDP databases were
the most accurate 16S rRNA gene databases, showing similar performances consistently
superior to those of GRD, LTP, and GG in terms of true positives at the genus level. GG
failed to classify Escherichia/Shigella, Listeria, Acetatifactor, Bacillus, Clostridium, and
Pseudomonas, in line with the results of Park and Won (98), who found GG to be subpar
compared to Silva. GG was last updated in 2013, and any usage is highly questionable.

In addition to the above, we found that quality assessment for each particular data-
base could be conducted only when using a variety of V-regions and a sufficient com-
plex mock community. Low-complexity mock communities using common bacteria
did not reveal database issues. Thus, low-complexity mock communities might be
used as positive controls in existing pipelines for general quality monitoring, but they
are not recommended for detecting fundamental issues when setting up a new study,

FIG 7 Recommended validation strategy before starting new microbiome studies, especially for uncommon environments. Even
existing commonly used parameter combinations might be reevaluated. Thus, complex mock communities should be used and
sequenced, testing a variety of different primer pairs for best performance within the environment of interest. Despite their being
of minor influence, we still recommend using clustering approaches that include denoising steps (e.g., DADA2 generating ASVs)
and recommend the seemingly well-curated and up-to-date databases RDP and Silva as references.
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pipeline, or laboratory. Further, concerning other body sites (or environments), specific
mock communities of sufficient complexity should be used. Certainly, the addition of
ubiquitous bacteria, like the skin commensal Cutibacterium acnes in humans and other
such bacteria, should be considered.

A third factor influencing taxonomic assignment is constituted by the denoising and
OTU clustering steps of data analysis. To investigate this aspect, we compared classical
OTUs generated by$97% clustering Qiime1, ASVs generated by DADA2 denoising (48),
and zOTUs generated by the USEARCH denoising algorithm (49, 99). The numbers of fea-
tures identified by these clustering approaches were nearly identical across all three
approaches for the tested mock community. ASV clustering performed well in the human
data sets despite the increased complexity, supporting the results of previous studies (42,
100), which suggests that ASVs are the current best choice, as they showed the highest ac-
cordance with the theoretical composition of the tested mock community. However, zOTUs
performed very similarly and are more robust and user-friendly concerning the input.

Specific settings, e.g., the truncation length, influence the number of reads retained
for further analysis steps, as we have demonstrated. Selecting a suitable truncation

TABLE 5 Composition of the ZIEL-II mock communitya

Species
Amt of gDNA
used (ng)

Genome
size (bp)

16S rRNA gene
copy no.

Theoretical
abundance (%)

Prevotella copri 12 3,784,859 4 4.2
Collinsella aerofaciens 12 2,463,631 5 8.0
Atopobium parvulum 12 1,543,805 1 2.6
Eggerthella lenta 12 3,500,501 3 3.4
Bifidobacterium longum 12 2,402,802 3 4.9
Clostridium ramosum 12 3,703,302 9 9.6
Staphylococcus epidermidis 12 2,520,741 5 7.8
Klebsiella pneumoniae 12 5,589,189 8 5.6
Escherichia coli LF82 12 4,881,487 7 5.6
Shigella flexneri 12 4,551,801 7 6.1
Oscillibacter valericigenes 12 4,470,622 3 2.6
Akkermansia muciniphila 12 2,760,363 3 4.3
Ruminococcus gnavus 12 3,415,781 5 5.8
Bacteroides vulgatus 12 5,063,322 7 5.4
Pseudomonas aeruginosa 12 6,612,169 4 2.4
Citrobacter freundii 12 5,300,882 8 5.9
Enterobacter cloacae 12 5,030,416 8 6.3
Listeria welshimeri 12 2,819,373 6 8.4
Microbacterium flavum 12 6,818,507 2 1.2
aGenome sizes were determined according to entries in EzBioCloud (101), and 16S rRNA gene copy number was
determined according to entries in rrnDB (103).

TABLE 4 Composition of the ZIEL-I mock communitya

Species
Amt of gDNA
used (ng)

Genome
size (bp)

16S rRNA
gene copy no.

Theoretical
abundance (%)

Actinomyces bowdenii 12 3,103,770 3 6.3
Enterorhabdus mucosicola 12 3,009,822 2 4.3
Cellulosimicrobium cellulans 12 3,850,000 3 5.1
Bacteroides sartorii 12 5,377,291 7 8.5
Alistipes sp. 12 3,734,239 2 3.5
Bacillus subtilis 12 4,215,606 9 14.0
Parabacteroides goldsteinii 12 6,751,539 7 6.8
Flavonifractor plautii 12 4,306,691 2 3.0
Clostridium ramosum 12 3,235,195 7 14.2
Enterococcus hirae 12 2,962,227 6 13.3
Acetatifactor muris 12 6,013,646 5 5.4
Staphylococcus warneri 12 2,860,455 5 11.4
Pseudomonas sp. 12 6,342,352 4 4.1
aGenome sizes were determined according to entries in EzBioCloud (101), and 16S rRNA gene copy number was
determined according to entries in rrnDB (103).
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length is of importance, as too-short reads have short or missing overlaps that lead to
problems during merging. Conversely, too-long reads can be difficult to merge, as they
show lower sequence quality. The varying number of detected ASVs for different trun-
cation lengths is linked to the trade-off between incorporating reads of lower quality
and the sensitivity for detecting low-abundance genera. By systematically reducing the
reverse read length, the number of rarely observed sequences increased, as sequenc-
ing errors decrease. This highlights an important role for this parameter in the reprodu-
cibility of analysis results. To assess this potential bias, we suggest using sufficiently
complex mock communities of known composition to determine suitable truncation
lengths. Further, it is important to report this parameter (as well as all others) with
respect to reproducibility of analysis results.

In summary, our results across 3 mock communities and 33 human samples suggest
using primers for the V3-V4 region, which show good overall performance for human
gut samples. As a reference database, we recommend using either Silva or RDP. Even
though only minor differences were observed between clustering methods, we cur-
rently recommend using ASVs or zOTUs, with negligible difference between the two.
Regarding pipeline settings, we suggest that truncated length combinations should be
tested for the primer pairs used in each study. For example, we would suggest for V4
reads truncated to 250 bp and 180 bp for forward and reverse, respectively. However,
the last settings depend on the amplicon lengths of the V-regions. To guarantee com-
parable and reliable results, we recommend creating specific (i.e., reflecting the tar-
geted microbial environment) and sufficiently complex mock community to test
whether the study design and the analysis pipelines will be suitable for the bacterial
community of interest or type of sample desired (Fig. 7).

MATERIALS ANDMETHODS
Preparation of human gut samples. Stool samples were obtained from healthy volunteers (33 sub-

jects) and collected in stool sample tubes (Sarstedt AG & Co.). Tubes had been prefilled under a clean
bench with 8ml of stabilizing buffer (1,400ml of Milli-Q water supplemented with 60ml of 0.5 M EDTA,
37.5ml of 1 M sodium citrate, and 1.05 kg of ammonium sulfate [pH 5.2] and sterile filtered using a 0.2-
mm filter). A stainless steel mixing bead of 5.5mm (MP Biomedicals) was added to facilitate homogeniza-
tion of the crude stool in the stabilizing fluid. The stool was directly resuspended by shaking and vortex-
ing. All samples were aliquoted (in 600-ml portions) and stored at 280°C until DNA extraction.

Preparation of mock communities. A mock community is a defined in vitro-created mixture of micro-
bial cells. For validation, three different mock communities were used, (i) the ZymoBIOMICS microbial com-
munity DNA standard (Zymo Research; catalog no. D6306) with 8 bacterial species, (ii) a more complex in-
house mock community (ZIEL-I) including 13 different bacterial species (Table 4), and (iii) another in-house
mock community (ZIEL-II) with even more increased complexity including 19 different bacterial species
(Table 5). For the in-house mock communities, common gut-related bacterial species were used. The mock
community ZIEL-II included such species, which seemed to be influenced by targeted V-region in preliminary
results (data not shown). Bacteria were cultured as described in Table S1 and harvested after 2 to 3 days by
centrifugation. Pellets were resuspended in stabilizing buffer and stored at 280°C until further processing.
After genomic DNA (gDNA) extraction was performed for each strain separately (see below), strain identities
were verified by Sanger sequencing. Afterwards, mock communities were constructed by pooling 12ng of
bacterial gDNA per strain. The theoretical composition was calculated according to the formula described for
the Zymo mock community by Zymo Research: 16S rRNA gene copy number = total genomic DNA (g) �
unit conversion constant (bp/g)/genome size (bp)� 16S rRNA gene copy number per genome. Genome
sizes were determined by the 16S reference database EzBioCloud (101). If the genome size for the species
included was not available in the database, the closest relative (based on 16S rRNA gene identity) was used
for genome size estimation instead. In cases in which only the genus of the bacterium used in the mock
community is known, mean genome sizes including all species listed in the database of the genus were
used. The 16S rRNA gene copy number was determined from rrnDB (102, 103) as a reference database, also
using the closest relative as a surrogate or using mean values of 16S rRNA gene numbers if specific values
were not available. Overall, the three different mock communities were sequenced (see below) in duplicates
(ZIEL-I) or triplicates (Zymo and ZIEL-II). For further analyses (see below), we used the mean values of the tax-
onomic compositions of the replicates (all replicates are shown in Fig. S3 to S5).

Extraction of gDNA. gDNA was isolated with a modified protocol of Godon et al. (104) as described
previously (105). Briefly, either 600ml of pure bacterial culture or 600ml of frozen stool samples (i.e., bac-
teria in stabilizer fluid) was thawed on ice and vortexed. Samples were transferred into a 2-ml bead-beat-
ing tube (MP Biomedicals), and 250ml of 4 M guanidinium thiocyanate and 500ml of 5% sodium N-laur-
oylsarcosine were added. The mixture was incubated at 70°C for 60min with shaking (700 rpm). Next,
cells were disrupted by bead-beating using a FastPrep24 instrument (MP Biomedicals). Bead-beating
was conducted three times for 40 s at 6.5 m/s, with cooling with dry ice. Processed samples were stored
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on ice. Subsequently, 15mg of polyvinylpolypyrrolidone was added to each sample, with brief mixing.
Samples were centrifuged for 3min at 15,000� g and 4°C, and the supernatant was transferred into a
fresh 2-ml sample tube. To every sample, 5ml of RNase A (10mg/ml) was added and samples were incu-
bated for 20min at 37°C with moderate shaking (700 rpm). DNA was purified using gDNA columns
(Macherey-Nagel) following the manufacturer’s instructions. Finally, gDNA was eluted in 100ml of elu-
tion buffer provided in the kit. Concentrations and purity were checked using the NanoDrop system
(Thermo Scientific), and samples were stored at 4°C (up to 5 days) or at220°C thereafter.

Primer selection and in silico testing. Primers for commonly used V-regions were chosen after a lit-
erature survey. In silico tests of primer specificity were conducted using Silva TestPrime 1.0 (http://www
.arb-silva.de/search/testprime/) using standard settings with zero mismatches.

Library preparation of different variable regions of the 16S rRNA gene. For amplification of the
variable regions (Fig. S1) and addition of adapter binding sites for sequencing, a 1st-step PCR was per-
formed in a 50-ml total volume. Each reaction mixture contained 24 ng of gDNA, 1� Phusion HF buffer,
0.2mM deoxynucleoside triphosphates (dNTPs), 0.125 mM each forward and reverse primer, 7.5% di-
methyl sulfoxide (DMSO), and 0.25ml of Phusion HF II DNA polymerase (Thermo Fisher). PCR was per-
formed as follows: 98°C for 40 s, 15 cycles of 98°C for 20 s, the V-region specific annealing temperature
(Table 1) for 40 s, and 72°C for 40 s, and a final extension step at 72°C for 2min.

Barcodes enabling multiplexing were added in the 2nd-step PCR. For this, a 100-ml PCR mixture was pre-
pared using 10ml of the 1st-step PCR product, 1� Phusion HF buffer, 0.2mM dNTPs, 0.125mM each forward
and reverse barcode primer, 0.25% DMSO, and 0.5ml of Phusion HF II DNA polymerase. PCR conditions were
98°C for 40 s, 10 cycles of 98°C for 20 s, 55°C for 40 s, and 72°C for 40 s, and a final extension step at 72°C for
2min. Further details and work time estimations are found in the work of Reitmeier et al. (105).

Library quality check and sequencing. For validation and quality assurance, 8ml of the 2nd-step
PCR product was loaded onto a 1.5% agarose gel. The remaining 92ml of the 2nd-step PCR product was
purified with AMPure XP beads using a ratio of 1.8 times (i.e., addition of 180ml of beads to 100ml of
sample). Concentrations of the final PCR products were measured in triplicates using a Qubit (Thermo
Fisher). Each sample was adjusted to 0.5 nM, and all samples were pooled and sequenced in paired-end
modus for 2� 300bp (PE300) using a MiSeq system (Illumina, Inc.) following the manufacturer’s instruc-
tions. The final DNA concentration of the library was 12 pM, and 15% (vol/vol) PhiX was added.

Primer-specific feature classifiers. User-generated feature classifiers accounting for unique charac-
teristics introduced by sample preparation, sequencing primer, and read length perform generally better
than the naive classifiers trained on full-length sequences (106). In order to improve the taxonomic clas-
sification, five different databases were used to generate primer-specific feature classifiers, namely,
GreenGenes (GG) (51), the Ribosomal Database Project (RDP) (52), Silva (53), the genomic-based 16S
rRNA Database (GRD) (54), and The All-Species Living Tree (LTP) database (55). Feature classifiers were
built for each V-region or primer pair using the q2-feature-classifier (107), which is a naive Bayes taxo-
nomic classifier implemented in Qiime2-2019.10 (47).

OTU clustering using Qiime1.We consider Qiime-UCLUST (108) a popular example of an OTU-gen-
erating method as well as the recently proposed USEARCH-UNOISE3 (49, 99) (described below). Qiime-
UCLUST clusters sequence reads at$ 97% sequence identity. UCLUST clustering was performed in
Qiime1 as follows. Forward and reverse primer sequences and the low-quality reads (q# 20) of demulti-
plexed paired-end reads were removed by cutadapt 2.10 (109). The trimmed reads were joined by multi-
ple_join_paired_ends.py to create a single fasta file of all samples using multiple_split_libraries_fastq.py.
OTU abundance tables were generated using the UCLUST clustering method through the script
pick_de_novo_otus.py script in Qiime1. OTU mapping files along with representative sequences, alignment
of sequences, and taxonomic alignment files were generated during the de novo clustering steps. The RDP
database was used as a reference database for defining OTUs at$97% sequence similarity.

zOTU generation using UNOISE. USEARCH-UNOISE3 aims to reconstruct exact biological sequences
from the samples into zOTUs. Paired-end raw reads were merged using the fastq_mergepairs script of
USEARCH version 11 (108), and the primer sequences were removed using the fastx_truncate script.
Merging and primer removal steps were conducted before quality filtering, as primer removal reduces
the expected errors and merging before quality filtering improves the base call error estimates captured
in the overlapping regions as suggested by the author of USEARCH/UPARSE (110). Processed reads were
deduplicated and de novo clustered into zOTUs. RDP database (project release 11) was used for taxo-
nomic assignment of the representative zOTU sequences.

ASV generation using nf-core/ampliseq pipeline. The three mock communities and human data
sets were analyzed using the nfcore/ampliseq nextflow pipeline (111, 112). nfcore/ampliseq is a Qiime2-
based end-to-end solution for processing 16S rRNA gene amplicon sequencing data. The quality of raw
sequencing reads was assessed by FastQC (113). Primer sequences and bases with low-quality scores were
trimmed using cutadapt (109). The DADA2 (48) package wrapped inside the nf-core/ampliseq pipeline
was used for denoising and constructing ASVs. Based on the quality profile and amplicon length, trun-
cated lengths for forward (250 to 280bp) and reverse reads (180 to 260bp) were used in the DADA2
denoising steps to study the relationships between the truncated lengths and number of ASVs generated.

Data visualization using Rhea. Data visualization was performed with the R-based pipeline Rhea
(114), a collection of R-scripts for 16S rRNA gene sequencing data analysis. After normalization, alpha-di-
versity and beta-diversity were determined and visualized. Taxonomic classification was conducted
down to genus level.

Data visualization for human samples. To determine differences of the microbiota composition
by targeting different V-regions, a multivariate analysis was performed using the vegan R-package.
Therefore, a Bray-Curtis distance between samples was calculated based for relative abundance values
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on phylum and genus levels and grouped according to targeted V-region. First, two dimensions of the
nonmetric MDS (NMDS) plot were visualized by using ggplot2, and data points were labeled according
to targeted V-region.

Data availability. Raw sequencing data are available at the Sequence Read Archive under the acces-
sion number PRJNA674596.
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