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ABSTRACT

Bicistronic reporter assay systems have become a
mainstay of molecular biology. While the assays
themselves encompass a broad range of diverse
and unrelated experimental protocols, the numerical
data garnered from these experiments often have
similar statistical properties. In general, a primary
dataset measures the paired expression of two intern-
ally controlled reporter genes. The expression ratio of
these two genes is then normalized to an external
control reporter. The end result is a ‘ratio of ratios’
that is inherently sensitive to propagation of the
error contributed by each of the respective numerical
components. The statistical analysis of this data
therefore requires careful handling in order to control
for the propagation of error and its potentially mis-
leading effects. A careful survey of the literature
found no consistent method for the statistical analy-
sis of data generated from these important and infor-
mative assay systems. In this report, we present a
detailed statistical framework for the systematic
analysis of data obtained from bicistronic reporter
assay systems. Specifically, a dual luciferase reporter
assay was employed to measure the efficiency of four
programmed �1 frameshift signals. These frameshift
signals originate from the L-A virus, the SARS-
associated Coronavirus and computationally identi-
fied frameshift signals from two Saccharomyces
cerevisiae genes. Furthermore, these statistical meth-
ods were applied to prove that the effects of anisomy-
cin on programmed �1 frameshifting are statistically
significant. A set of Microsoft Excel spreadsheets,
which can be used as templates for data generated
by dual reporter assay systems, and an online
tutorial are available at our website (http://dinmanlab.
umd.edu/statistics). These spreadsheets could be
easily adapted to any bicistronic reporter assay
system.

INTRODUCTION

In the last decade, polycistronic reporter assays have generally
become a mainstay in molecular biology. In particular, various
bicistronic systems have been widely adopted as standard

experimental techniques in the fields of translation initiation
(1–3), elongation (4,5), recoding (6–9) and termination (10).
The ratiometric nature of the data produced from these experi-
ments requires careful statistical treatment that is often lacking
in the literature. The goal of this technical report is to propose a
standardized statistical analysis pipeline for polycistronic
reporter data and to provide researchers with a solid founda-
tion on which to build their analyses.

For the purposes of this report, we have applied rigorous
statistical methods to datasets originating from several sets of
dual luciferase assays (DLAs) designed to measure the
efficiency of various programmed �1 ribosomal frameshift
(�1 PRF) signals in Saccharomyces cerevisiae. A �1 PRF
signal is a cis-acting mRNA element that redirects translating
ribosomes into a new reading frame after encountering
a so-called ‘slippery site’ [for reviews see (11,12)]. The effi-
ciency of frameshifting depends on the PRF signal in question
(typically between 1 and 10%) and can be measured in vivo
using a dual luciferase reporter (DLR) assay system (7).

Briefly, the DLA simultaneously measures the luminescence
(e.g. expression) of both the Renilla and firefly luciferase
enzymes synthesized from a single bicistronic mRNA. In an
experimental frameshift reporter construct, the two genes are
separated by a functional �1 PRF signal and the downstream
firefly gene is placed into the �1 frame relative to the upstream
Renilla gene. The relative expression of firefly to Renilla is
normalized by a zero-frame control plasmid that lacks frame-
shift signal and has firefly in the zero frame. The resulting
ratiometric data from our DLA is inherently sensitive to the
propagation of error and therefore requires a careful statistical
workup. The data are similar to the ratiometric data produced
by other bicistronic assay systems despite the dissimilarity
between the actual protocols producing it. This allows the
methods presented in this report to be applied and extended
to any polycistronic system that produces ratiometric data.
Our analysis pipeline is designed to (i) systematically identify
and eliminate erroneous outliers, (ii) confirm that the data
are normally distributed, (iii) establish the minimum number
of replicates for each dataset, (iv) minimize the propagation of
error when calculating ratiometric statistics, and (v) provide
a solid statistical foundation for comparing datasets from
different experiments. We have supplemented this publication
with a set of Microsoft Excel spreadsheets that automate the
analysis and an online tutorial to help guide the reader through
the analysis pipeline (http://dinmanlab.umd.edu/statistics).
The robust, quantitative methods and online materials pre-
sented in this report represent an important new resource
for researchers who utilize bicistronic reporters.
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MATERIALS AND METHODS

Genetic methods and plasmid construction

Escherichia coli strain DH5a was used to amplify plasmids,
and E.coli transformations were performed using the high
efficiency method of Inoue et al. (13). YPAD and synthetic
complete medium (H-) were used as described previously (14).
Yeast strain JD932 (MATa ade2-1 trp1-1 ura3-1 leu2-3,112
his3-11,15 can1-100) (15) was used for in vivo measurement
of programmed �1 ribosomal frameshifting. Yeast cells were
transformed using the alkali cation method (16). Dual lucifer-
ase plasmids pJD375 (C1, no frameshift signal) and pJD376
(F1, L-A virus gag-pol frameshift signal) have been described
previously (7). Putative frameshift signals from S.cerevisiae
genes YOR026W/BUB3 (F2, plasmid pJD519) and YPL128C/
TBF1 (F3, plasmid pJD478) were constructed as follows:
(i) oligonucleotides from Integrated DNA Technology
(Coralville, IA) were annealed and gel purified, and (ii)
annealing the oligonucleotides 50-TCGACAAAAAATCAT-
CTTTCAGGGTGGATTGGAACGGCCCCAGTGATCCTG-
AGAACCCACAAAACTGGCCCG-30 to 50-GATCCGGGC-
CAGTTTTGTGGGTTCTCAGGATCACTGGGGCCGTT-
CCAATCCACCCTGAAAGATGATTTTTTG-30 (F2), and
50-CGACAAATTTATCTCAAGCATCCTTCATCAGCTGC-
ATCTGCTACTGAAGAGGG-30 to 50-GATCCTCTTCTG-
TAGCAGATGCAGCTGAAGAAGGATGCTGAGATAAA-
TTTG-30 (F3) left overhanging single-stranded DNA comple-
mentary to SalI and BamHI restriction sites. The annealed
oligonucleotides were ligated into p2mci (6). The frameshift
signal was sub-cloned as a SalI–EcoRI fragment into simil-
arly digested pJD375. The open reading frame (ORF) 1a-1b
frameshift signal from the SARS-associated Coronavirus
(SARS-CoV) was cloned; sense 50-GATCCTTTTTAAACG-
GGTTTGCGGTGTAAGTGCAGCCCGTCTTACACCGTG-
CGGCACAGGCACTAGTACTGATGTCGTCTACAGGGC-
TTTTGAGCT-30 and antisense 50-CAAAAGCCCTGTAGAC-
GACATCAGTACTAGTGCCTGTGCCGCACGGTGTAAGA-
CGGGCTGCACTTACACCGCAAACCCGTTTAAAAAG-30

oligonucleotides were annealed, gel purified and cloned
into BamHI and SacI restricted p2mc (6). This was further
sub-cloned into a pJD375-based plasmid where the reading
frame was corrected using site-directed mutagenesis to add
a cytosine downstream of the BamHI restriction site (F4).
A zero-frame control (C2) plasmid was made by inserting
two cytosine residues upstream of the BamHI restriction
site and cells were grown in the absence or presence of
20 mg/ml of anisomycin (Sigma–Aldrich, St. Louis, MO).
The annealed oligonucleotides were ligated into p2mci (6).
The SARS-CoV frameshift signal (F4) was sub-cloned as a
SalI–EcoRI fragment into similarly restricted pJD375. In vivo
DLAs for programmed �1 ribosomal frameshifting were per-
formed in yeast strain JD1158 as described previously (7).
Luminescence readings were obtained using a Turner Designs
TD20/20 luminometer (Sunnyvale, CA). Reactions were car-
ried out using the Dual-Luciferase1 Reporter Assay System
from Promega Corporation (Madison, WI).

Calculation of luminescence ratios

For each data point, the relative expression ratio of firefly
luminescence (FRLU) to Renilla luminescence (RRLU) is

given by:

xi =
FRLU

RRLU

1

where each xi is the ratio obtained from an individual lumino-
meter reading. For each of the frameshift reporters studied in
this report (C1, C2, F1, F2, F3 and F4), the values of x1�xn

comprise pooled datasets of size n (see Discussion). The
statistics of this report are based on sets of ratiometric
luminescence values (x1� xn) taken from multiple experiments
and cell lysates.

Identification and exclusion of outliers

For outlier exclusion, we first determine the boundaries of
each of the four quartiles within each DLA dataset: the
maximum (Qmax), the 75th percentile (Q75), the median (~xx),
the 25th percentile (Q25) and the minimum values (Qmin) for
each dataset of x1�xn (see Table 1). The fourth spread (fs) is
calculated by

fs = Q75 � Q25 2

The standard upper and lower outlier boundaries are then
calculated by

OU = ~xx + 1:5 · fsð Þ 3

OL = ~xx � 1:5 · fsð Þ 4

Data points that lie above or below the boundaries are con-
sidered outliers (e.g. Figure 1, solid data points) and are
excluded from further analysis (17).

Descriptive statistics

We use standardized statistical expressions for the calculation
of sample mean (�xx), sample median (~xx), sample variance
(s2

N�1), sample SD (sN�1) and the standard error of the sample
mean (se) from each dataset of size n (17):

�xx =
1

n

Xn

i¼1

xi 5

~xx =
x nþ1=2ð Þ, if n is odd

xn=2 + xn=2þ1

2
, if n is even

6

8<
:

s2
N�1 =

1

n � 1

Xn

i¼1

xi � �xxð Þ2
7

sN�1 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n � 1

Xn

i¼1

xi � �xxð Þ2

s
8

se =
sN�1ffiffiffi

n
p 9

Probability plots

Probability plots were constructed and the corresponding
normal probability plot correlation coefficients (PPCCs)
were determined for each set of DLA data (18,19) (e.g.
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Figure 1A–D, 2A and B, Table 1). Briefly, the ratiometric
values of firefly to Renilla luminescence (x1�xn, Equation 1)
are rank-ordered within each dataset and each ratio is assigned
a standard normal z-score (i.e. observed z-score, zObs) accord-
ing to the following expression:

ZObs =
�xx � xi

sN�1

10

In addition, the expected z-score (zExp) for each value of xi is
calculated from the inverse standard normal distribution func-
tion for a given percentile rank (i.e. probability) of xi. The
paired data (xi, zExp) is then plotted on a graph. Linear least
squares regression is used to plot a linear trend line fitted onto
the data (17). The trend line’s derived formula provides an
expected ratio value (yi) for each observed value (xi) for a
given value of zExp. The correlation between the observed and
expected values is given by the PPCC:

PPCC X, Yð Þ =
Pn

i¼1 xi � �xxð Þ yi � �yyð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 xi � �xxð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 yi � �yyð Þ2

q 11

Where X and Y are the paired sets of expected and observed
luciferase ratios, �xx and �yy are sample means, and a PPCC = 1.0
would indicate a perfect correlation between X and Y, i.e.
a perfect normally distributed dataset. Another method for
calculating the same PPCC value uses the correlation of paired
values of zObs and zExp directly without the need for construct-
ing a probability plot (http://dinmanlab.umd.edu/statistics).
The PPCC is compared with a lookup table of critical values

for a specified significance level (e.g. a = 0.05%) and sample
size (n) in order to accept or reject the hypothesis that the data
are normally distributed [see (19) and (http://dinmanlab.
umd.edu/statistics)]. The PPCC and critical values for rejec-
tion at the 95% confidence level for each dataset are reported
in Table 1.

Minimum sample size

For a given confidence level (e.g. a = 0.05) and predetermined
limit on the numerical error, we calculate the minimum uncor-
rected sample size (17):

~NN = 2za=2 ·
sN�1

E

	 
2
� �

12

where ~NN is the minimum uncorrected sample size, za/2 is the
standard normal coefficient for a given value of a/2 (e.g.
a/2 = 0.025, za/2 = 1.96), sN�1 is the sample SD and E is
the amount of acceptable error in estimating the mean (e.g.
10% of �xx). It was previously shown that the use of Equation 12
for minimum sample size estimation substantially underesti-
mates the number of trials needed for a given confidence
interval (20). However, once ~NN is calculated, the minimum
corrected sample size (N*) can be found by consulting a
lookup table [see (http://dinmanlab.umd.edu/statistics) and
(20)]. Each dataset must have no fewer than N* replicates
for further analysis to be well substantiated.

Table 1. Summary of the DLR assay datasets

Sample data No drug Anisomycin (20 mg/ml)
C1 F1 F2 F3 C2 F4 C2 I

QMAX 0.4847 0.0327 0.0028 0.0777 0.3465 0.0119 0.3461 0.0091
Q75 0.3778 0.0278 0.0025 0.0248 0.3312 0.0112 0.3328 0.0087
�xx 0.3201 0.0268 0.0023 0.0107 0.3097 0.0104 0.3293 0.0086
Q25 0.2853 0.0251 0.0021 0.0048 0.3073 0.0099 0.3235 0.0083
QMIN 0.2518 0.0231 0.0005 0.0035 0.2596 0.0076 0.3095 0.0078
fs 0.0924 0.0027 0.0004 0.0200 0.0239 0.0013 0.0093 0.0004
OU 0.4588 0.0309 0.0029 0.0407 0.3456 0.0123 0.3432 0.0091
OL 0.1815 0.0227 0.0017 �0.0193 0.2738 0.0085 0.3154 0.0080
Outliers? 3 3 3 6 3 1 3 4
�xx 0.3297 0.0263 0.0023 0.0129 0.3163 0.0106 0.3272 0.0086
s2

N�1 2.90 · 10�3 3.02 · 10�6 5.91 · 10�8 1.01 · 10�4 2.86 · 10�4 6.63 · 10�7 3.72 · 10�5 5.36 · 10�8

sN�1 5.39 · 10�2 1.74 · 10�3 2.43 · 10�4 1.00 · 10�2 1.69 · 10�2 8.14 · 10�4 6.10 · 10�3 2.31 · 10�4

se 5.88 · 10�3 2.75 · 10�4 4.68 · 10�5 1.41 · 10�3 4.37 · 10�3 1.97 · 10�4 1.57 · 10�3 6.19 · 10�5

~NN 42 7 18 939 5 10 1 2
N* 54 13 26 433 11 17 6 7
N 84 40 27 51 15 17 15 14
Sufficient
sampling?

Yes Yes Yes No Yes Yes Yes Yes

PPCC 0.9779 0.9896 0.9865 0.9191 0.9325 0.9920 0.9749 0.9733
Critical value 0.9771 0.9576 0.9413 0.9654 0.9080 0.9160 0.9080 0.9029
Normal? Yes Yes Yes No Yes Yes Yes Yes
�xxR � 0.0798 0.0070 n/c � 0.0335 � 0.0264
s2

R � 1.98 · 10�4 1.84 · 10�6 n/c � 9.83 · 10�6 � 7.42 · 10�7

sR � 1.41 · 10�2 1.36 · 10�3 n/c � 3.14 · 10�3 � 8.61 · 10�4

se(�xxRÞ � 1.65 · 10�3 1.89 · 10�4 n/c � 7.77 · 10�4 � 2.28 · 10�4

C1 and C2, zero-frame control reporters; F1–F4, frameshift reporters; Qmax, maximum ratio; Q75, 75th percentile; Q25, 25th percentile; Qmin, minimum ratio; ~xx,
median; fs, fourth spread; OU, standard upper outlier boundary; OL, standard lower outlier boundary; PPCC, normal probability plot correlation coefficient; �xx, sample
mean; s2

N�1, sample variance; sN�1, sample SD; se, standard error of the sample mean; ~NN, minimum uncorrected sample size; N*, minimum corrected sample size;
N, actual sample size; �xxR, estimate of sample meanfor the ratio of the �xx of experimental frameshift reporter to �xx of control reporter (i.e. frameshift efficiency); s2

R, sample
variance for �xxR; sR, sample SD of �xxR; se(�xxR), standard error of the sample mean �xxR; n/c, not calculated.
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Ratiometric statistics

The relative expression (�xxR) of each experimental reporter and
its corresponding control is:

�xxR =
�xxE

�xxC

, 13

where (in the case of DLAs) �xxE and �xxC are the sample mean
firefly to Renilla luminescence ratios for experimental (i.e.
frameshift) and control (i.e. zero-frame) reporters, respectively.
The estimated sample variance (s2

R) for �xxR is given by (21):

s2
R =

s2
E

�xxCð Þ2
+

�xxEð Þ2s2
C

�xxCð Þ4
14

where �xxE and �xxC are the sample means from Equation 5, and the
sample variances s2

E and s2
C are from Equation 7. Equation 14

makes the assumption that �xxC > 0 and the sample variances
(s2

E and s2
C) do not overlap zero (21). Researchers should

take care to make sure these are valid for each dataset. From
Equation 14, it follows that the sample SD (sR) of �xxR is (22):

sR = �xxR ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

E

�xxE


 �2

+
s2

C

�xxC


 �2
s

15

Finally, the standard error se(�xxR) of �xxR is calculated using
the following expression, which correctly accounts for the pro-
pagation of error for independent samples of different sizes:

se xRð Þ = �xxR ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

E=NE

�xxEð Þ2
+

s2
C=NC

�xxCð Þ2

s
16

The number of replicates from each DLA dataset is specified
by NE and NC.

Comparing datasets

We are often interested in finding the statistical significance of
two differing experimental conditions (a and b) for the same
experimental reporter. We use an unpaired two-sample t-test
since it is appropriate for small, continuous datasets (17).
For example, when comparing data from experiments a and
b, we find

va;b =
s2

Ra
=na + s2

Rb
=nb

	 
2

s2
Ra
=na

	 
2

na � 1
+

s2
Rb
=nb

	 
2

nb � 1

66666664

77777775 17

where va,b is the degrees of freedom for the t-test, and

ta;b =
�xxRa

� �xxRbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

Ra
=na + s2

Rb
=nb

q
�������

������� 18

where ta,b is the t-statistic for conditions a, b. The values of
s2

Ra
and s2

Rb
are the estimated sample variances (see Equation 14)

for each ratio �xxRa
and �xxRb

(see Equation 13). The sample sizes na

and nb correspond to the sample sizes of each dataset for the
experimental frameshift reporters under each experimental

condition (a and b). Once the t-statistic is computed, it can
then be compared to a table of critical values (available at
http://dinmanlab.umd.edu/statistics) to either accept or reject
each hypothesis. Finally, an estimate of the corresponding
P-value of each result can also be obtained (17).

RESULTS

Data visualization

The first step for data post-processing is to visualize the raw
data. At the very minimum, good visualization techniques
provide a qualitative understanding of the data’s robustness
before any descriptive or inferential statistics have been
calculated. Here, the quality and linearity of the data can be
ascertained immediately by plotting the relative luminescence
units (Renilla RLU versus firefly RLU) from each trial for a set
of identical experiments (see Figure 1A–D and 2A–D). The
linear relationship between Renilla and firefly expression in
the context of the DLA system has been well characterized
and can be used as a first-hand measure of data quality (7,23).
For example, the linearity of the assay can be clearly seen
in the control C1 and frameshift reporter F1 datasets (see
Figure 1A–C), despite the large differences in scale. Further-
more, in frameshift reporter F2 (see Figure 1C), three outliers
are immediately identifiable, while frameshift reporter F3

(see Figure 1D) demonstrates an unexpected scattering of
the data. The linearity of the assay can also be seen even in
the presence or absence of anisomycin, a translational inhibitor
(see Figure 2A and C).

Identification and exclusion of outliers

While some outliers occasionally can be identified at the
visualization step, it is usually preferred to use a statistical
based method to quantitatively rule them out. This is useful
because standardized methods eliminate human bias across
datasets, and they make no assumptions about the underlying
distribution of the data. In our analysis, we use Equations 2–4,
and exclude data beyond the bounds of the standard outlier
boundaries OU and OL. Outliers identified using this method
can be seen as solid data points in Figure 1A–D and 2A–D. The
resulting data are hereafter considered ‘trimmed’ from a
statistical point of view. This provides a simple and consistent
method to identify outliers and, when applied uniformly, some
data points can be identified as outliers that may have not
been previously obvious from simple visual inspection (e.g.
so-called ‘hidden outliers’, see Figure 1A and B and 2A–D).

Descriptive statistics

We employ standardized expressions for the usual descriptive
statistics on each dataset. This includes determining the
sample mean (�xx), sample median (~xx), sample variance
(s2

N�1), sample SD (sN�1) and the standard error of the sample
mean (se) for samples of size n (17). Each of these statistics is
presented in Table 1 (see Equations 5–9).

Probability plots

After outliers have been excluded, the next step is to determine
whether the data are normally distributed. This is an essential
step because all of the subsequent statistical measures
depend on the assumption that the data comes from a normal
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Figure 1. Visualization of data from control reporter C1 and experimental frameshift reporters F1, F2 and F3. The raw luminescence values for C1, F1 and F2 are linear
and the ratio values of firefly/Renilla are normally distributed. The data for F3, however, are neither linear nor normally distributed. (A–D) RLUs of firefly and Renilla
expressed from control reporter C1 and experimental frameshift reporters F1, F2 and F3, respectively. Outliers are shown by solid data points. (E–H) Normal
probability plots for data from C1, F1, F2 and F3, respectively. The x-axis corresponds to the expected z-score of each data point. The y-axis is the ratio of firefly to
Renilla RLU values. The trend line shown is based on the linear regression of the data and represents the expected firefly/Renilla RLU ratio for a given z-score.
Normal PPCCs for these (E–H) are shown in Table 1.
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Figure 2. Visualization of data from control reporter C2 and experimental frameshift reporter F4 under the effects of 20 mg/ml of anisomycin, an inhibitor of�1 PRF
(26). The raw luminescence values are linear and the ratio values of firefly/Renilla are normally distributed. (A–D) RLUs of firefly and Renilla expressed from each
reporter. Outliers are shown by solid data points. (E–H) Normal probability plots for each reporter. (A and E) C2, no drug. (B and F) C2 with anisomycin. (C and G) F4,
no drug. (D and H) F4, with anisomycin. See Table 1 for details.
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distribution. A c2 goodness-of-fit test for normality to either
reject or accept this hypothesis is often used for this calcula-
tion (24). However, this is not an appropriate test for bicis-
tronic data because (i) there are typically too few data points
for the c2 to be valid, and (ii) whereas a c2 test is generally
only appropriate for discrete data, bicistronic data are contin-
uous. A simple solution is to construct a histogram of the
ratiometric data and visually inspect each set’s distribution.
While histograms provide a qualitative view of the data and a
visual estimate for the goodness-of-fit of the data to a normal
distribution, they do not provide a quantitative means
for excluding (i.e. rejecting) any particular dataset (http://
dinmanlab.umd.edu/statistics).

For a more rigorous approach, we create a normal pro-
bability plot for each dataset and calculate its normal PPCC
(18,19). This coefficient allows for the formal rejection or
acceptance of the hypothesis that a potentially small, contin-
uous dataset is normally distributed by comparing the value of
the PPCC to a table of critical values. A sufficiently high
coefficient indicates that the data are normally distributed.
Using this approach, the data from C1, C2, F1, F2 and F4

(see Figure 1E–G and 2E–H) are accepted, whereas the data
from F3 (see Figure 1H) is rejected. Rejection can occur for
many reasons, including poor-data collection, corrupted experi-
mental conditions or insufficient sample size. The PPCC and
corresponding critical values for each dataset are summarized
in Table 1.

Minimum sample size

Experiments in molecular biology are often limited to three
replicate trials due to limitations in time, financial resources or
experimental complexity. Nonetheless, triplicate experiments
do not typically satisfy the requirements of proper statistical
analysis. Thus, the question remains as to how many replicate
experiments should be carried out. Equation 12 is commonly
used to answer this question (17), but Kupper and Hafner (20)
previously showed that the use of this expression for sample
size estimation greatly underestimates the number of trials
needed for a desired confidence interval. The corrected
minimum sample size (N*) can be found by consulting a
lookup table assuming (i) the data are normally distributed,
(ii) a desired confidence level (e.g. a = 0.05), and (iii) the
amount of experimental error was decided a priori [see (20) and
(http://dinmanlab.umd.edu/statistics)]. Generally, the accepta-
ble amount of error for the estimate of the mean is 5–10% of its
true value.

For example, the F1 dataset has a sample mean (�xx) and
sample SD (sN�1) of 0.0263 and 0.0017, respectively. Our
goal is to do enough trials to be at least 95% confident that
the sample mean is at least within 10% of the true value
of the mean. Using Equation 12, we find that the minimum
uncorrected number of trials is ~NN = 7. However, using Kupper
and Hafner’s method for sample size correction, the minimum
corrected sample size is N*=13. With 40 samples, the F1 dataset
is of sufficient size. The values of ~NN, N*, and the actual sample
size N for each dataset are listed in Table 1.

Ratiometric statistics

Once each ratiometric dataset has been trimmed of outliers,
passed a test for normalcy and found to be of sufficient size,

it is then possible to begin calculating the ratiometric efficiency
(�xxR) of an experimental reporter relative to that of its corre-
sponding control reporter (see Equation 13). The reporters
we use in our laboratory typically measure translational frame-
shifting: thus, in this case, �xxR is a measure of the frameshift
efficiency of the �1 PRF signal present in the experimental
DLA reporter constructs F1–F4. However, in other translational
contexts, �xxR could be, for example, the frequency of IRES-
promoted initiation, or read-through suppression. A serious
pitfall associated with �xxR is the potential for the propagation
of error in its estimation since it is derived from a ratio of two
estimates, �xxE and �xxC. The correct reporting of the error on
this measurement and its estimated variance should therefore
be treated carefully. Equations 14–16 take the propagation of
error into account and determine best estimates for the sample
variance s2

R, sample SD sR and the standard error se (�xxR) of the
sample mean �xxR. Each expression of Equations 14–16 assumes
two, independent and normally distributed datasets that are
related by the ratio �xxR and each component dataset has poten-
tially unequal sample sizes (N). The importance of the estima-
tion of s2

R in Equation 14 cannot be overstated. This value is of
particular importance when determining the statistical differ-
ence between two experiments (e.g. it is used in the t-test
below).

Comparing datasets

The final stage is to determine whether the two experiments,
each with their own respective values of �xxR and s2

R, are statis-
tically different. The published record of studies utilizing
various bicistronic reporters shows a wide variety of methods
including fold change, z-tests or c2-tests. For comparisons
between datasets, a z-test is appropriate only for larger datasets
with at least 40 samples each. Datasets for bicistronic reporter
systems are usually not this large. Furthermore, a c2-test is
inappropriate as it requires both large sample sizes and that
the data be separated of into discrete categorical values. We
instead use the unpaired two-sample t-test (see Equations 17 and
18) since it is more appropriate for smaller continuous datasets
(17). The requirements of this test are that the data must be
normally distributed and independent, which are satisfied by the
bicistronic assay datasets presented here. The hypothesis tested
against states that two datasets (X and Y) come from the same
population. A rejected hypothesis therefore affirms that the two
datasets are indeed statistically different at some predefined
confidence level (e.g. 95%, a = 0.05). The P-value obtained
from this test is an estimation of the probability of an incorrect
conclusion (see Table 2).

Table 2. Summary of unpaired two-sample t-test for the effects of anisomycin

on ribosomal frameshifting

Comparing drug versus no drug

Fold change �21.17%
Degrees of freedom (v) 18
t-statistic 8.92
a 0.001
Critical value 3.92
Significant? Yes
P-value 5.04 · 10�8

The results indicate that anisomycin effectively inhibits programmed �1
frameshifting (see text for details).
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Two working examples

Our first set of frameshift reporters comprises F1, F2 and F3,
which are each compared to a zero-frame control reporter C1

to measure the efficiency of frameshifting. Each of these
experimental reporters contains a �1 PRF signal that was
either previously characterized or that has been recently com-
putationally identified (J. L. J. and J. D. D., manuscript in
preparation). Our results show that the �1 PRF signals in
reporters F1 and F2 are ‘well behaved’ in that they pass several
tests for statistical reliability. Though the L-A virus �1 PRF
signal (F1) promoted high levels of frameshifting (Table 1,
�xxR – se �xxRð Þ, 7.98% – 0.165%), the PRF signal in reporter F2

(a putative PRF signal from BUB3) is shown to be less efficient
(Table 1, 0.70% – 0.019%) but very reliable. Furthermore, the
efficiency of frameshifting for F3 (a putative PRF signal from
TBF1) was not calculated (Table 1, n/c) because the dataset
itself failed two important statistical reliability tests. Without
the techniques presented in this report, the recoding efficiency
of F3 may have be erroneously calculated and subsequently
incorrectly reported as being �1.86%. Thus, by utilizing
these ‘quality control’ procedures, we are able to firmly reject
the possibility of F3 as being a ‘real’�1 PRF signal, whereas the
putative signal from BUB3 is indeed functional. This important,
and often overlooked, aspect of reliability testing of experimen-
tal measurements demonstrates the importance of quantita-
tively determining the linearity, minimum sample size and
normalcy of each dataset studied.

In our second example, we begin with two DLRs: a zero-
frame control, C2, and a frameshift reporter, F4, representing
the functional SARS-CoV ORF 1a-1b frameshift signal
(E. P. Plant and J. D. D, manuscript in preparation). This
experiment is designed to study the efficiency of ribosomal fra-
meshifting in thepresenceorabsenceof thedruganisomycin.This
well-characterized translational inhibitor is known to suppress
programmed�1 ribosomal frameshifting in vivo (25). The initial
dataset of raw luminescence values for each construct (with and
withoutdrug)areplotted inFigure2A–D.Therawdataare found
to be linear and outliers are identified and excluded as described
previously. Furthermore, each dataset passes the PPCC test for
being normally distributed (see Figure 2E–H and Table 1). The
values of �xxR – se �xxRð Þ (i.e. �1 PRF efficiency) are 2.62% –
0.16% in the presence of 20 mg/ml anisomycin and
3.33% – 0.50% in its absence. Using the unpaired two-sample
t-test in Equations 17 and 18, we find t = 8.92 with 18 degrees of
freedom (v = 18) for the effects of anisomycin on �1 PRF. A
significance level of a = 0.001 indicates a critical value of
t = 3.92. Numerical computation of the P-value of this finding
yields P = 5.04 · 10�8; an extremely significant result. In
contrast, had we applied the statistical methods utilized in pre-
viously published studies that employed bicistronic reporters
(6,26,27), the variances of the two �1 PRF efficiencies would
have been incorrectly calculated (data not shown). Specifically,
although these alternative methods would also have indicated
an �20% reduction in �1 PRF efficiency due to anisomycin,
they would have generated incorrect P-values (P= 0.804), lead-
ing researchers conclude that anisomycin does not significantly
affect �1 PRF. In contrast, application of our more rigorous
statistical analytical method soundly demonstrates that aniso-
mycin does affect programmed �1 ribosomal frameshifting in
a very reproducible and statistically significant way.

DISCUSSION

In this technical report, we have outlined a statistical analysis
pipeline for ratiometric data potentially derived from a wide
variety of polycistronic reporter assay systems. As an example,
we have successfully applied the methods outlined above to
data obtained from eight datasets originating from a series of
DLAs designed to measure programmed �1 ribosomal frame-
shifting. The reporter plasmids vary only in the nature of
recoding element positioned between the Renilla and firefly
ORFs. Our statistical analysis pipeline can be applied to other
dual reporter systems and easily be extended to any polycis-
tronic assay system that relies on ratiometric data. The impor-
tance of the proper statistical analysis of any dataset cannot
be overstated. At a minimum, this report brings to light the
statistical issues surrounding bi- or polycistronic reporter data
and opens the door to more rigorous treatment of this parti-
cular data type. It is our hope that the synthesis of methodo-
logies presented here will serve as a white paper for researchers
who utilize polycistronic reporter systems. To simplify
the application of the methods presented in this report, we
have developed an online tutorial and several Excel spread-
sheets that can be used as templates by the general research
community.

We address several key features for analysis of bicistronic
data in particular and summarize our findings here. First, the
nature of most bicistronic reporter assays present researchers
with two components of information for each experiment that
are further combined into a ratio. The data are most often
reported as a ratio of gene X to gene Y expression. The
goal is usually to measure the expression ratio of genes
X/Y in an experimental construct and observe any differences
in ratio of genes X/Y expression compared with a known
control. Since the data are both ratiometric and continuous
in nature, propagation of error in the datasets is a primary issue
that must be addressed carefully. We address this issue with
Equations 14–16 for estimates of the sample variance, sample
SDs and the standard error of the sample mean for a ratio of
two normally distributed sample means. Once an appropriate
measure of the combined variance and corresponding error
is found, only then it is possible to determine whether two
independent datasets are statistically different.

Second, methods designed to rule out certain data points as
outliers have largely gone unreported in the literature. Outliers
can, however, severely impact the quality and subsequent
analysis of any dataset. Thus, their systematic exclusion
should be an important first step in any analysis pipeline.
We present a simple, standardized method for outlier exclu-
sion that makes no assumptions about the underlying distribu-
tion of the data using Equations 2–4. By exploiting the
property of fs, we are able to systematically exclude data
points that are above or below the median. This method
does not necessarily always result in the exclusion of data;
frequently the maximum or minimum values for any dataset
are well within the outlier boundaries. The net result is a
robust, trimmed dataset that is less affected by the presence
of a few outliers.

Third, a common assumption is that data are normally
distributed. This is necessary because common statistical
analyses rely on this assumption in order to remain valid.
However, biological data are often not normally distributed
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due to the tendency of living cells to either maximize or
minimize the efficiency of any given process. Surprisingly,
there has not been a single publication utilizing a bicistronic
reporter assay system that has reported attempts to check
the validity of this assumption. In this report, we outline
the procedure for constructing probability plots of each data-
set, and present a statistically sound method for determining
the normality of the data using PPCCs (see Equation 11).
No subsequent statistical analysis that is fundamentally
based on the properties of a normal distribution would be
valid without first confirming the normalcy of the data. Failure
to do this quantitatively could lead researchers to make false
conclusions from their results.

Fourth, as a rule-of-thumb molecular biology experiments
are typically carried out in triplicate. This is often a reality that
is expected and unavoidable because many experiments are
time consuming, expensive or both (e.g. blots, gel shift assays,
etc.). We suggest that the ‘Three’s a Charm’ rule-of-thumb
should be reconsidered when experiments are relatively simple
and rapid. Most bicistronic reporter assays fit these criteria
because they usually take advantage of the specific activity of
a pair of easily assayable enzymes. In Equation 12, we present
a straightforward method to calculate the minimum corrected
sample size (N*) needed to achieve a specific level of con-
fidence in the results. The researcher needs only to decide a
priori what the acceptable level of error is for each dataset.

Using a metric to determine minimum sample size, however
statistically sound, may seem unreasonable or simply cost
prohibitive to some, particularly for smaller labs with limited
resources. However, consider the following example.
Typically, with respect to the DLA system in E.coli (6) or
S.cerevisiae (7), it is not unusual for cell lysates to be collected
over a course of 3 days and for three luminescence readings
(firefly and Renilla) to be averaged together on each day. This
produces only a single luminescence ratio each day for each
reporter. Not only does this approach inadvertently cause
another layer of error propagation (average of averages at
the experiments end), but it is both cost and time prohibitive
if the goal is to gather enough data points to satisfy Kupper and
Hafner’s test for minimum corrected sample size. A suitable
compromise is to pool individual reads from each lysate into a
larger dataset before excluding outliers and calculating any
statistics. In this case, the scenario outlined above would pro-
duce nine data points each for Renilla and firefly luciferase;
three for each cell lysate for each of 3 days. If the cell types,
reporters used and experimental conditions are identical, pool-
ing the data in this way builds a rigorous dataset that is more
resistant to experimental bias. Furthermore, if three separate
cell cultures were grown in parallel on each day, then 27 data
points would then be collected for each experimental condition
in same amount of time. By pooling the raw data together,
it becomes possible to build a larger dataset in less time.

With regard to the effects of anisomycin on �1 PRF,
the application of this analytical process is significant in
two respects. First, as noted above, reliance on common cal-
culations of mean and standard errors would have led to the
incorrect conclusion that anisomycin does not affect �1 PRF.
This could potentially result in the unfortunate consequence
of disqualifying anisomycin and other pyrrolidines (28) for
consideration as antiviral agents. Thus, the analysis presented
here serves as a demonstration that the application of proper

quantitative methods is critical for more than simply academic
reasons. Second, the confirmation that anisomycin inhibits �1
PRF is important in helping to define the mechanism of this
process. We previously proposed a model based on structural
and biochemical data in which the �1 frameshift occurs after
accommodation of the aminoacyl-tRNA (aa-tRNA) into the
ribosomal A-site (the A/A hybrid state), and prior to peptidyl-
transfer (12). Recently, another group suggested that the shift
occurs prior to accommodation when the aa-tRNA occupies
the A/T hybrid state, i.e. while the anticodon of the aa-tRNA is
in the decoding center A-site, but the 30 acceptor end has not
yet been positioned into the peptidyltransferase center (29).
Anisomycin binds in the A-site of the peptidyltransferase cen-
ter (30) inhibiting binding of the acceptor end of the aa-tRNA
into the peptidyltransferase center (31,32). The observation
that �1 PRF is inhibited by anisomycin is consistent with
our model in that inhibiting the formation of the proposed
substrate for the shift (i.e. inhibiting formation of the aa-tRNA
in the A/A hybrid state) decreased the frequency of the reac-
tion. In contrast, anisomycin does not affect the interaction of
the aa-tRNA anticodon with the decoding center, i.e. does not
impact on the formation of the aa-tRNA in the A/T hybrid
state, and would not be predicted to affect �1 PRF if this were
the substrate for the shift. In sum, the application of the rig-
orous statistical analyses to genetic data reinforces prior struc-
tural and biochemical analyses, strengthening the argument
that programmed �1 ribosomal frameshifting occurs after
accommodation of the aa-tRNA into the A/A hybrid state.

SUPPLEMENTARY MATERIAL

Excel spreadsheets are available at NAR Online, and a web-
based tutorial from http://www.dinmanlab.umd.edu/statistics.

ACKNOWLEDGEMENTS

We thank Dr Ray Koopman, Kristi L. Muldoon Jacobs,
Alexey Petrov and Dr Arlin Stoltzfus for helpful discussions
in preparing this manuscript. This work was supported by
grants from the National Institutes of Health to J.D.D. (R21
GM068123), and from the National Library of Medicine to
J.L.J. (F37 LM008333).

REFERENCES

1. Coleman,H.M., Brierley,I. and Stevenson,P.G. (2003) An internal
ribosome entry site directs translation of the murine gammaherpesvirus
68 MK3 open reading frame. J. Virol., 77, 13093–13105.

2. Venkatesan,A., Sharma,R. and Dasgupta,A. (2003) Cell cycle regulation
of hepatitis C and encephalomyocarditis virus internal ribosome entry
site-mediated translation in human embryonic kidney 293 cells. Virus
Res., 94, 85–95.

3. Imbert,I., Dimitrova,M., Kien,F., Kieny,M.P. and Schuster,C. (2003)
Hepatitis C virus IRES efficiency is unaffected by the genomic RNA 30

NTR even in the presence of viral structural or non-structural proteins.
J. Gen. Virol., 84, 1549–1557.

4. Meskauskas,A., Harger,J.W., Jacobs,K.L. and Dinman,J.D. (2003)
Decreased peptidyltransferase activity correlates with increased
programmed �1 ribosomal frameshifting and viral maintenance defects
in the yeast Saccharomyces cerevisiae. RNA, 9, 982–992.

5. Novac,O., Guenier,A.S. and Pelletier,J. (2004) Inhibitors of protein
synthesis identified by a high throughput multiplexed translation screen.
Nucleic Acids Res., 32, 902–915.

PAGE 9 OF 10 Nucleic Acids Research, 2004, Vol. 32, No. 20 e160

http://www.dinmanlab.umd.edu/statistics


6. Grentzmann,G., Ingram,J.A., Kelly,P.J., Gesteland,R.F. and Atkins,J.F.
(1998) A dual-luciferase reporter system for studying recoding signals.
RNA, 4, 479–486.

7. Harger,J.W. and Dinman,J.D. (2003) An in vivo dual-luciferase assay
system for studying translational recoding in the yeast Saccharomyces
cerevisiae. RNA, 9, 1019–1024.

8. Horsburgh,B.C., Kollmus,H., Hauser,H. and Coen,D.M. (1996)
Translational recoding induced by G-rich mRNA sequences that form
unusual structures. Cell, 86, 949–959.

9. Kollmus,H., Flohe,L. and McCarthy,J.E. (1996) Analysis of eukaryotic
mRNA structures directing cotranslational incorporation of
selenocysteine. Nucleic Acids Res., 24, 1195–1201.

10. Keeling,K.M., Lanier,J., Du,M., Salas-Marco,J., Gao,L., Kaenjak-
Angeletti,A. and Bedwell,D.M. (2004) Leaky termination at premature
stop codons antagonizes nonsense-mediated mRNA decay in
S.cerevisiae. RNA, 10, 691–703.

11. Harger,J.W., Meskauskas,A. and Dinman,J.D. (2002) An ‘integrated
model’ of programmed ribosomal frameshifting. Trends Biochem.
Sci., 27, 448–454.

12. Plant,E.P., Jacobs,K.L., Harger,J.W., Meskauskas,A., Jacobs,J.L.,
Baxter,J.L., Petrov,A.N. and Dinman,J.D. (2003) The 9-s solution: how
mRNA pseudoknots promote efficient programmed �1 ribosomal
frameshifting. RNA, 9, 168–174.

13. Inoue,H., Nojima,H. and Okayama,H. (1990) High efficiency
transformation of Escherichia coli with plasmids. Gene, 96, 23–28.

14. Dinman,J.D. and Wickner,R.B. (1994) Translational maintenance of
frame: mutants of Saccharomyces cerevisiae with altered �1 ribosomal
frameshifting efficiencies. Genetics, 136, 75–86.

15. Peltz,S.W., Hammell,A.B., Cui,Y., Yasenchak,J., Puljanowski,L. and
Dinman,J.D. (1999) Ribosomal protein L3 mutants alter translational
fidelity and promote rapid loss of the yeast killer virus. Mol. Cell. Biol.,
19, 384–391.

16. Ito,H., Fukuda,Y., Murata,K. and Kimura,A. (1983) Transformation of
intact yeast cells treated with alkali cations. J. Bacteriol., 153, 163–168.

17. Devore,J.L. (2000) Probability and Statistics for Engineering and the
Sciences, 5th edn. Duxbury, Pacific Grove, CA.

18. Chambers,J.M. (1983) Graphical Methods for Data Analysis.
Duxbury Press, Boston.

19. Filliben,J.J. (1975) Probability plot correlation coefficient test for
normality. Technometrics, 17, 111–117.

20. Kupper,L.L. and Hafner,K.B. (1989) How appropriate are popular
sample-size formulas. Am. Stat., 43, 101–105.

21. Kendall,M.G., Stuart,A., Ord,J.K. and O’Hagan,A. (1994) Kendall’s
Advanced Theory of Statistics, 6th edn. Halsted Press, NY.

22. Fersht,A. (1999) StructureandMechanism in ProteinScience : A Guide to
Enzyme Catalysis and Protein Folding. W.H. Freeman, NY.

23. Sherf,B.A., Navarro,S.L., Hannah,R.R. and Wood,K.V. (1996)
Dual-luciferase reporter assay: an advanced co-reporter technology
integrating firefly and Renilla luciferase assays. Promega Notes, 2.

24. Croarkin,C. and Tobias,P. (2004) NIST/SEMATECH e-Handbook of
Statistical Methods.

25. Dinman,J.D., Ruiz-Echevarria,M.J., Czaplinski,K. and Peltz,S.W.
(1997) Peptidyl-transferase inhibitors have antiviral properties by
altering programmed �1 ribosomal frameshifting efficiencies:
development of model systems. Proc. Natl Acad. Sci. USA, 94,
6606–6611.

26. Venkatesan,A. and Dasgupta,A. (2001) Novel fluorescence-based screen
to identify small synthetic internal ribosome entry site elements.
Mol. Cell. Biol., 21, 2826–2837.

27. Palli,S.R., Kapitskaya,M.Z., Kumar,M.B. and Cress,D.E. (2003)
Improved ecdysone receptor-based inducible gene regulation system.
Eur. J. Biochem., 270, 1308–1315.

28. Goss Kinzy,T., Harger,J.W., Carr-Schmid,A., Kwon,J., Shastry,M.,
Justice,M. and Dinman,J.D. (2002) New targets for antivirals: the
ribosomalA-siteand the factors that interact with it. Virology, 300, 60–70.

29. Leger,M., Sidani,S. and Brakier-Gingras,L. (2004) A reassessment of the
response of the bacterial ribosome to the frameshift stimulatory signal of
the human immunodeficiency virus type 1. RNA, 10, 1225–1235.

30. Hansen,J.L., Moore,P.B. and Steitz,T.A. (2003) Structures of five
antibiotics bound at the peptidyl transferase center of the large ribosomal
subunit. J. Mol. Biol., 330, 1061–1075.

31. Carrasco,L., Barbacid,M. and Vazquez,D. (1973) The trichodermin
group of antibiotics, inhibitors of peptide bond formation by eukaryotic
ribosomes. Biochim. Biophys. Acta, 312, 368–376.

32. Grollman,A.P. (1967) Inhibitors of protein biosynthesis. II. Mode of
action of anisomycin. J. Biol. Chem., 242, 3226–3233.

e160 Nucleic Acids Research, 2004, Vol. 32, No. 20 PAGE 10 OF 10


