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Abstract
Neuropeptide Y (NPY) is a sympathetic neurotransmitter widely distributed in the peripheral and central nervous system, 
affecting many physiological functions. Consequently, dysregulation of the NPY system contributes to numerous pathologi-
cal disorders, including stress, obesity, and cancer. The pleiotropic functions of NPY in humans are mediated by G protein-
coupled receptors (Y1R, Y2R, Y5R), which activate several signaling pathways and thereby regulate cell growth, differentia-
tion, apoptosis, proliferation, angiogenesis, and metabolism. These activities of NPY are highly relevant to tumor biology 
and known hallmarks of cancer, including sustained proliferative potential, resisting cell death, angiogenesis, invasion, and 
metastases. In this comprehensive review, we describe the cellular functions of NPY and discuss its role in cancer pathobiol-
ogy, as well as provide the current state of knowledge pertaining to NPY and its receptors in various cancer types. Moreover, 
we focus on potential clinical applications targeting the NPY system, such as its role as a prognostic and predictive factor, as 
well as its utility in cancer diagnostics, imaging, and treatment. Altogether, growing evidence supports the significant role 
of the NPY system in tumor pathobiology and implicates its potential therapeutic and diagnostic value in modern oncology.
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1  Introduction

Tumor growth and progression involve multiple interactions 
between cancer and host cells. While recent years brought 
significant progress in our understanding of the role the local 
tumor microenvironment plays in these processes, the impact 
of systemic factors and the overall physiological state of the 
patient on cancer remains understudied [1]. In this review, 
we will focus on one such factor, neuropeptide Y (NPY). 
NPY is a sympathetic neurotransmitter abundant in the cen-
tral and peripheral nervous systems [2, 3]. The peptide is a 
crucial stress mediator, which regulates various physiologi-
cal functions [4, 5]. Some of these processes, such as food 
intake, anxiety, and circadian cycle control, depend on NPY 
activity in the brain (Fig. 1A) [6]. Others, including cardio-
vascular and immune responses, are regulated by the peptide 
released from peripheral sympathetic nerves (Fig. 1B) [7, 8]. 
Consequently, dysregulation of the NPY system has been 
implicated in various disorders, with obesity and psychiatric 
diseases being the most extensively studied [5, 9]. However, 
growing evidence indicates a role for NPY in tumor biology, 
which is driven by its direct effects on cancer cells and their 
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microenvironment, as well as indirect influence caused by 
altering patients’ physiological responses known to affect 
growth and dissemination of various malignancies [10–14]. 
This review aims to summarize the current knowledge on 
the biological effects of NPY in cancer and their clinical 
implications, as well as delineate physiological functions of 
NPY that have the potential to affect cancer progression, yet 
have not been studied in the context of oncology.

2 � Structure and components of the NPY 
system

NPY belongs to a family of evolutionary conserved peptides 
that also includes peptide YY (PYY) and pancreatic poly-
peptide (PP) [15, 16]. The peptides share the same receptors, 
although their expression patterns and affinities vary. The 
gene coding for NPY is located on chromosome 7p15 [17]. 
NPY is expressed mainly in central and peripheral nervous 
tissues. It is the most abundant peptide in the brain, with the 
highest expression in the hypothalamus, the area respon-
sible for the control of the autonomic nervous system and 
its effects on metabolism, energy balance, and other crucial 

physiological processes [18]. In the periphery, NPY is stored 
in postganglionic large dense-core vesicles (LDCVs) of the 
sympathetic nerve endings and released with norepineph-
rine [19, 20]. The peptide is also present in other autonomic 
nerves, such as sensory or parasympathetic neurons, but 
at lower concentrations [21, 22]. Various factors, such as 
severe chronic stress, hypoxia, exercise, cold exposure, and 
ischemia, increase NPY release from neuronal cells and its 
levels in plasma and tissues [23–25]. Aside from the nervous 
system, NPY is also expressed in various non-neuronal cells 
and tissues, including endothelium, platelets, colon, kidney, 
testis, breast, and prostate [4]. However, it is unclear whether 
or not the peptide is secreted from these cells, and potential 
mechanisms regulating its release remain unknown. Impor-
tantly, platelets have been proposed as an NPY reservoir 
that could uptake and store the peptide at the time of its 
increased release, such as stress [26]. Consequently, under 
such conditions, elevated NPY levels are often detected in 
serum and plasma-containing platelets but not platelet-poor 
plasma samples [27–30].

NPY is a 36 amino acid peptide, which is derived from a 
97 amino acid precursor, Pre-Pro-NPY [31–34] (Fig. 2). This 
large molecule is processed in the endoplasmic reticulum 

Fig. 1   Physiological functions of NPY. A As one of the most abun-
dant peptides in the brain, NPY is involved in central regulation of 
processes involved in stress response, appetite stimulation, circadian 
rhythm, immunity and bone homeostasis. B In the periphery, NPY is 

co-released with norepinephrine from sympathetic neurons, affect-
ing metabolism, cardiovascular system, bone health and immune 
responses (figure created using Biorender)
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(ER) by removing a 28 amino acid signal sequence, so the 
Pro-NPY, a 69 amino acid peptide, is formed. Subsequently, 
Pro-NPY is transported to the Golgi apparatus, then to the 
trans-Golgi network, and moved towards the secretory path-
way. Most of the NPY in a cell is stored in LDCVs [33, 34]. 
A number of processing enzymes are active during post-
translational steps, including convertases, carboxypepti-
dases as well as the amidating enzyme—peptidylglycine 
α-amidating monooxygenase [33, 34]. Only the final, ami-
dated form of NPY (NPY1–36) is biologically active.

After its exocytosis to the extracellular space, NPY is 
subjected to further proteolysis (Fig.  2). Two essential 
enzymes which regulate the NPY system, aminopeptidase 
P and dipeptidyl peptidase IV (DPPIV), cleave one or two 
first amino acids from the N-terminus of the NPY protein, 
creating NPY2–32 and NPY3–36, respectively [35]. Both ami-
nopeptidase P and DPPIV are membrane enzymes and their 
capabilities to cleave NPY are well documented. In addition, 
two intracellular dipeptidyl peptidases, DPP8 and DPP9 
have been shown to truncate NPY to its NPY3–36 form both 
as purified proteins and in cellular systems [36, 37]. How-
ever, the mechanisms by which these intracellular enzymes 
access NPY remain to be determined.

NPY acts through multiple membrane receptors named 
Y1R-y6R, which are widely distributed throughout the body 
and have different functions [38]. Y1R, Y2R, and Y5R are 
functional NPY receptors in humans, while Y4R serves 
mainly as the PP receptor since its affinity to NPY and PYY 
is low [39]. y6R is functional in mice, while in humans, it is 
encoded by a pseudogene, which is not transcribed [40]. The 
affinity of NPY to its receptors is regulated by its proteolytic 
cleavage. Y1R require the full-length NPY1–36 for binding 

and are not activated by NPY2–36 and NPY3–36, while these 
truncated forms of the peptide preserve their ability to bind 
to Y2R and Y5R [35, 41, 42]. This change in the NPY recep-
tor activation affects its functions, particularly in the cells 
expressing multiple types of its receptors, since NPY3–36 will 
preferentially activate Y2R and Y5R, even in the presence of 
high levels of Y1R [36]. This shift in NPY receptor affinities 
modifies its activity in response to environmental stimuli, 
such as hypoxia [42].

NPY activity is further regulated by interactions between 
its heterotypic receptors. All NPY receptors have been 
shown to form homodimers, while Y1R can also heterodi-
merize with Y5R and Y4R [43–45]. However, even without 
direct receptor binding, heterotypic NPY receptors (e.g. Y2R 
and Y5R) can interact with each other, enabling cellular 
responses, such as cell proliferation and migration, to low 
peptide concentrations [44, 46, 47]. Similarly, NPY recep-
tors have been shown to interact with other receptor types, 
including the β-adrenergic and TrkB receptors [46, 48]. 
The synergistic interactions between NPY and β-adrenergic 
receptors augment the mitotic effect of the peptide, while 
the transactivation process between TrkB and Y5R increases 
the pro-survival and antiapoptotic effects of NPY [46, 48]. 
Altogether, these interactions are crucial in regulating NPY 
actions, often leading to dramatic changes in its activity 
depending on the host’s microenvironmental milieu and 
overall physiological state. However, the mechanisms under-
lying the increased NPY activity dependent on interactions 
of its heterotypic receptors or cross-talk with other mem-
brane proteins are not well understood. It is not clear if such 
interactions increase the peptide binding or amplify receptor 
signalling.

Fig. 2   The biosynthesis and 
processing of neuropeptide 
Y. NPY is synthesized as a 
97-amino acid Pre-Pro-NPY, 
which undergoes proteolytic 
cleavage in endoplasmic reticu-
lum and the secretory pathway 
leading to the secretion of the 
mature amidated 36 amino acid 
peptide. In the extracellular 
space, NPY may be further 
cleaved by aminopapetidase 
P and dipeptidyl peptidase IV 
to its truncated forms NPY2–36 
or NPY3–36, respectively. ER, 
endoplasmic reticulum; CPON, 
carboxyl-terminal flanking 
peptide of NPY; LDCV, large 
dense-core vesicles (figure cre-
ated using Biorender)



	 Cancer and Metastasis Reviews (2025) 44:2121  Page 4 of 24

All NPY receptors belong to the family of G protein-cou-
pled receptors (GPCRs) and act mainly via the Gαi subunit 
[49] (Fig. 3). Consequently, all receptors inhibit adenylyl 
cyclase, leading to the decrease in cAMP levels and down-
regulation of PKA activity [44, 50]. The second mechanism 
of NPY signaling, which is specific for the Y1R and Y2R, 
involves the activation of phospholipase C (PLC), leading 
to Ca2+ mobilization and activation of calcium-dependent 
pathways and calcium–calmodulin (CaM)-dependent pro-
tein kinase II (CaMKII) [51–54]. Paradoxically, the NPY-
induced CaMK activation may lead to an increase in the 
cyclic AMP response element binding protein (CREB) 
phosphorylation and stimulation of its transcriptional activ-
ity [55]. In concert, the above molecular events lead to the 
activation of the extracellular signal-regulated kinase 1/2 
(ERK) belonging to the mitogen-activated protein kinase 
(MAPK) family, known as the main proliferative pathway 
[44, 54]. Moreover, NPY receptors have been shown to acti-
vate phosphoinositide 3-kinases (PI3K)/Akt axis, which is 
involved in regulation of cell survival [56]. The unique fea-
ture of Y5R is its ability to control cytoskeleton remodelling 
by activation of its key regulator, RhoA, which can promote 
cell migration [57, 58]. In addition to the above pathways 

that can directly affect cancer cell proliferation, survival, 
and motility, NPY modifies the activity of ion channels in 
receptor-specific manner, which is crucial for regulation of 
neuronal activity [59].

Upon their direct or indirect activation, ligand-bound 
NPY receptors undergo internalization. Next, they are 
degraded in lysosomes or returned to the cellular surface in 
active form. The above process depends on additional pro-
teins, such as clathrins and arrestin [60, 61]. Such receptor 
internalization can facilitate drug delivery to the target cell. 
Consequently, several selective agonists of NPY receptors 
have been synthesized and proposed as vehicles for cancer 
imaging and nuclear medicine [62, 63].

3 � Physiological functions of NPY

Due to its presence in the brain and in peripheral nerves, 
NPY coordinates the central and systemic regulation of 
various physiological processes (Fig. 1). One of the key 
aspects of physiology regulated by NPY is metabolism 
[64]. In the hypothalamus, NPY acts as an orexigenic pep-
tide [65]. Its transcriptional gene expression is regulated by 

Fig. 3   The molecular mechanism of NPY actions relevant to can-
cer biology. In humans, NPY acts mainly via three GPCRs—Y1R, 
Y2R, and Y5R. Y1R requires the full length NPY1–36 for the activa-
tion, while Y2R and Y5R can also bind to NPY3–36. All NPY recep-
tors signal through Gi/o proteins and inhibit cAMP synthesis by 
adenylyl cyclase, which blocks the inhibitory effects of PKA on the 
downstream pathways. The second mechanism of NPY signaling, 

specific for Y1R and Y2R, involves Ca.2+ mobilization and subse-
quent calcium-dependent activation of PKC and CaMKII. Concomi-
tantly, these signaling pathways lead to the activation of ERK1/2. 
Moreover, all NPY receptors are capable of activating the PI3K/Akt 
pathway. The specific feature of Y5R is the ability to activate RhoA 
and thereby regulate cytoskeleton remodeling (figure created using 
Biorender)
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ghrelin, insulin, and leptin [66]. The dysregulation in the 
NPY-hypothalamus-adipose tissue axis results in obesity. 
For example, in animal models, the overexpression of NPY 
in the hypothalamus led to hyperphagia and increased body 
weight [67]. However, the peptide can also stimulate obe-
sity by its peripheral effects on adipocytes and vasculariza-
tion of adipose tissue [23]. Here, NPY dysregulates glucose 
metabolism, drives abnormal lipolysis, and supports adipo-
cyte differentiation, lipid accumulation, and insulin resist-
ance [23, 68].

Similarly, NPY plays a dual role in the central and periph-
eral stress response. In the brain, NPY exerts anxiolytic 
effects [69]. In animals, intracerebroventricular adminis-
tration of NPY had a sedative effect, which supports the 
anti-stress and anti-anxiety activity of the peptide [69]. 
Locally, the peptide plays an important role in maintaining 
central nervous system homeostasis by its neuroprotective 
and anti-inflammatory effects, inhibition of the ER stress, 
regulation of calcium homeostasis, stimulation of autophagy 
in the hypothalamus, and nutritional support [70]. Moreo-
ver, NPY promotes neurogenesis and protects neurons from 
injury [71].

In the periphery, NPY acts as a neuromodulator released 
from sympathetic nerves upon their high intensity stimula-
tion [4, 5]. Consequently, the elevated NPY levels in the 
blood can serve as a marker of severe chronic stress [72]. 
Presynaptically, NPY inhibits catecholamine release from 
sympathetic nerve endings via its Y2R [73]. At the same 
time, the peptide takes over some functions of norepineph-
rine [74]. For example, in the cardiovascular system, NPY 
secreted from neurons innervating the vasculature, endo-
cardium, and cardiomyocytes regulates blood pressure and 
vasoconstriction [8]. Moreover, prolonged exposure to high 
doses of NPY, for example during chronic stress, leads to 
an increase in smooth muscle cell proliferation and athero-
sclerosis [75, 76].

The NPY activity in the immune system is complex, with 
bimodal actions both stimulating and inhibiting inflam-
matory processes, depending on the receptor expression, 
immune cell type, and physiological context [77]. NPY regu-
lates numerous functions of immune cells, including pro-
liferation, migration, phagocytosis, antigen capturing, and 
cytokine secretion [7, 78]. This immunomodulatory effect 
can be exerted by neuronal NPY, acting as a critical player 
in the neuroimmune crosstalk, as well as endogenous pep-
tide expressed by many immune cells, including monocytes, 
macrophages, lymphocytes, dendric cells, and granulocytes 
[7, 79–81]. Altogether, the overall role of the NPY system 
is to preserve immune homeostasis in response to various 
environmental stimuli [81].

NPY is also an important factor in the regulation of bone 
homeostasis. NPY receptors are expressed by osteoblasts, 
osteocytes, and osteoclasts. Consequently, the peptide 

controls both bone matrix resorption and formation via its 
effects on osteogenic and osteoclastic differentiation and 
osteoblast activity [82]. However, the reports regarding 
the specific role of NPY and its receptors are often con-
tradictory, indicating both osteogenic and osteolytic effects 
[82]. Nevertheless, due to its impact on both bone and lipid 
metabolism, NPY has been implicated as a factor coordi-
nating changes in fat tissue and bones in several disorders, 
including osteoporosis, cachexia, and bone metastasis [82].

Importantly, many systemic effects regulated by NPY 
actions in the central and peripheral nervous system are 
capable of affecting the course of the malignant disease 
(Fig. 4). For example, obesity that may result from a dys-
regulation of the NPY system is a well-known risk factor 
for development and progression of several malignancies, 
often associated with increased cancer-specific mortality 
[83]. Clinical studies confirmed that the levels of NPY are 
elevated in obese people, while adipose tissue itself is a rich 
source of growth factors and proinflammatory cytokines 
[84]. Similarly, NPY-induced changes in the immune sys-
tem may affect anti-tumor response and inflammation, while 
the effect of the peptide on bone homeostasis may facilitate 
osseous metastasis [85].

The role of NPY as a sympathetic stress mediator may 
also impact cancer development and progression. Many 
studies suggest that chronic stress increases cancer risk and 
promotes its progression due to elevated levels of stress hor-
mones and neurotransmitters [86]. While such effects are 
commonly attributed to the elevated cortisol levels and the 
resulting immunosuppression or increased catecholamine 
concentrations, the role of NPY in stress-induced cancer pro-
gression cannot be excluded [4]. Elevated NPY levels caused 
by chronic stress can exacerbate direct and indirect actions 
of the peptide on cancer cells and tumor microenvironment. 
Importantly, NPY is more stable than catecholamines and 
its stress-induced up-regulation lasts longer than the acute 
spikes in epinephrine and norepinephrine concentrations [4]. 
For example, psychological stress in prostate cancer patients 
leads to NPY-dependent immunosuppression, which in turn 
stimulates cancer progression [25, 87].

4 � Direct effects of NPY on cancer cells

On a cellular level, NPY is involved in numerous processes 
crucial for cell survival and tissue repair, including growth, 
differentiation, apoptosis, and proliferation [88–91]. For 
example, the proliferative potential of NPY is observed in 
the central nervous system (neuronal precursors in the olfac-
tory epithelium, hippocampus, retina, injured glial cells); 
muscles (smooth muscle cells, cardiomyocytes); endothe-
lium and a variety of stem cells (mesenchymal, hematopoi-
etic, adipose-derived and embryonic stem cells) [44, 92–95]. 
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In multipotent embryonic cells, NPY maintains an undiffer-
entiated state and drives their proliferation and self-renewal 
[95]. It also regulates the classical embryonal developmental 
pathways like WNT/β-catenin and Sonic Hedgehog (SHH) 
[96, 97]. NPY receptor expression has been detected in many 
cancer types, while the peptide itself can be synthesized by 
tumor cells or secreted from nerves and other stromal cells, 
e.g. immune infiltrates [87, 98–102]. Similarly, both cancer 
cells and host tissues, such as endothelium, express DPPIV, 
which can modulate NPY actions [36, 103]. Thus, the cru-
cial role of NPY in regulation of a variety of cellular func-
tions is highly relevant to tumor biology and can contribute 
to processes characterized as hallmarks of cancer (Fig. 4) 
[104–106].

Sustained proliferative potential  NPY has been shown to 
stimulate proliferation of various cancer cells, including 
neuroblastoma, breast cancer, and some prostate cancer cell 
lines [91, 102, 107, 108]. These proliferative properties of 
NPY depend on Y1R, Y2R, and Y5R activation resulting in 
stimulation of the ERK1/2 MAPK pathway (Fig. 3) [44, 52, 
108]. However, the receptor expression and activities vary 
between cancer types. Moreover, the mitogenic response to 
low concentrations of NPY may be enhanced by interactions 
between its heterotypic receptors [44]. Such proliferative 
properties of NPY can promote tumor growth.

Resisting cell death  NPY has the ability to both stimulate 
and inhibit cell death. In Ewing sarcoma, NPY acting via 
simultaneous activation of Y1R and Y5R triggers cell death 
mediated by poly(ADP-ribose) polymerase (PARP-1) and 

apoptosis-inducing factor (AIF) [36, 91, 109]. However, this 
effect can be alleviated by the high activity of DPPIV in 
these cells, which converts the peptide to NPY3–36 that does 
not bind to Y1R [35, 36]. On the other hand, in neuroblas-
toma, cellular stress triggered by chemotherapy or growth 
factor withdrawal induces expression of Y5R, which acts as 
a survival factor for tumor cells [48]. This effect is medi-
ated by interactions of Y5R with brain-derived neurotrophic 
factor (BDNF) and its TrkB receptor [48]. However, the 
exact mechanisms underlying this phenomenon remain to 
be determined.

Deregulating cellular energetics  Cancer progression is also 
associated with profound changes in cellular metabolism. 
The Warburg effect, defined as aerobic glycolysis, is a well-
known phenomenon in tumor cells [110]. NPY regulates 
energy balance and stimulates a Warburg effect in cancer 
cells. In prostate cancer, NPY is necessary to maintain high 
metabolic activity, while in neuroblastoma it up-regulates 
glutaminolysis, glycolysis, and possibly tricarboxylic acid 
cycle activity, which confirms its function as a sensor of 
energy metabolism [102, 111, 112].

Genome instability  Recent studies identified a new role for 
the NPY system in stimulation of chromosomal instability. 
In hypoxic Ewing sarcoma cells, over-activation of the NPY/
Y5R pathway leads to abnormally high activity of the RhoA 
axis, which results in cytokinesis failure and leads to the 
formation of polyploid cells [57]. The progeny of these poly-
ploid cells creates a unique cell population that exhibits high 
levels of chromosomal instability and propensity for bone 

Fig. 4   The pleiotropic func-
tions of neuropeptide Y in 
cancer biology. A Cancer types 
known to express NPY and/or 
its receptors. B Potential direct 
effects of NPY on cancer cells. 
C Processes regulated by NPY 
in the cancer microenvironment. 
D Systemic effects of NPY that 
can affect cancer development 
and progression (figure created 
using Biorender)
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metastasis [57]. This is the first indication of the role for the 
NPY system in triggering genomic evolution of cancer cells 
[57]. Further studies are required to determine if similar pro-
cesses occur in other cancer types expressing Y5R.

Unlocking phenotypic plasticity  Phenotypic plasticity may 
result from transient transcriptional changes. One of the key 
aspects of such plasticity is the regulation of cell differentia-
tion and stem cell-like properties [113]. Cancer stem cells 
may drive tumor initiation, metastasis, and relapse. NPY 
regulates the proliferation, differentiation, migration, and 
survival of different types of stem cells suggesting that the 
stimulation of tumor cell stemness may be another mecha-
nism by which NPY can contribute to the progression of 
cancer [95]. Indeed, in Ewing sarcoma, NPY has been 
shown to selectively stimulate proliferation and migration 
of hypoxic cancer stem cells identified by high activity of 
aldehyde dehydrogenase [42]. However, understanding 
the contribution of the NPY signalling to cancer stemness 
requires further investigations.

Activating invasion and metastasis  In addition to its 
effect on tumor growth, NPY can also contribute to can-
cer dissemination. The peptide stimulates the motility of 
various cancer cells and acts as a chemotactic factor for 
some of them. The pro-migratory properties of NPY were 
described in Ewing sarcoma, neuroblastoma, breast, pros-
tate, and hepatic cancers [42, 58, 102, 107, 114]. How-
ever, in some colorectal cancer and cholangiocarcinoma 
cell lines, NPY decreased tumor invasion [115, 116]. The 
signaling pathways mediating these pro-migratory effects 
may include MAPK and PI3K [107, 117, 118]. In addi-
tion, recent studies indicated the direct effect of NPY on 
cytoskeleton remodelling during cell movement by Y5R-
mediated RhoA activation [58]. These interactions occur 
in the leading and trailing edges of migrating cells, facili-
tating their motility [58]. The pro-migratory actions of 
NPY can be further enhanced by interactions between its 
heterotypic receptors, as previously suggested for endothe-
lial and neuroblastoma cells [44, 47, 58].

The NPY-induced tumor cell motility can facilitate 
a locoregional and distant cancer spread. Clinical data 
strongly support the role of the NPY system in neuroblas-
toma metastasis [57, 99, 114]. The direct evidence for the 
role of the NPY/Y5R axis in local invasion were dem-
onstrated in animal models of hepatic cancer, while the 
same pathway has been shown to stimulate distant bone 
metastasis in Ewing sarcoma orthotopic xenografts [57, 
99, 114]. However, the role of the NPY system in overall 
cancer dissemination to other metastatic niches remains 
to be proven.

5 � Effects of NPY on tumor 
microenvironment

In addition to its direct effects on cancer cells, NPY modi-
fies the tumor microenvironment (Fig. 4C). The peptide 
is involved in molecular crosstalk between cancer and 
stroma, including neuronal, vascular, immune, and bone 
cells [47, 82, 119]. Some of these actions fall under the 
category of previously described hallmarks of cancer, 
while others are emerging interactions with the tumor 
environment that can pertain to selected cancer types 
[104–106].

Inducing angiogenesis  Zukowska et al. discovered that NPY 
is an angiogenic factor that induces proliferation, migration, 
differentiation, and capillary tube formation by endothelial 
cells [24, 29, 47, 120]. The angiogenic functions of NPY are 
the most profound in hypoxia and ischemia when the levels 
of NPY increase. Y2R has been identified as the main angio-
genic NPY receptor, although Y1R and Y5R also contribute 
to this process [24, 47, 121, 122]. The angiogenic potency 
and efficacy of NPY in neoangiogenesis are comparable to 
that of vascular endothelial growth factor (VEGF), and at 
least partially mediated by the VEGF system [24, 120]. The 
angiogenic activities of NPY are particularly important in 
tumors secreting endogenous NPY, such as neuroblastoma 
and Ewing sarcoma [42, 108, 109, 123].

Tumor‑promoting inflammation and avoiding immune 
destruction  The immune system can play a dual role in 
cancer development and progression. On one hand, infil-
tration with inflammatory cells, such as tumor-associated 
macrophages (TAMs), can stimulate these processes, on the 
other hand, the cellular immune response involving natural 
killer (NK) cells and cytotoxic T lymphocytes (CTL) have 
the capability of eliminating cancer cells [106]. As a potent 
immunomodulator, NPY can contribute to both of these 
aspects of immuno-oncology. In prostate cancer patients, 
stress-induced increase in NPY release has been associated 
with increased recruitment of myeloid-derived suppressor 
cells, infiltration of cancer tissues by TAMs, and secre-
tion of immunosuppressive interleukins [25, 87]. Moreo-
ver, NPY is capable of inhibiting NK cell activity, which 
is a key component of the anti-tumor immune response, 
as well as regulating the recruitment and proliferation of 
lymphocytes [81]. However, the role of NPY in regulation 
of immune response is context-specific and the impact of 
NPY-dependent immune changes on cancer biology remains 
understudied.

Neuronal‑cancer crosstalk  In the last few years, the neu-
robiology of cancer has become an important field of 
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investigation into the mechanisms contributing to carcino-
genesis and cancer progression [124]. Nerves constitute 
important components of the neoplastic microenvironment, 
which regulate the biology of many tumors [125]. Preclinical 
and clinical data indicate that NPY-positive nerves, poten-
tially arising due to tumor-induced neurogenesis, serve as a 
paracrine source of NPY for tumor cells [102]. In prostate 
cancer, such paracrine NPY signaling exerts multifaceted 
effects and regulates tumor metabolism, apoptosis, motility, 
and therapy resistance [102]. The expression of NPY is also 
higher in perineural invasion areas in prostate cancer tis-
sues, suggesting a potential role for the peptide in perineural 
spread [126].

Bone invasion and metastasis  Among its various physiolog-
ical activities, NPY is also an important regulator of bone 
homeostasis, suggesting its potential role in bone degrada-
tion induced by tumors expressing the endogenous peptide. 
Indeed, in Ewing sarcoma, tumor areas infiltrating bone had 
higher NPY expression [127]. In line with this observation, 
NPY-rich Ewing sarcoma xenografts had a high degree of 
bone degradation, while genetic knockdown of the peptide 
expression reduced tumor-induced osteolysis [127, 128]. 
Moreover, studies on Ewing sarcoma xenograft models indi-
cated that cell lines, which secrete NPY to the environment 
have a higher capacity to metastasize to bone, as opposed 
to the cells that do not release the peptide [127]. The exact 
mechanisms by which tumor-derived NPY alters the bone 
environment and promotes infiltration of this tissue remains 
to be determined, as the peptide may affect differentiation 
and activity of both osteoblasts and osteoclasts. Interest-
ingly, many NPY-rich cancer types, such as neuroblastoma, 
Ewing sarcoma and prostate cancer, are known to metasta-
size to bone [91, 98, 127].

6 � Cancer type‑specific effects of NPY

As described above, NPY is a pleiotropic factor with a wide 
range of functions that are relevant to the key hallmarks of 
cancer (Fig. 4). While some of these activities of NPY, such 
as its angiogenic potential, are universal between various 
malignancies, others are specific for the particular cancer 
types [91]. Below we outline the best-described activities 
of NPY in several malignancies, although its role has also 
been implicated in other tumor types (Table 1). This includes 
tumors with known endogenous NPY expression, which are 
capable of secreting the peptide, and those that rely on NPY 
present in the tumor microenvironment and the circulation.

Neuroblastoma  Neuroblastic tumors constitute a hetero-
geneous group of pediatric malignancies arising from the 
precursors of sympathetic neurons [129, 130]. These tumors 

with wide clinical, morphological, and molecular spectrum 
develop in adrenal glands or autonomic ganglia [130]. Due 
to their sympathetic origin, neuroblastoma cells produce 
NPY and secrete the peptide [91, 109]. Consequently, sys-
temic NPY levels in the serum of neuroblastoma patients 
are often elevated, which correlates with unfavorable prog-
nostic factors, such as poorly differentiated phenotype and 
the presence of metastases [99, 131, 132]. The high NPY 
serum concentrations at diagnosis can also predict future 
relapse [99]. However, thus far, NPY is not accepted as an 
independent prognostic factor.

NPY secreted from neuroblastoma cells regulates their 
function in an autocrine manner via Y2R and Y5R. Y2R 
is constitutively expressed in neuroblastoma cells and its 
autocrine activation is crucial in maintaining tumor cell 
proliferation (Fig. 5A) [108]. In contrast, Y5R is an induc-
ible NPY receptor in neuroblastoma [48]. The levels of 
Y5R increase under cellular stress, such as chemotherapy 
or serum deprivation, promoting neuroblastoma cell sur-
vival under these conditions [48]. Moreover, the NPY axis 
interacts with the BDNF/TrkB pathway, which induces NPY 
and Y5R expression and transactivates Y5R upon BDNF 
stimulation [48]. Altogether, these coordinated activities of 
the NPY and BDNF systems enhance the neuroblastoma 
resistance to chemotherapy [48]. Consequently, expression 
of NPY and Y5R is particularly high in neuroblastoma cell 
lines and tissues derived from patients previously treated 
with cytostatic therapy (Fig. 5B) [48].

In contrast, in neuroblastoma tissues not subjected to 
treatment, the Y5R immunoreactivity is particularly high in 
migratory and angioinvasive neuroblastoma cells accumu-
lating around blood vessels (Fig. 5A) [99]. In line with this 
localization, the NPY/Y5R autocrine loop has been shown 
to stimulate neuroblastoma cell motility and invasiveness via 
direct effects on RhoA activity and cytoskeleton remodelling 
[58]. These data are in agreement with clinical correlations 
between high systemic NPY levels and metastatic pheno-
type of the disease [99]. However, the direct effect of the 
NPY/Y5R pathway on neuroblastoma dissemination in vivo 
remains to be proven.

In addition to its effect on cancer cells, NPY secreted 
from neuroblastoma is crucial for tumor vascularization 
[108, 109]. Notably, the NPY-induced angiogenesis is also 
dependent on the activity of Y2R and Y5R in endothelial 
cells, further supporting the NPY/Y2R/Y5R axis as a poten-
tial target in neuroblastoma therapy impacting multiple pro-
cesses involved in the disease progression to the therapy-
resistant and metastatic phenotype [47, 108, 109].

Ewing sarcoma  Ewing sarcoma arises in bone and soft tis-
sue, most often in pediatric and adolescent patients [133]. 
The disease develops due to a chromosomal translocation 
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resulting in the fusion between the EWSR1 gene and gene 
encoding a transcription factor from the ETS family, typi-
cally FLI1 or ERG gene [133, 134]. The most common 
chromosomal translocation in Ewing sarcoma is t(11;22)
(q24;q12), which leads to the formation of the EWS-FLI1 
fusion protein [134]. These abnormal transcription factors 
stimulate expression of numerous genes, including NPY and 
its Y1R and Y5R [135, 136]. Consequently, all Ewing sar-
coma tumors express high levels of these proteins (Fig. 5C) 
[100]. Additionally, in approximately 50% of Ewing sar-
coma patients, tumors secrete NPY, resulting in elevated 
systemic levels of the peptide in serum [100]. Paradoxically, 
the initial studies indicated that the NPY/Y1R/Y5R auto-
crine loop, which is up-regulated by EWS-FLI1, triggers cell 
death mediated by the PARP-1/AIF signalling [36, 91, 109]. 
However, this effect can be blocked by endogenous DPPIV, 
which cleaves NPY to its NPY3–36 form, inactive at Y1R 
[36]. This process is enhanced by hypoxia, which stimulates 
expression of NPY, Y5R, and DPPIV, and induces expres-
sion of Y2R, effectively shifting the activity of the peptide 
to the Y2R/Y5R axis [42]. Notably, this pathway increases 
proliferation and motility of the Ewing sarcoma cells with 
cancer stem cell properties [42]. In line with this, expression 
of the hypoxia-inducible Y2R in Ewing sarcoma tissues is 
associated with worse patient survival [42].

In addition to its overall effect on Ewing sarcoma cell 
biology, high levels of endogenous NPY have been asso-
ciated with bone invasion and metastasis. In Ewing sar-
coma patients, serum NPY concentrations are higher in 
patients with bone primary tumors, as compared to those 
with extraosseous lesions [100]. The tissues from tumors 
developing in bone had also increased expression of the 
NPY system [100]. In animal models, xenografts derived 
from Ewing sarcoma cells capable of secreting NPY 
metastasized to bones and had a higher degree of tumor-
induced bone degradation, as compared to xenografts with 
low NPY expression [127]. Consequently, NPY knock-
down in Ewing sarcoma cells reduced bone degradation 
within primary tumors, implicating NPY as an osteolytic 
factor [127]. However, the exact mechanisms of this effect 
remain to be determined.

Aside from its osteolytic activity, NPY is an important 
factor linking tumor hypoxia, chromosomal instability, 
and bone metastasis. Recent studies indicated that severe 
hypoxia overactivates the NPY/Y5R/RhoA pathway in 
Ewing sarcoma, leading to cytokinesis failure and whole 
genome doubling [57]. Subsequently, the progeny of these 
polyploid cells undergo abnormal cell divisions, creating 
a specific cell population, which exhibits high levels of 
chromosomal instability and preferentially metastasizes 
to bone [57]. Further studies are required to determine the 
mechanisms facilitating osseous dissemination of this cell Ta
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population, as well as the role of the NPY system in overall 
Ewing sarcoma metastasis to other niches.

Altogether, despite their different origins, both neuro-
blastoma and Ewing sarcoma tumors express high levels of 
endogenous NPY and are capable of secreting the peptide 
[99, 100, 109]. If released to the tumor environment, par-
ticularly under cellular stress, NPY exerts growth-promoting 
and prometastatic properties via the NPY/Y2R/Y5R axis 
[42, 48, 57, 58, 108]. Moreover, in both tumor types, the 
peptide exerts angiogenic activities via the same Y2R/Y5R 
pathway [42, 108, 109]. Taken together, these data warrant 
further investigation into the value of the Y2R and Y5R as 
potential therapeutic targets in these malignancies.

Sympathetic tumors of the adults  Pheochromocytoma and 
paraganglioma are tumors of sympathetic origin developing 
in adults from chromaffin cells residing in the adrenal gland 
and their neural crest precursors in the sympathetic gan-
glia [137]. Under physiological conditions, NPY is secreted 
from these cells, where it inhibits catecholamine release 
[138]. Consequently, in patients with pheochromocytomas 
and paragangliomas, tissue expression of NPY is high and 
the plasma concentration of the peptide is elevated in 20 to 
67% of patients, depending on the form of NPY measured 

[139–141]. This data suggests that NPY may be used as 
a catecholamine substitute in diagnostics of these tumors, 
especially in patients with kidney impairment, or treated 
with a drug that interferes with catecholamine metabo-
lism [141, 142]. It was suggested that NPY mRNA levels 
might distinguish the benign from the malignant form of the 
tumor [143]. However, other reports indicated that the level 
of NPY does not correlate with the degree of malignancy 
[144]. Overall, despite its high expression, the biological 
functions of NPY in these tumors are not clear.

Breast cancer  During breast carcinogenesis, NPY recep-
tor expression switches from Y2R to Y1R, and the Y1R 
is present in 85% of breast cancer cases (Fig. 6) [101]. 
Y1R expression in breast cancer is up-regulated by estro-
gens [145]. The gene and protein expression of Y1R is the 
highest in luminal A and the lowest in the HER2-positive 
molecular subtype of breast cancer [146]. In a biologi-
cally unselected population of breast cancer patients, high 
Y1R expression in circulating tumor cells was a predic-
tive biomarker for lymph node metastases and a prognostic 
factor for shorter patient survival [11]. Also, the immu-
nohistochemical analysis of Y1R in an Egyptian popula-
tion of patients with breast cancer revealed correlation of 

Fig. 5   NPY receptors in pediat-
ric tumors. A Neuroblastoma—
poorly differentiated, chem-
onaive tumor with strong and 
diffuse expression of Y2R. Y5R 
expression within the neoplastic 
cells is generally low, while 
high Y5R levels are seen in the 
endothelial cells and neuroblasts 
accumulated around blood ves-
sels (200 ×). B Post-treatment 
chemoresistant neuroblastoma 
showing strong Y5R expression 
(200 ×). C Chemonaive Ewing 
sarcoma with strong Y5R 
expression (400 ×)
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its increased non-nuclear expression with the presence 
of metastatic disease, advanced clinical stage, perineural 
invasion, and luminal subtype [147]. In contrast, in luminal 
A breast cancer, Y1R was a positive predictive factor for 
longer relapse-free and overall survival [146]

Functionally, NPY has been implicated in regulation 
of many processes involved in breast cancer progression, 
including cancer cell proliferation, survival, motility, and 
tumor vascularization. For example, in estrogen receptor 
(ER)-positive breast cancer, Y1R has been shown to inhibit 
estradiol-induced cancer cell proliferation, while its high 
expression predicted endocrine sensitivity and better sur-
vival [146]. On the other hand, Y5R has been implicated 
as a growth- and metastasis-promoting factor, as it stimu-
lates breast cancer cell proliferation and migration, as well 
as promotes the expression and release of the key angio-
genic stimulator, VEGF [51, 107, 148]. Importantly, Y1R 
and Y5R are up-regulated by hypoxia in breast cancer cells, 
and both receptors have been shown to contribute to the 
NPY-induced breast cancer cell proliferation and migration 
under these conditions (Fig. 6B, C) [117, 118]. However, 
Y5R is also frequently lost in breast cancer tissue, while its 
ectopic expression in breast cancer cells led to a decrease 
in their proliferation and migration and an increase in 

chemosensitivity due to the cell cycle arrest in the G2/M 
phase and subsequent apoptosis [149]. This effect may 
reflect the supraphysiological levels of Y5R resulting from 
its ectopic overexpression, as overactivation of the Y5R/
RhoA axis in Ewing sarcoma has been shown to result in 
cytokinesis failure [57]. The discrepancy in the reports per-
taining to the biological activity of Y5R in breast cancer may 
also result from the heterogeneous nature of this disease. 
Hence, further studies are required to determine the role of 
the NPY system in specific breast cancer subtypes.

Prostate cancer  According to the TCGA database, the 
expression of NPY in prostate cancer is the highest among 
all adulthood cancer types (Fig. 7A–C) [150]. However, the 
clinical data regarding correlations between the NPY levels 
and prognosis in prostate cancer patients are conflicting and 
the results are often dependent on the method of NPY detec-
tion. Gene expression analyses based on mRNA levels often 
associate lower NPY expression with a more aggressive dis-
ease course [150]. In contrast, elevated NPY protein levels in 
the prostate cancer tissue are typically correlated with more 
aggressive phenotype. Pro-NPY levels detected by proteom-
ics analysis are increased in prostate cancer, as compared to 
normal prostate, and correlate with worse cancer-specific 
survival [151]. Likewise, a high frequency of NPY-positive 

Fig. 6   NPY system in breast cancer. A Ductal carcinoma in  situ of 
the breast—NPY with low and intermediate cytoplasmic expression, 
and intermediate Y5R expression in the preinvasive cells (400 × , 
200 ×). B Invasive ductal carcinoma of the breast showing interme-

diate NPY and Y5R immunoreactivity in the cancer cells (400 ×). C 
Breast cancer metastasis to the bone with intense Y1R immunostain-
ing (400 ×)



	 Cancer and Metastasis Reviews (2025) 44:2121  Page 14 of 24

prostate cancer cells identified by immunohistochemistry 
is associated with a high risk of relapse [152]. Particularly 
high expression of NPY is observed in ERG fusion-positive 
(ERG +) tumors, although a study by Kristensen et al. indi-
cated that high pro-NPY and ERG levels were unrelated to 
unfavorable oncological outcomes [153]. Another measure 
of the NPY system activity in patients is the concentration 
of the peptide in the blood. Plasma proteome profiling iden-
tified NPY as a prostate cancer biomarker, with concentra-
tions increasing in patients with high Gleason scores [154]. 
Similarly, elevated platelet NPY, which has been previously 
associated with the response to stress and hypoxia, correlates 
with worse progression-free survival in patients treated with 
abiraterone, the novel antiandrogen drug [23, 27, 29, 30]. 
Since NPY acts via membrane receptors, its secretion from 
neurons or cancer cells is necessary for its actions. Hence, 
an elevated serum NPY is the most biologically relevant bio-
marker of its enhanced activity in cancer patients and often 
correlates with metastatic disease and relapse [99, 100].

While the associations between high systemic NPY and 
adverse phenotype of prostate cancer are well established, it 
is not clear if the elevated levels of the peptide in the blood 

result from its release from tumors or increased neuronal 
activity (e.g. due to stress). For example, patients with pros-
tate cancer and high psychological depression scores have 
further elevated NPY expression within tumor tissue and 
the peptide can be released from the prostate cancer cells 
upon norepinephrine stimulation, suggesting the role of the 
autocrine peptide [25]. This cancer cell-derived NPY acts 
as a chemoattractant for macrophages, increasing the infil-
tration by TAMs and thereby advancing the disease [25]. 
In contrast, studies by Ding et al. suggest the impact of the 
neuronal NPY on prostate cancer progression, as the high 
count of NPY-positive nerve fibers within cancer tissue pre-
dicted the increased risk of biochemical recurrence and can-
cer-specific death [102]. The mechanisms underlying these 
effects include changes in cancer cell metabolism, motility, 
proliferation, apoptosis and therapy resistance [102]

In addition to the high NPY expression, prostate cancer 
cells are also rich in its receptors. It has been recently shown 
that the entire NPY system, including Y1R, Y2R, and Y5R, 
is up-regulated in prostate cancer starting from the early 
stages of carcinogenesis (Fig. 7D-F) [98]

Current functional data implicate Y1R in prostate can-
cer biology [102]. However, the role of the remaining NPY 

Fig. 7   NPY system in prostate cancer. A NPY staining is low and 
mostly membranous in the normal prostatic glands, while cancer cells 
exhibit strong and cytoplasmic immunoreactivity (200 ×). B NPY 
expression with gradient increasing toward the tumor invasive front 
and perineural invasion of the prostate cancer (100 ×). C Cancer cells 

infiltrating ganglion present with NPY staining comparable or higher 
than that observed in neuronal cells (400 ×). D–F NPY receptors 
within the prostate cancer in localized (Y1R, Y2R), and metastatic 
(Y5R) stages (100 × , 400 × , 400 × , respectively)
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receptors in this malignancy remains to be determined. 
For example, our recent studies indicated accumulation of 
prostate cancer cells enriched in all three NPY receptors on 
the invasive edge of the prostate cancer and in perineural 
invasion areas [98]. Importantly, Y2R was the only NPY 
receptor with expression significantly elevated in advanced 
tumors, as compared to low-stage lesions (pT3 vs pT1-2), 
while high Y5R expression correlated with the presence 
of extraprostatic extensions [98]. Given the known role of 
the Y2R and Y5R in invasiveness and metastasis in other 
malignancies, these data warrant further investigations 
into their role in prostate cancer progression.

Hepatocellular carcinoma  Liver pathogenesis is associated 
with changes in the local and systemic NPY. Patients with 
liver cirrhosis and hepatocellular carcinoma have elevated 
serum NPY levels as compared to the healthy control [155]. 
Moreover, recent studies indicated the role of NPY in cross-
talk between liver cancer cells and surrounding normal tis-
sue. Normal hepatocytes surrounding hepatocellular carci-
noma release NPY, which activates Y5R present in cancer 
cells and stimulates their invasiveness [114].

Other cancer types  The preclinical and clinical data in 
other cancers are usually limited to the characteristics of 
the expression pattern of NPY and its receptors. Among 
cancers of the gastrointestinal tract, the role of NPY is best 
characterized in colon carcinogenesis. In the animal model 
of inflammation-induced tumorigenesis, NPY knock-out sig-
nificantly reduced the number and size of intestinal polyps, 
as well as decreased proliferation and increased apoptosis 
in colonic epithelial cells [156]. In line with these results, 
NPY has been identified as one of the core genes up-regu-
lated during colon cancer progression [157]. Elevated NPY 
expression and secretion were also described in cholangio-
carcinoma, as compared to normal cholangiocytes [116]. 
Moreover, NPY-positive cancer cells are detectable in stom-
ach carcinoma (Fig. 8).

In skin cancers, the function of NPY is not well eluci-
dated and the data is conflicting. While overall expression 
of NPY is elevated in melanoma, its high levels have been 
associated with better clinical outcomes or invasiveness and 
metastasis [158, 159]

7 � Potential clinical applications

The pleiotropic actions of NPY relevant to tumor biology 
and the widespread expression of its receptors in neoplastic 
cells warrant further investigations into potential clinical 
applications based on the NPY system. Due to the growth-
promoting and metastatic functions of NPY described in 
various malignancies, its receptors represent promising tar-
gets in cancer therapy [108, 160–162]. NPY receptors can 
be directly blocked by small molecule inhibitors. Thus far, a 
variety of selective antagonists have been developed for all 
NPY receptors. Some of them were effective in inhibiting 
tumor growth and dissemination in preclinical animal mod-
els. For example, the Y2R antagonist, BIIE0246, inhibits the 
growth of neuroblastoma by decreasing tumor proliferation 
and vascularization [108]. In Ewing sarcoma xenografts, 
the Y5R antagonist, CGP71683, inhibited hypoxia-induced 
bone metastasis [57]. Y1R and Y5R antagonists have also 
been shown to block proliferation, migration, and inva-
siveness of breast cancer cells in vitro [118]. Importantly, 
one of the Y5R antagonists, MK-0557, has been approved 
for clinical trials in obese patients and can be potentially 
repurposed for oncological studies [163, 164]. However, the 
limitation of the existing NPY receptor antagonists is their 
ability to cross the blood–brain barrier and thereby affect 
many central functions of the peptide, including food intake. 
Hence, future studies should focus on developing novel 
compounds with the activity limited to blocking the NPY 
actions in the periphery. Still, even in this case, potential 
side effects caused by interfering with broad physiological 
actions of NPY should be monitored, even though in animal 
experiments no such adverse effects were reported. Another 

Fig. 8   NPY-positive cells 
in stomach cancer. Poorly-
cohesive gastric cancer with 
heterogeneous NPY expression 
in the subsets of the infiltrating 
neoplastic cells (200 × , 400 ×)
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therapeutic option could be blocking the activity of DPPs 
enhancing many tumor-promoting actions of NPY. However, 
previous attempts were hindered by a feedback effect leading 
to a significant upregulation of DPPIV expression in cancer 
cells upon prolonged DPP inhibitor administration [36].

Carcinogenesis is often associated with changes in the 
NPY receptor expression. Consequently, the pattern of their 
distribution varies between normal and cancerous tissues, 
giving a scientific premise for utilizing NPY receptors in 
cancer diagnosis [101]. This may include standard histo-
pathological analyses, as well as the use of labelled NPY 
analogs for cancer imaging [160]. Moreover, levels of NPY 
protein and its receptors often correlate with cancer stage, 
differentiation, and patient survival (Table 1), suggesting 
their potential value as prognostic or predictive biomark-
ers. For example, the status of NPY gene methylation has 
been proposed as a prognostic marker in some malignancies, 
including colorectal and pancreatic cancers [165–168].

As GPCRs, NPY receptors undergo internalization upon 
ligand binding [169]. This process is particularly effective in 
the case of Y1R [169]. This phenomenon was utilized for the 
delivery of therapeutics into cancer cells. The NPY recep-
tors have been proposed as targets for drug conjugates that 
selectively kill cancer cells. Li and colleagues synthesized 
the doxorubicin encapsulating albumin nanoparticles con-
jugated to  [Pro30, Nle31, Bpa32, Leu34]NPY(28 − 36), 
which allow for selective drug delivery and inhibition of 
cell viability by binding to Y1R on the surface of breast 
cancer cells [162]. The analogs of NPY were also studied 
in other types of cancer. Tubugi-1-SS-NPY disulfide-linked 
conjugates show toxic selectivity in different cell lines with 
Y1R expression [170]. NPY receptor ligands have also been 
proposed as a vehicle to deliver radionuclides and siRNA 
to the cells [171, 172]. Yet, while designing such therapies, 
consideration should be given to potential side effects that 
may be caused by the widespread expression of NPY recep-
tors in normal tissues.

8 � Conclusions and future directions

NPY is a pleiotropic peptide with multifaceted functions in 
physiology and tumor biology (9). The peptide can directly 
regulate cancer cell proliferation, survival, and motility, as 
well as impact the tumor microenvironment by stimulat-
ing angiogenesis and modifying immune infiltration [14, 
77, 80, 88]. While many of these processes were initially 
described in tumors with high endogenous NPY expression, 
the peptide secreted from peripheral nerves can exert similar 
effects, making it an interesting mediator of cancer-nerve 
interactions [102, 126]. Moreover, NPY-dependent sys-
temic effects, such as changes in energy metabolism, obe-
sity, and the immune response can have an impact on cancer 

development and progression [78, 109, 173]. However, the 
exact role of these complex systemic activities of the peptide 
in the context of cancer needs to be further investigated. 
Another understudied aspect of NPY biology that needs to 
be elucidated in order to design effective therapies pertains 
to the interactions of its cognate receptors and cross-talk 
with other systems, such as adrenergic axis and BDNF; the 
phenomenon that can impact the efficacy of selective NPY 
receptor antagonists [44, 47, 48, 58]. Altogether, these find-
ings warrant further investigations into the impact of physio-
logical conditions resulting in elevated NPY, such as chronic 
stress, on cancer initiation and progression and its role in this 
process. Thanks to its pleiotropic functions in tumor biology, 
NPY and its receptors can become promising new targets 
in oncology, with potential applications in cancer therapy, 
imaging, diagnosis, and stratification. However, translation 
of these preclinical findings to clinical practice requires fur-
ther research to fully elucidate the direct and indirect effects 
of NPY on tumor tissue and the impact of its complex sys-
temic physiological functions on cancer progression.
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