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Abstract

Neuropeptide Y (NPY) is a sympathetic neurotransmitter widely distributed in the peripheral and central nervous system,
affecting many physiological functions. Consequently, dysregulation of the NPY system contributes to numerous pathologi-
cal disorders, including stress, obesity, and cancer. The pleiotropic functions of NPY in humans are mediated by G protein-
coupled receptors (Y1R, Y2R, Y5R), which activate several signaling pathways and thereby regulate cell growth, differentia-
tion, apoptosis, proliferation, angiogenesis, and metabolism. These activities of NPY are highly relevant to tumor biology
and known hallmarks of cancer, including sustained proliferative potential, resisting cell death, angiogenesis, invasion, and
metastases. In this comprehensive review, we describe the cellular functions of NPY and discuss its role in cancer pathobiol-
ogy, as well as provide the current state of knowledge pertaining to NPY and its receptors in various cancer types. Moreover,
we focus on potential clinical applications targeting the NPY system, such as its role as a prognostic and predictive factor, as
well as its utility in cancer diagnostics, imaging, and treatment. Altogether, growing evidence supports the significant role
of the NPY system in tumor pathobiology and implicates its potential therapeutic and diagnostic value in modern oncology.
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Tumor growth and progression involve multiple interactions

between cancer and host cells. While recent years brought
significant progress in our understanding of the role the local
tumor microenvironment plays in these processes, the impact
of systemic factors and the overall physiological state of the
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patient on cancer remains understudied [1]. In this review,
we will focus on one such factor, neuropeptide Y (NPY).
NPY is a sympathetic neurotransmitter abundant in the cen-
tral and peripheral nervous systems [2, 3]. The peptide is a
crucial stress mediator, which regulates various physiologi-
cal functions [4, 5]. Some of these processes, such as food
intake, anxiety, and circadian cycle control, depend on NPY
activity in the brain (Fig. 1A) [6]. Others, including cardio-
vascular and immune responses, are regulated by the peptide
released from peripheral sympathetic nerves (Fig. 1B) [7, 8].
Consequently, dysregulation of the NPY system has been
implicated in various disorders, with obesity and psychiatric
diseases being the most extensively studied [5, 9]. However,
growing evidence indicates a role for NPY in tumor biology,
which is driven by its direct effects on cancer cells and their
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Fig. 1 Physiological functions of NPY. A As one of the most abun-
dant peptides in the brain, NPY is involved in central regulation of
processes involved in stress response, appetite stimulation, circadian
rhythm, immunity and bone homeostasis. B In the periphery, NPY is

microenvironment, as well as indirect influence caused by
altering patients’ physiological responses known to affect
growth and dissemination of various malignancies [10-14].
This review aims to summarize the current knowledge on
the biological effects of NPY in cancer and their clinical
implications, as well as delineate physiological functions of
NPY that have the potential to affect cancer progression, yet
have not been studied in the context of oncology.

2 Structure and components of the NPY
system

NPY belongs to a family of evolutionary conserved peptides
that also includes peptide YY (PYY) and pancreatic poly-
peptide (PP) [15, 16]. The peptides share the same receptors,
although their expression patterns and affinities vary. The
gene coding for NPY is located on chromosome 7p15 [17].
NPY is expressed mainly in central and peripheral nervous
tissues. It is the most abundant peptide in the brain, with the
highest expression in the hypothalamus, the area respon-
sible for the control of the autonomic nervous system and
its effects on metabolism, energy balance, and other crucial
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co-released with norepinephrine from sympathetic neurons, affect-
ing metabolism, cardiovascular system, bone health and immune
responses (figure created using Biorender)

physiological processes [18]. In the periphery, NPY is stored
in postganglionic large dense-core vesicles (LDCVs) of the
sympathetic nerve endings and released with norepineph-
rine [19, 20]. The peptide is also present in other autonomic
nerves, such as sensory or parasympathetic neurons, but
at lower concentrations [21, 22]. Various factors, such as
severe chronic stress, hypoxia, exercise, cold exposure, and
ischemia, increase NPY release from neuronal cells and its
levels in plasma and tissues [23-25]. Aside from the nervous
system, NPY is also expressed in various non-neuronal cells
and tissues, including endothelium, platelets, colon, kidney,
testis, breast, and prostate [4]. However, it is unclear whether
or not the peptide is secreted from these cells, and potential
mechanisms regulating its release remain unknown. Impor-
tantly, platelets have been proposed as an NPY reservoir
that could uptake and store the peptide at the time of its
increased release, such as stress [26]. Consequently, under
such conditions, elevated NPY levels are often detected in
serum and plasma-containing platelets but not platelet-poor
plasma samples [27-30].

NPY is a 36 amino acid peptide, which is derived from a
97 amino acid precursor, Pre-Pro-NPY [31-34] (Fig. 2). This
large molecule is processed in the endoplasmic reticulum
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(ER) by removing a 28 amino acid signal sequence, so the
Pro-NPY, a 69 amino acid peptide, is formed. Subsequently,
Pro-NPY is transported to the Golgi apparatus, then to the
trans-Golgi network, and moved towards the secretory path-
way. Most of the NPY in a cell is stored in LDCVs [33, 34].
A number of processing enzymes are active during post-
translational steps, including convertases, carboxypepti-
dases as well as the amidating enzyme—peptidylglycine
a-amidating monooxygenase [33, 34]. Only the final, ami-
dated form of NPY (NPY,_5) is biologically active.

After its exocytosis to the extracellular space, NPY is
subjected to further proteolysis (Fig. 2). Two essential
enzymes which regulate the NPY system, aminopeptidase
P and dipeptidyl peptidase IV (DPPIV), cleave one or two
first amino acids from the N-terminus of the NPY protein,
creating NPY, 3, and NPY; 5, respectively [35]. Both ami-
nopeptidase P and DPPIV are membrane enzymes and their
capabilities to cleave NPY are well documented. In addition,
two intracellular dipeptidyl peptidases, DPP8 and DPP9
have been shown to truncate NPY to its NPY;_3, form both
as purified proteins and in cellular systems [36, 37]. How-
ever, the mechanisms by which these intracellular enzymes
access NPY remain to be determined.

NPY acts through multiple membrane receptors named
Y 1R-y6R, which are widely distributed throughout the body
and have different functions [38]. Y1R, Y2R, and Y5R are
functional NPY receptors in humans, while Y4R serves
mainly as the PP receptor since its affinity to NPY and PYY
is low [39]. y6R is functional in mice, while in humans, it is
encoded by a pseudogene, which is not transcribed [40]. The
affinity of NPY to its receptors is regulated by its proteolytic
cleavage. Y 1R require the full-length NPY, ;¢ for binding
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and are not activated by NPY,_,, and NPY, 34, while these
truncated forms of the peptide preserve their ability to bind
to Y2R and Y5R [35, 41, 42]. This change in the NPY recep-
tor activation affects its functions, particularly in the cells
expressing multiple types of its receptors, since NPY; 5, will
preferentially activate Y2R and Y5R, even in the presence of
high levels of Y1R [36]. This shift in NPY receptor affinities
modifies its activity in response to environmental stimuli,
such as hypoxia [42].

NPY activity is further regulated by interactions between
its heterotypic receptors. All NPY receptors have been
shown to form homodimers, while Y1R can also heterodi-
merize with Y5R and Y4R [43—-45]. However, even without
direct receptor binding, heterotypic NPY receptors (e.g. Y2R
and Y5R) can interact with each other, enabling cellular
responses, such as cell proliferation and migration, to low
peptide concentrations [44, 46, 47]. Similarly, NPY recep-
tors have been shown to interact with other receptor types,
including the p-adrenergic and TrkB receptors [46, 48].
The synergistic interactions between NPY and p-adrenergic
receptors augment the mitotic effect of the peptide, while
the transactivation process between TrkB and Y5R increases
the pro-survival and antiapoptotic effects of NPY [46, 48].
Altogether, these interactions are crucial in regulating NPY
actions, often leading to dramatic changes in its activity
depending on the host’s microenvironmental milieu and
overall physiological state. However, the mechanisms under-
lying the increased NPY activity dependent on interactions
of its heterotypic receptors or cross-talk with other mem-
brane proteins are not well understood. It is not clear if such
interactions increase the peptide binding or amplify receptor
signalling.
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All NPY receptors belong to the family of G protein-cou-
pled receptors (GPCRs) and act mainly via the Gai subunit
[49] (Fig. 3). Consequently, all receptors inhibit adenylyl
cyclase, leading to the decrease in cAMP levels and down-
regulation of PKA activity [44, 50]. The second mechanism
of NPY signaling, which is specific for the Y1R and Y2R,
involves the activation of phospholipase C (PLC), leading
to Ca®* mobilization and activation of calcium-dependent
pathways and calcium—calmodulin (CaM)-dependent pro-
tein kinase II (CaMKII) [51-54]. Paradoxically, the NPY-
induced CaMK activation may lead to an increase in the
cyclic AMP response element binding protein (CREB)
phosphorylation and stimulation of its transcriptional activ-
ity [55]. In concert, the above molecular events lead to the
activation of the extracellular signal-regulated kinase 1/2
(ERK) belonging to the mitogen-activated protein kinase
(MAPK) family, known as the main proliferative pathway
[44, 54]. Moreover, NPY receptors have been shown to acti-
vate phosphoinositide 3-kinases (PI3K)/Akt axis, which is
involved in regulation of cell survival [56]. The unique fea-
ture of Y5R is its ability to control cytoskeleton remodelling
by activation of its key regulator, RhoA, which can promote
cell migration [57, 58]. In addition to the above pathways
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that can directly affect cancer cell proliferation, survival,
and motility, NPY modifies the activity of ion channels in
receptor-specific manner, which is crucial for regulation of
neuronal activity [59].

Upon their direct or indirect activation, ligand-bound
NPY receptors undergo internalization. Next, they are
degraded in lysosomes or returned to the cellular surface in
active form. The above process depends on additional pro-
teins, such as clathrins and arrestin [60, 61]. Such receptor
internalization can facilitate drug delivery to the target cell.
Consequently, several selective agonists of NPY receptors
have been synthesized and proposed as vehicles for cancer
imaging and nuclear medicine [62, 63].

3 Physiological functions of NPY

Due to its presence in the brain and in peripheral nerves,
NPY coordinates the central and systemic regulation of
various physiological processes (Fig. 1). One of the key
aspects of physiology regulated by NPY is metabolism
[64]. In the hypothalamus, NPY acts as an orexigenic pep-
tide [65]. Its transcriptional gene expression is regulated by
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Fig.3 The molecular mechanism of NPY actions relevant to can-
cer biology. In humans, NPY acts mainly via three GPCRs—Y IR,
Y2R, and Y5R. YIR requires the full length NPY,_5¢ for the activa-
tion, while Y2R and Y5R can also bind to NPY;_3¢. All NPY recep-
tors signal through G, proteins and inhibit cAMP synthesis by
adenylyl cyclase, which blocks the inhibitory effects of PKA on the
downstream pathways. The second mechanism of NPY signaling,
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specific for YIR and Y2R, involves Ca.?* mobilization and subse-
quent calcium-dependent activation of PKC and CaMKII. Concomi-
tantly, these signaling pathways lead to the activation of ERKI1/2.
Moreover, all NPY receptors are capable of activating the PI3K/Akt
pathway. The specific feature of Y5R is the ability to activate RhoA
and thereby regulate cytoskeleton remodeling (figure created using
Biorender)
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ghrelin, insulin, and leptin [66]. The dysregulation in the
NPY-hypothalamus-adipose tissue axis results in obesity.
For example, in animal models, the overexpression of NPY
in the hypothalamus led to hyperphagia and increased body
weight [67]. However, the peptide can also stimulate obe-
sity by its peripheral effects on adipocytes and vasculariza-
tion of adipose tissue [23]. Here, NPY dysregulates glucose
metabolism, drives abnormal lipolysis, and supports adipo-
cyte differentiation, lipid accumulation, and insulin resist-
ance [23, 68].

Similarly, NPY plays a dual role in the central and periph-
eral stress response. In the brain, NPY exerts anxiolytic
effects [69]. In animals, intracerebroventricular adminis-
tration of NPY had a sedative effect, which supports the
anti-stress and anti-anxiety activity of the peptide [69].
Locally, the peptide plays an important role in maintaining
central nervous system homeostasis by its neuroprotective
and anti-inflammatory effects, inhibition of the ER stress,
regulation of calcium homeostasis, stimulation of autophagy
in the hypothalamus, and nutritional support [70]. Moreo-
ver, NPY promotes neurogenesis and protects neurons from
injury [71].

In the periphery, NPY acts as a neuromodulator released
from sympathetic nerves upon their high intensity stimula-
tion [4, 5]. Consequently, the elevated NPY levels in the
blood can serve as a marker of severe chronic stress [72].
Presynaptically, NPY inhibits catecholamine release from
sympathetic nerve endings via its Y2R [73]. At the same
time, the peptide takes over some functions of norepineph-
rine [74]. For example, in the cardiovascular system, NPY
secreted from neurons innervating the vasculature, endo-
cardium, and cardiomyocytes regulates blood pressure and
vasoconstriction [8]. Moreover, prolonged exposure to high
doses of NPY, for example during chronic stress, leads to
an increase in smooth muscle cell proliferation and athero-
sclerosis [75, 76].

The NPY activity in the immune system is complex, with
bimodal actions both stimulating and inhibiting inflam-
matory processes, depending on the receptor expression,
immune cell type, and physiological context [77]. NPY regu-
lates numerous functions of immune cells, including pro-
liferation, migration, phagocytosis, antigen capturing, and
cytokine secretion [7, 78]. This immunomodulatory effect
can be exerted by neuronal NPY, acting as a critical player
in the neuroimmune crosstalk, as well as endogenous pep-
tide expressed by many immune cells, including monocytes,
macrophages, lymphocytes, dendric cells, and granulocytes
[7, 79-81]. Altogether, the overall role of the NPY system
is to preserve immune homeostasis in response to various
environmental stimuli [81].

NPY is also an important factor in the regulation of bone
homeostasis. NPY receptors are expressed by osteoblasts,
osteocytes, and osteoclasts. Consequently, the peptide

controls both bone matrix resorption and formation via its
effects on osteogenic and osteoclastic differentiation and
osteoblast activity [82]. However, the reports regarding
the specific role of NPY and its receptors are often con-
tradictory, indicating both osteogenic and osteolytic effects
[82]. Nevertheless, due to its impact on both bone and lipid
metabolism, NPY has been implicated as a factor coordi-
nating changes in fat tissue and bones in several disorders,
including osteoporosis, cachexia, and bone metastasis [82].

Importantly, many systemic effects regulated by NPY
actions in the central and peripheral nervous system are
capable of affecting the course of the malignant disease
(Fig. 4). For example, obesity that may result from a dys-
regulation of the NPY system is a well-known risk factor
for development and progression of several malignancies,
often associated with increased cancer-specific mortality
[83]. Clinical studies confirmed that the levels of NPY are
elevated in obese people, while adipose tissue itself is a rich
source of growth factors and proinflammatory cytokines
[84]. Similarly, NPY-induced changes in the immune sys-
tem may affect anti-tumor response and inflammation, while
the effect of the peptide on bone homeostasis may facilitate
osseous metastasis [85].

The role of NPY as a sympathetic stress mediator may
also impact cancer development and progression. Many
studies suggest that chronic stress increases cancer risk and
promotes its progression due to elevated levels of stress hor-
mones and neurotransmitters [86]. While such effects are
commonly attributed to the elevated cortisol levels and the
resulting immunosuppression or increased catecholamine
concentrations, the role of NPY in stress-induced cancer pro-
gression cannot be excluded [4]. Elevated NPY levels caused
by chronic stress can exacerbate direct and indirect actions
of the peptide on cancer cells and tumor microenvironment.
Importantly, NPY is more stable than catecholamines and
its stress-induced up-regulation lasts longer than the acute
spikes in epinephrine and norepinephrine concentrations [4].
For example, psychological stress in prostate cancer patients
leads to NPY-dependent immunosuppression, which in turn
stimulates cancer progression [25, 87].

4 Direct effects of NPY on cancer cells

On a cellular level, NPY is involved in numerous processes
crucial for cell survival and tissue repair, including growth,
differentiation, apoptosis, and proliferation [88-91]. For
example, the proliferative potential of NPY is observed in
the central nervous system (neuronal precursors in the olfac-
tory epithelium, hippocampus, retina, injured glial cells);
muscles (smooth muscle cells, cardiomyocytes); endothe-
lium and a variety of stem cells (mesenchymal, hematopoi-
etic, adipose-derived and embryonic stem cells) [44, 92-95].
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Fig.4 The pleiotropic func- Al
tions of neuropeptide Y in
cancer biology. A Cancer types
known to express NPY and/or
its receptors. B Potential direct
effects of NPY on cancer cells.
C Processes regulated by NPY
in the cancer microenvironment.
D Systemic effects of NPY that
can affect cancer development
and progression (figure created \
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In multipotent embryonic cells, NPY maintains an undiffer-
entiated state and drives their proliferation and self-renewal
[95]. It also regulates the classical embryonal developmental
pathways like WNT/B-catenin and Sonic Hedgehog (SHH)
[96, 97]. NPY receptor expression has been detected in many
cancer types, while the peptide itself can be synthesized by
tumor cells or secreted from nerves and other stromal cells,
e.g. immune infiltrates [87, 98—102]. Similarly, both cancer
cells and host tissues, such as endothelium, express DPPIV,
which can modulate NPY actions [36, 103]. Thus, the cru-
cial role of NPY in regulation of a variety of cellular func-
tions is highly relevant to tumor biology and can contribute
to processes characterized as hallmarks of cancer (Fig. 4)
[104-106].

Sustained proliferative potential NPY has been shown to
stimulate proliferation of various cancer cells, including
neuroblastoma, breast cancer, and some prostate cancer cell
lines [91, 102, 107, 108]. These proliferative properties of
NPY depend on Y1R, Y2R, and Y5R activation resulting in
stimulation of the ERK1/2 MAPK pathway (Fig. 3) [44, 52,
108]. However, the receptor expression and activities vary
between cancer types. Moreover, the mitogenic response to
low concentrations of NPY may be enhanced by interactions
between its heterotypic receptors [44]. Such proliferative
properties of NPY can promote tumor growth.

Resisting cell death NPY has the ability to both stimulate
and inhibit cell death. In Ewing sarcoma, NPY acting via
simultaneous activation of Y1R and Y5R triggers cell death
mediated by poly(ADP-ribose) polymerase (PARP-1) and
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apoptosis-inducing factor (AIF) [36, 91, 109]. However, this
effect can be alleviated by the high activity of DPPIV in
these cells, which converts the peptide to NPY;_, that does
not bind to Y1R [35, 36]. On the other hand, in neuroblas-
toma, cellular stress triggered by chemotherapy or growth
factor withdrawal induces expression of Y5R, which acts as
a survival factor for tumor cells [48]. This effect is medi-
ated by interactions of Y5R with brain-derived neurotrophic
factor (BDNF) and its TrkB receptor [48]. However, the
exact mechanisms underlying this phenomenon remain to
be determined.

Deregulating cellular energetics Cancer progression is also
associated with profound changes in cellular metabolism.
The Warburg effect, defined as aerobic glycolysis, is a well-
known phenomenon in tumor cells [110]. NPY regulates
energy balance and stimulates a Warburg effect in cancer
cells. In prostate cancer, NPY is necessary to maintain high
metabolic activity, while in neuroblastoma it up-regulates
glutaminolysis, glycolysis, and possibly tricarboxylic acid
cycle activity, which confirms its function as a sensor of
energy metabolism [102, 111, 112].

Genome instability Recent studies identified a new role for
the NPY system in stimulation of chromosomal instability.
In hypoxic Ewing sarcoma cells, over-activation of the NPY/
Y5R pathway leads to abnormally high activity of the RhoA
axis, which results in cytokinesis failure and leads to the
formation of polyploid cells [57]. The progeny of these poly-
ploid cells creates a unique cell population that exhibits high
levels of chromosomal instability and propensity for bone
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metastasis [57]. This is the first indication of the role for the
NPY system in triggering genomic evolution of cancer cells
[57]. Further studies are required to determine if similar pro-
cesses occur in other cancer types expressing Y5R.

Unlocking phenotypic plasticity Phenotypic plasticity may
result from transient transcriptional changes. One of the key
aspects of such plasticity is the regulation of cell differentia-
tion and stem cell-like properties [113]. Cancer stem cells
may drive tumor initiation, metastasis, and relapse. NPY
regulates the proliferation, differentiation, migration, and
survival of different types of stem cells suggesting that the
stimulation of tumor cell stemness may be another mecha-
nism by which NPY can contribute to the progression of
cancer [95]. Indeed, in Ewing sarcoma, NPY has been
shown to selectively stimulate proliferation and migration
of hypoxic cancer stem cells identified by high activity of
aldehyde dehydrogenase [42]. However, understanding
the contribution of the NPY signalling to cancer stemness
requires further investigations.

Activating invasion and metastasis In addition to its
effect on tumor growth, NPY can also contribute to can-
cer dissemination. The peptide stimulates the motility of
various cancer cells and acts as a chemotactic factor for
some of them. The pro-migratory properties of NPY were
described in Ewing sarcoma, neuroblastoma, breast, pros-
tate, and hepatic cancers [42, 58, 102, 107, 114]. How-
ever, in some colorectal cancer and cholangiocarcinoma
cell lines, NPY decreased tumor invasion [115, 116]. The
signaling pathways mediating these pro-migratory effects
may include MAPK and PI3K [107, 117, 118]. In addi-
tion, recent studies indicated the direct effect of NPY on
cytoskeleton remodelling during cell movement by Y5R-
mediated RhoA activation [58]. These interactions occur
in the leading and trailing edges of migrating cells, facili-
tating their motility [58]. The pro-migratory actions of
NPY can be further enhanced by interactions between its
heterotypic receptors, as previously suggested for endothe-
lial and neuroblastoma cells [44, 47, 58].

The NPY-induced tumor cell motility can facilitate
a locoregional and distant cancer spread. Clinical data
strongly support the role of the NPY system in neuroblas-
toma metastasis [57, 99, 114]. The direct evidence for the
role of the NPY/Y5R axis in local invasion were dem-
onstrated in animal models of hepatic cancer, while the
same pathway has been shown to stimulate distant bone
metastasis in Ewing sarcoma orthotopic xenografts [57,
99, 114]. However, the role of the NPY system in overall
cancer dissemination to other metastatic niches remains
to be proven.

5 Effects of NPY on tumor
microenvironment

In addition to its direct effects on cancer cells, NPY modi-
fies the tumor microenvironment (Fig. 4C). The peptide
is involved in molecular crosstalk between cancer and
stroma, including neuronal, vascular, immune, and bone
cells [47, 82, 119]. Some of these actions fall under the
category of previously described hallmarks of cancer,
while others are emerging interactions with the tumor
environment that can pertain to selected cancer types
[104-106].

Inducing angiogenesis Zukowska et al. discovered that NPY
is an angiogenic factor that induces proliferation, migration,
differentiation, and capillary tube formation by endothelial
cells [24, 29, 47, 120]. The angiogenic functions of NPY are
the most profound in hypoxia and ischemia when the levels
of NPY increase. Y2R has been identified as the main angio-
genic NPY receptor, although Y1R and Y5R also contribute
to this process [24, 47, 121, 122]. The angiogenic potency
and efficacy of NPY in neoangiogenesis are comparable to
that of vascular endothelial growth factor (VEGF), and at
least partially mediated by the VEGF system [24, 120]. The
angiogenic activities of NPY are particularly important in
tumors secreting endogenous NPY, such as neuroblastoma
and Ewing sarcoma [42, 108, 109, 123].

Tumor-promoting inflammation and avoiding immune
destruction The immune system can play a dual role in
cancer development and progression. On one hand, infil-
tration with inflammatory cells, such as tumor-associated
macrophages (TAMs), can stimulate these processes, on the
other hand, the cellular immune response involving natural
killer (NK) cells and cytotoxic T lymphocytes (CTL) have
the capability of eliminating cancer cells [106]. As a potent
immunomodulator, NPY can contribute to both of these
aspects of immuno-oncology. In prostate cancer patients,
stress-induced increase in NPY release has been associated
with increased recruitment of myeloid-derived suppressor
cells, infiltration of cancer tissues by TAMs, and secre-
tion of immunosuppressive interleukins [25, 87]. Moreo-
ver, NPY is capable of inhibiting NK cell activity, which
is a key component of the anti-tumor immune response,
as well as regulating the recruitment and proliferation of
lymphocytes [81]. However, the role of NPY in regulation
of immune response is context-specific and the impact of
NPY-dependent immune changes on cancer biology remains
understudied.

Neuronal-cancer crosstalk In the last few years, the neu-
robiology of cancer has become an important field of
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investigation into the mechanisms contributing to carcino-
genesis and cancer progression [124]. Nerves constitute
important components of the neoplastic microenvironment,
which regulate the biology of many tumors [125]. Preclinical
and clinical data indicate that NPY-positive nerves, poten-
tially arising due to tumor-induced neurogenesis, serve as a
paracrine source of NPY for tumor cells [102]. In prostate
cancer, such paracrine NPY signaling exerts multifaceted
effects and regulates tumor metabolism, apoptosis, motility,
and therapy resistance [102]. The expression of NPY is also
higher in perineural invasion areas in prostate cancer tis-
sues, suggesting a potential role for the peptide in perineural
spread [126].

Bone invasion and metastasis Among its various physiolog-
ical activities, NPY is also an important regulator of bone
homeostasis, suggesting its potential role in bone degrada-
tion induced by tumors expressing the endogenous peptide.
Indeed, in Ewing sarcoma, tumor areas infiltrating bone had
higher NPY expression [127]. In line with this observation,
NPY-rich Ewing sarcoma xenografts had a high degree of
bone degradation, while genetic knockdown of the peptide
expression reduced tumor-induced osteolysis [127, 128].
Moreover, studies on Ewing sarcoma xenograft models indi-
cated that cell lines, which secrete NPY to the environment
have a higher capacity to metastasize to bone, as opposed
to the cells that do not release the peptide [127]. The exact
mechanisms by which tumor-derived NPY alters the bone
environment and promotes infiltration of this tissue remains
to be determined, as the peptide may affect differentiation
and activity of both osteoblasts and osteoclasts. Interest-
ingly, many NPY-rich cancer types, such as neuroblastoma,
Ewing sarcoma and prostate cancer, are known to metasta-
size to bone [91, 98, 127].

6 Cancer type-specific effects of NPY

As described above, NPY is a pleiotropic factor with a wide
range of functions that are relevant to the key hallmarks of
cancer (Fig. 4). While some of these activities of NPY, such
as its angiogenic potential, are universal between various
malignancies, others are specific for the particular cancer
types [91]. Below we outline the best-described activities
of NPY in several malignancies, although its role has also
been implicated in other tumor types (Table 1). This includes
tumors with known endogenous NPY expression, which are
capable of secreting the peptide, and those that rely on NPY
present in the tumor microenvironment and the circulation.

Neuroblastoma Neuroblastic tumors constitute a hetero-

geneous group of pediatric malignancies arising from the
precursors of sympathetic neurons [129, 130]. These tumors
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with wide clinical, morphological, and molecular spectrum
develop in adrenal glands or autonomic ganglia [130]. Due
to their sympathetic origin, neuroblastoma cells produce
NPY and secrete the peptide [91, 109]. Consequently, sys-
temic NPY levels in the serum of neuroblastoma patients
are often elevated, which correlates with unfavorable prog-
nostic factors, such as poorly differentiated phenotype and
the presence of metastases [99, 131, 132]. The high NPY
serum concentrations at diagnosis can also predict future
relapse [99]. However, thus far, NPY is not accepted as an
independent prognostic factor.

NPY secreted from neuroblastoma cells regulates their
function in an autocrine manner via Y2R and Y5R. Y2R
is constitutively expressed in neuroblastoma cells and its
autocrine activation is crucial in maintaining tumor cell
proliferation (Fig. 5A) [108]. In contrast, Y5R is an induc-
ible NPY receptor in neuroblastoma [48]. The levels of
Y5R increase under cellular stress, such as chemotherapy
or serum deprivation, promoting neuroblastoma cell sur-
vival under these conditions [48]. Moreover, the NPY axis
interacts with the BDNF/TrkB pathway, which induces NPY
and Y5R expression and transactivates Y5SR upon BDNF
stimulation [48]. Altogether, these coordinated activities of
the NPY and BDNF systems enhance the neuroblastoma
resistance to chemotherapy [48]. Consequently, expression
of NPY and Y5R is particularly high in neuroblastoma cell
lines and tissues derived from patients previously treated
with cytostatic therapy (Fig. 5B) [48].

In contrast, in neuroblastoma tissues not subjected to
treatment, the YSR immunoreactivity is particularly high in
migratory and angioinvasive neuroblastoma cells accumu-
lating around blood vessels (Fig. 5A) [99]. In line with this
localization, the NPY/Y5R autocrine loop has been shown
to stimulate neuroblastoma cell motility and invasiveness via
direct effects on RhoA activity and cytoskeleton remodelling
[58]. These data are in agreement with clinical correlations
between high systemic NPY levels and metastatic pheno-
type of the disease [99]. However, the direct effect of the
NPY/Y5R pathway on neuroblastoma dissemination in vivo
remains to be proven.

In addition to its effect on cancer cells, NPY secreted
from neuroblastoma is crucial for tumor vascularization
[108, 109]. Notably, the NPY-induced angiogenesis is also
dependent on the activity of Y2R and Y5R in endothelial
cells, further supporting the NPY/Y2R/Y5R axis as a poten-
tial target in neuroblastoma therapy impacting multiple pro-
cesses involved in the disease progression to the therapy-
resistant and metastatic phenotype [47, 108, 109].

Ewing sarcoma Ewing sarcoma arises in bone and soft tis-
sue, most often in pediatric and adolescent patients [133].
The disease develops due to a chromosomal translocation
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Table 1 (continued)

Clinical data

Preclinical data

NPY tissue Receptor expression

expression

Cancer type

-NPY expression is increased in melanoma, as

No data

No data

Yes

Melanoma [158, 159]

compared to melanocytic nevi; metastases are

negative for NPY

-Data on clinical correlations are conflicting and

based on limited number of cases

No data
No data
No data
No data
No data

No data
No data
No data
No data
No data

YIR, Y2R
YIR, Y2R
No data
YIR

No data
No data

Yes

Testicular Germ cell tumors [180]

Ovarian cancer [181]

Pituitary adenoma [182]

No data
No data

Renal cell carcinoma [183]

Nephroblastoma [183]

YIR, Y2R

resulting in the fusion between the EWSR1 gene and gene
encoding a transcription factor from the ETS family, typi-
cally FLII1 or ERG gene [133, 134]. The most common
chromosomal translocation in Ewing sarcoma is t(11;22)
(q24;q12), which leads to the formation of the EWS-FLI1
fusion protein [134]. These abnormal transcription factors
stimulate expression of numerous genes, including NPY and
its YIR and Y5R [135, 136]. Consequently, all Ewing sar-
coma tumors express high levels of these proteins (Fig. 5C)
[100]. Additionally, in approximately 50% of Ewing sar-
coma patients, tumors secrete NPY, resulting in elevated
systemic levels of the peptide in serum [100]. Paradoxically,
the initial studies indicated that the NPY/Y1R/Y5R auto-
crine loop, which is up-regulated by EWS-FLI], triggers cell
death mediated by the PARP-1/AIF signalling [36, 91, 109].
However, this effect can be blocked by endogenous DPPIV,
which cleaves NPY to its NPY; ;¢ form, inactive at Y1R
[36]. This process is enhanced by hypoxia, which stimulates
expression of NPY, Y5R, and DPPIV, and induces expres-
sion of Y2R, effectively shifting the activity of the peptide
to the Y2R/Y5R axis [42]. Notably, this pathway increases
proliferation and motility of the Ewing sarcoma cells with
cancer stem cell properties [42]. In line with this, expression
of the hypoxia-inducible Y2R in Ewing sarcoma tissues is
associated with worse patient survival [42].

In addition to its overall effect on Ewing sarcoma cell
biology, high levels of endogenous NPY have been asso-
ciated with bone invasion and metastasis. In Ewing sar-
coma patients, serum NPY concentrations are higher in
patients with bone primary tumors, as compared to those
with extraosseous lesions [100]. The tissues from tumors
developing in bone had also increased expression of the
NPY system [100]. In animal models, xenografts derived
from Ewing sarcoma cells capable of secreting NPY
metastasized to bones and had a higher degree of tumor-
induced bone degradation, as compared to xenografts with
low NPY expression [127]. Consequently, NPY knock-
down in Ewing sarcoma cells reduced bone degradation
within primary tumors, implicating NPY as an osteolytic
factor [127]. However, the exact mechanisms of this effect
remain to be determined.

Aside from its osteolytic activity, NPY is an important
factor linking tumor hypoxia, chromosomal instability,
and bone metastasis. Recent studies indicated that severe
hypoxia overactivates the NPY/Y5R/RhoA pathway in
Ewing sarcoma, leading to cytokinesis failure and whole
genome doubling [57]. Subsequently, the progeny of these
polyploid cells undergo abnormal cell divisions, creating
a specific cell population, which exhibits high levels of
chromosomal instability and preferentially metastasizes
to bone [57]. Further studies are required to determine the
mechanisms facilitating osseous dissemination of this cell
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Fig.5 NPY receptors in pediat-
ric tumors. A Neuroblastoma—
poorly differentiated, chem-
onaive tumor with strong and
diffuse expression of Y2R. Y5R
expression within the neoplastic
cells is generally low, while
high Y5R levels are seen in the
endothelial cells and neuroblasts
accumulated around blood ves-
sels (200 x). B Post-treatment
chemoresistant neuroblastoma
showing strong Y5R expression
(200 ). C Chemonaive Ewing
sarcoma with strong YSR
expression (400 X)

population, as well as the role of the NPY system in overall
Ewing sarcoma metastasis to other niches.

Altogether, despite their different origins, both neuro-
blastoma and Ewing sarcoma tumors express high levels of
endogenous NPY and are capable of secreting the peptide
[99, 100, 109]. If released to the tumor environment, par-
ticularly under cellular stress, NPY exerts growth-promoting
and prometastatic properties via the NPY/Y2R/Y5R axis
[42, 48, 57, 58, 108]. Moreover, in both tumor types, the
peptide exerts angiogenic activities via the same Y2R/Y5R
pathway [42, 108, 109]. Taken together, these data warrant
further investigation into the value of the Y2R and Y5R as
potential therapeutic targets in these malignancies.

Sympathetic tumors of the adults Pheochromocytoma and
paraganglioma are tumors of sympathetic origin developing
in adults from chromaffin cells residing in the adrenal gland
and their neural crest precursors in the sympathetic gan-
glia [137]. Under physiological conditions, NPY is secreted
from these cells, where it inhibits catecholamine release
[138]. Consequently, in patients with pheochromocytomas
and paragangliomas, tissue expression of NPY is high and
the plasma concentration of the peptide is elevated in 20 to
67% of patients, depending on the form of NPY measured

@ Springer

[139-141]. This data suggests that NPY may be used as
a catecholamine substitute in diagnostics of these tumors,
especially in patients with kidney impairment, or treated
with a drug that interferes with catecholamine metabo-
lism [141, 142]. It was suggested that NPY mRNA levels
might distinguish the benign from the malignant form of the
tumor [143]. However, other reports indicated that the level
of NPY does not correlate with the degree of malignancy
[144]. Overall, despite its high expression, the biological
functions of NPY in these tumors are not clear.

Breast cancer During breast carcinogenesis, NPY recep-
tor expression switches from Y2R to Y1R, and the Y1R
is present in 85% of breast cancer cases (Fig. 6) [101].
Y IR expression in breast cancer is up-regulated by estro-
gens [145]. The gene and protein expression of Y1R is the
highest in luminal A and the lowest in the HER2-positive
molecular subtype of breast cancer [146]. In a biologi-
cally unselected population of breast cancer patients, high
Y 1R expression in circulating tumor cells was a predic-
tive biomarker for lymph node metastases and a prognostic
factor for shorter patient survival [11]. Also, the immu-
nohistochemical analysis of Y1R in an Egyptian popula-
tion of patients with breast cancer revealed correlation of
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Fig.6 NPY system in breast cancer. A Ductal carcinoma in situ of
the breast—NPY with low and intermediate cytoplasmic expression,
and intermediate YSR expression in the preinvasive cells (400X,
200x). B Invasive ductal carcinoma of the breast showing interme-

its increased non-nuclear expression with the presence
of metastatic disease, advanced clinical stage, perineural
invasion, and luminal subtype [147]. In contrast, in luminal
A breast cancer, Y1R was a positive predictive factor for
longer relapse-free and overall survival [146]

Functionally, NPY has been implicated in regulation
of many processes involved in breast cancer progression,
including cancer cell proliferation, survival, motility, and
tumor vascularization. For example, in estrogen receptor
(ER)-positive breast cancer, Y 1R has been shown to inhibit
estradiol-induced cancer cell proliferation, while its high
expression predicted endocrine sensitivity and better sur-
vival [146]. On the other hand, Y5R has been implicated
as a growth- and metastasis-promoting factor, as it stimu-
lates breast cancer cell proliferation and migration, as well
as promotes the expression and release of the key angio-
genic stimulator, VEGF [51, 107, 148]. Importantly, YIR
and Y5R are up-regulated by hypoxia in breast cancer cells,
and both receptors have been shown to contribute to the
NPY-induced breast cancer cell proliferation and migration
under these conditions (Fig. 6B, C) [117, 118]. However,
Y5R is also frequently lost in breast cancer tissue, while its
ectopic expression in breast cancer cells led to a decrease
in their proliferation and migration and an increase in

diate NPY and Y5R immunoreactivity in the cancer cells (400x). C
Breast cancer metastasis to the bone with intense Y1R immunostain-
ing (400 x)

chemosensitivity due to the cell cycle arrest in the G2/M
phase and subsequent apoptosis [149]. This effect may
reflect the supraphysiological levels of YSR resulting from
its ectopic overexpression, as overactivation of the Y5R/
RhoA axis in Ewing sarcoma has been shown to result in
cytokinesis failure [57]. The discrepancy in the reports per-
taining to the biological activity of Y5R in breast cancer may
also result from the heterogeneous nature of this disease.
Hence, further studies are required to determine the role of
the NPY system in specific breast cancer subtypes.

Prostate cancer According to the TCGA database, the
expression of NPY in prostate cancer is the highest among
all adulthood cancer types (Fig. 7A—C) [150]. However, the
clinical data regarding correlations between the NPY levels
and prognosis in prostate cancer patients are conflicting and
the results are often dependent on the method of NPY detec-
tion. Gene expression analyses based on mRNA levels often
associate lower NPY expression with a more aggressive dis-
ease course [150]. In contrast, elevated NPY protein levels in
the prostate cancer tissue are typically correlated with more
aggressive phenotype. Pro-NPY levels detected by proteom-
ics analysis are increased in prostate cancer, as compared to
normal prostate, and correlate with worse cancer-specific
survival [151]. Likewise, a high frequency of NPY-positive
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A

Fig.7 NPY system in prostate cancer. A NPY staining is low and
mostly membranous in the normal prostatic glands, while cancer cells
exhibit strong and cytoplasmic immunoreactivity (200x). B NPY
expression with gradient increasing toward the tumor invasive front
and perineural invasion of the prostate cancer (100X). C Cancer cells

prostate cancer cells identified by immunohistochemistry
is associated with a high risk of relapse [152]. Particularly
high expression of NPY is observed in ERG fusion-positive
(ERG +) tumors, although a study by Kristensen et al. indi-
cated that high pro-NPY and ERG levels were unrelated to
unfavorable oncological outcomes [153]. Another measure
of the NPY system activity in patients is the concentration
of the peptide in the blood. Plasma proteome profiling iden-
tified NPY as a prostate cancer biomarker, with concentra-
tions increasing in patients with high Gleason scores [154].
Similarly, elevated platelet NPY, which has been previously
associated with the response to stress and hypoxia, correlates
with worse progression-free survival in patients treated with
abiraterone, the novel antiandrogen drug [23, 27, 29, 30].
Since NPY acts via membrane receptors, its secretion from
neurons or cancer cells is necessary for its actions. Hence,
an elevated serum NPY is the most biologically relevant bio-
marker of its enhanced activity in cancer patients and often
correlates with metastatic disease and relapse [99, 100].

While the associations between high systemic NPY and

adverse phenotype of prostate cancer are well established, it
is not clear if the elevated levels of the peptide in the blood

@ Springer

100 pm

infiltrating ganglion present with NPY staining comparable or higher
than that observed in neuronal cells (400x). D-F NPY receptors
within the prostate cancer in localized (Y 1R, Y2R), and metastatic
(Y5SR) stages (100, 400 %, 400 %, respectively)

result from its release from tumors or increased neuronal
activity (e.g. due to stress). For example, patients with pros-
tate cancer and high psychological depression scores have
further elevated NPY expression within tumor tissue and
the peptide can be released from the prostate cancer cells
upon norepinephrine stimulation, suggesting the role of the
autocrine peptide [25]. This cancer cell-derived NPY acts
as a chemoattractant for macrophages, increasing the infil-
tration by TAMs and thereby advancing the disease [25].
In contrast, studies by Ding et al. suggest the impact of the
neuronal NPY on prostate cancer progression, as the high
count of NPY-positive nerve fibers within cancer tissue pre-
dicted the increased risk of biochemical recurrence and can-
cer-specific death [102]. The mechanisms underlying these
effects include changes in cancer cell metabolism, motility,
proliferation, apoptosis and therapy resistance [102]

In addition to the high NPY expression, prostate cancer
cells are also rich in its receptors. It has been recently shown
that the entire NPY system, including Y1R, Y2R, and Y5R,
is up-regulated in prostate cancer starting from the early
stages of carcinogenesis (Fig. 7D-F) [98]

Current functional data implicate Y1R in prostate can-
cer biology [102]. However, the role of the remaining NPY
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receptors in this malignancy remains to be determined.
For example, our recent studies indicated accumulation of
prostate cancer cells enriched in all three NPY receptors on
the invasive edge of the prostate cancer and in perineural
invasion areas [98]. Importantly, Y2R was the only NPY
receptor with expression significantly elevated in advanced
tumors, as compared to low-stage lesions (pT3 vs pT1-2),
while high Y5R expression correlated with the presence
of extraprostatic extensions [98]. Given the known role of
the Y2R and Y5R in invasiveness and metastasis in other
malignancies, these data warrant further investigations
into their role in prostate cancer progression.

Hepatocellular carcinoma Liver pathogenesis is associated
with changes in the local and systemic NPY. Patients with
liver cirrhosis and hepatocellular carcinoma have elevated
serum NPY levels as compared to the healthy control [155].
Moreover, recent studies indicated the role of NPY in cross-
talk between liver cancer cells and surrounding normal tis-
sue. Normal hepatocytes surrounding hepatocellular carci-
noma release NPY, which activates Y5R present in cancer
cells and stimulates their invasiveness [114].

Other cancer types The preclinical and clinical data in
other cancers are usually limited to the characteristics of
the expression pattern of NPY and its receptors. Among
cancers of the gastrointestinal tract, the role of NPY is best
characterized in colon carcinogenesis. In the animal model
of inflammation-induced tumorigenesis, NPY knock-out sig-
nificantly reduced the number and size of intestinal polyps,
as well as decreased proliferation and increased apoptosis
in colonic epithelial cells [156]. In line with these results,
NPY has been identified as one of the core genes up-regu-
lated during colon cancer progression [157]. Elevated NPY
expression and secretion were also described in cholangio-
carcinoma, as compared to normal cholangiocytes [116].
Moreover, NPY-positive cancer cells are detectable in stom-
ach carcinoma (Fig. 8).

In skin cancers, the function of NPY is not well eluci-
dated and the data is conflicting. While overall expression
of NPY is elevated in melanoma, its high levels have been
associated with better clinical outcomes or invasiveness and
metastasis [158, 159]

7 Potential clinical applications

The pleiotropic actions of NPY relevant to tumor biology
and the widespread expression of its receptors in neoplastic
cells warrant further investigations into potential clinical
applications based on the NPY system. Due to the growth-
promoting and metastatic functions of NPY described in
various malignancies, its receptors represent promising tar-
gets in cancer therapy [108, 160—162]. NPY receptors can
be directly blocked by small molecule inhibitors. Thus far, a
variety of selective antagonists have been developed for all
NPY receptors. Some of them were effective in inhibiting
tumor growth and dissemination in preclinical animal mod-
els. For example, the Y2R antagonist, BIIE0246, inhibits the
growth of neuroblastoma by decreasing tumor proliferation
and vascularization [108]. In Ewing sarcoma xenografts,
the Y5SR antagonist, CGP71683, inhibited hypoxia-induced
bone metastasis [57]. YIR and Y5R antagonists have also
been shown to block proliferation, migration, and inva-
siveness of breast cancer cells in vitro [118]. Importantly,
one of the Y5R antagonists, MK-0557, has been approved
for clinical trials in obese patients and can be potentially
repurposed for oncological studies [163, 164]. However, the
limitation of the existing NPY receptor antagonists is their
ability to cross the blood-brain barrier and thereby affect
many central functions of the peptide, including food intake.
Hence, future studies should focus on developing novel
compounds with the activity limited to blocking the NPY
actions in the periphery. Still, even in this case, potential
side effects caused by interfering with broad physiological
actions of NPY should be monitored, even though in animal
experiments no such adverse effects were reported. Another
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therapeutic option could be blocking the activity of DPPs
enhancing many tumor-promoting actions of NPY. However,
previous attempts were hindered by a feedback effect leading
to a significant upregulation of DPPIV expression in cancer
cells upon prolonged DPP inhibitor administration [36].

Carcinogenesis is often associated with changes in the
NPY receptor expression. Consequently, the pattern of their
distribution varies between normal and cancerous tissues,
giving a scientific premise for utilizing NPY receptors in
cancer diagnosis [101]. This may include standard histo-
pathological analyses, as well as the use of labelled NPY
analogs for cancer imaging [160]. Moreover, levels of NPY
protein and its receptors often correlate with cancer stage,
differentiation, and patient survival (Table 1), suggesting
their potential value as prognostic or predictive biomark-
ers. For example, the status of NPY gene methylation has
been proposed as a prognostic marker in some malignancies,
including colorectal and pancreatic cancers [165-168].

As GPCRs, NPY receptors undergo internalization upon
ligand binding [169]. This process is particularly effective in
the case of Y1R [169]. This phenomenon was utilized for the
delivery of therapeutics into cancer cells. The NPY recep-
tors have been proposed as targets for drug conjugates that
selectively kill cancer cells. Li and colleagues synthesized
the doxorubicin encapsulating albumin nanoparticles con-
jugated to [Pro30, Nle31, Bpa32, Leu34]NPY(28 — 36),
which allow for selective drug delivery and inhibition of
cell viability by binding to Y1R on the surface of breast
cancer cells [162]. The analogs of NPY were also studied
in other types of cancer. Tubugi-1-SS-NPY disulfide-linked
conjugates show toxic selectivity in different cell lines with
Y IR expression [170]. NPY receptor ligands have also been
proposed as a vehicle to deliver radionuclides and siRNA
to the cells [171, 172]. Yet, while designing such therapies,
consideration should be given to potential side effects that
may be caused by the widespread expression of NPY recep-
tors in normal tissues.

8 Conclusions and future directions

NPY is a pleiotropic peptide with multifaceted functions in
physiology and tumor biology (9). The peptide can directly
regulate cancer cell proliferation, survival, and motility, as
well as impact the tumor microenvironment by stimulat-
ing angiogenesis and modifying immune infiltration [14,
77, 80, 88]. While many of these processes were initially
described in tumors with high endogenous NPY expression,
the peptide secreted from peripheral nerves can exert similar
effects, making it an interesting mediator of cancer-nerve
interactions [102, 126]. Moreover, NPY-dependent sys-
temic effects, such as changes in energy metabolism, obe-
sity, and the immune response can have an impact on cancer
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development and progression [78, 109, 173]. However, the
exact role of these complex systemic activities of the peptide
in the context of cancer needs to be further investigated.
Another understudied aspect of NPY biology that needs to
be elucidated in order to design effective therapies pertains
to the interactions of its cognate receptors and cross-talk
with other systems, such as adrenergic axis and BDNF; the
phenomenon that can impact the efficacy of selective NPY
receptor antagonists [44, 47, 48, 58]. Altogether, these find-
ings warrant further investigations into the impact of physio-
logical conditions resulting in elevated NPY, such as chronic
stress, on cancer initiation and progression and its role in this
process. Thanks to its pleiotropic functions in tumor biology,
NPY and its receptors can become promising new targets
in oncology, with potential applications in cancer therapy,
imaging, diagnosis, and stratification. However, translation
of these preclinical findings to clinical practice requires fur-
ther research to fully elucidate the direct and indirect effects
of NPY on tumor tissue and the impact of its complex sys-
temic physiological functions on cancer progression.
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