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Maternal genetic and phenotypic characteristics (e.g., metabolic and behavioral) affect both
the intrauterine milieu and lifelong health trajectories of their fetuses.Yet at the same time,
fetal genotype may affect processes that alter pre and postnatal maternal physiology, and
the subsequent health of both fetus and mother. We refer to these latter effects as ‘fetal
drive.’ If fetal genotype is driving physiologic, metabolic, and behavioral phenotypic changes
in the mother, there is a possibility of differential effects with different fetal genomes
inducing different long-term effects on both maternal and fetal health, mediated through
intrauterine environment.This proposed mechanistic path remains largely unexamined and
untested. In this study, we offer a statistical method to rigorously test this hypothesis and
make causal inferences in humans by relying on the (conditional) randomization inherent
in the process of meiosis. For illustration, we apply this method to a dataset from the
Framingham Heart Study.
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INTRODUCTION
A common belief is that genetic, phenotypic, and behavioral
characteristics of mothers affect the metabolic milieu during preg-
nancy, and that this in turn affects both the short and long-term
metabolic health of the offspring, including the risk of obesity.
This is likely true and some evidence is supportive (Catalano et al.,
1998; Plagemann, 2005). Yet there is a complementary possi-
bility that has gone largely unconsidered and untested. Namely,
that the genotype of the offspring may in fact be driving (in
part) the physiology and behavior of the mother, and that differ-
ent fetal genotypes have differential long-term consequences on
both maternal and offspring metabolic health. Using a statistical
method originally developed for testing for linkage in the presence
of association (Allison, 1997), we can rigorously test this hypothe-
sis and make causal inferences, even in humans, by relying on the
(conditional) randomization inherent in the process of meiosis.

The maternal–fetal relationship can and has been viewed as
both one of intimate cooperation and that of intergenerational
competition (Trivers, 1974; Haig, 1993; Godfray, 1995). Founda-
tional to these views is allocation of nutrient resources to mother
and fetus as well as the alteration of maternal behavior, physiol-
ogy, and anatomy for the benefit or detriment of mother or fetus.
From a genetic perspective, the ‘conflict of interest’ may occur
because the mother’s and the fetus’ genomes are correlated, but
not identical (due to the random process of meiosis and to the
presence of paternal genes in the fetus; Page, 1939; Douglas et al.,
1959; Haig and Westoby, 1989; Moore and Haig, 1991; Haig, 1993,
2004; Moore, 2012). As the fetus (via the placenta) gains access
to the maternal blood supply, the fetus can potentially influence
the behavior, physiology, and anatomy of the mother, to ‘canalize’

(Van Vleck, 1978; Gottlieb, 1991; Hallgrimsson et al., 2002) its
ontogeny in a way that is well-suited to its genome. For exam-
ple, a number of placental hormones manipulate maternal energy
metabolism and blood supply for fetal benefit. Human placental
lactogen (hPL; a diabetogenic, growth hormone-related placental
hormone) plays a role in increasing maternal insulin resistance,
thereby driving more energy to the fetus. Nevertheless, because
hPL production is independent of maternal regulation, mothers
respond to this metabolic challenge by increasing insulin produc-
tion to maintain glycemic control. Additionally, increments in
blood pressure increase the flux of nutrients across the intrauter-
ine environment, and gestational hypertension induced in the first
trimester leads to reduced perinatal mortality (Symonds, 1980;
Hollegaard et al., 2013) and higher birth weights (Goddard et al.,
2007). Nevertheless, preeclampsia (i.e., hypertension with pro-
teinuria) is a major cause of both maternal and fetal mortality and
morbidity (Haig, 1993). These results (Trivers, 1974; Haig, 1993;
Godfray, 1995) suggest that fetal genes may in some cases be influ-
encing maternal behavior, physiology, and anatomy in ways that
influence the long-term health of mother, fetus, and/or both. In
fact, there is recent evidence that fetal sex (a function of fetal
genotype) has significant effects on maternal pre and postna-
tal phenotype [e.g., increased breast circumference (Galbarczyk,
2011), increased accumulation of adipose tissue, and breast milk
energy content (Hinde, 2007; Powe et al., 2010; Hinde et al., 2014)].
These results and others (Takimoto et al., 1996; Kanayama et al.,
2002; Tamimi et al., 2003; Dekker and Robillard, 2005; Wangler
et al., 2005; Petry et al., 2007) support emerging evidence that
fetal genotype affects maternal physiology both during and after
pregnancy. Thus, some fetal genotypes may induce long-term
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effects on maternal and fetus’ postnatal health, in part via manipu-
lation of maternal phenotype during pregnancy. Petry et al. (2007)
introduced this idea, but did not offer a statistical test that could
test the hypothesis and in addition, separate correlation from
causation.

Identifying specific aspects of fetal genotypes (beyond the
differential effects of sex chromosomes) influence maternal phe-
notype may be challenging for all the reasons that studying
complex genetic effects are challenging in general, but also because
a statistical model for testing such hypothesized effects has not yet
been offered. Except in certain situations of controlled experimen-
tal crosses, observational studies showing an association between
fetal genotype at a particular genomic locus and maternal pheno-
type merely indicate association (correlation) and not necessarily
of causation. Therefore, we offer a statistical model, adapted from
one developed by one of the authors in the context of family based
association (i.e., ‘TDT’) testing, to rigorously test this hypothesis
in humans (and other diploid populations) and make causal infer-
ences by relying on the randomization inherent in the process of
meiosis. Although the model is adapted from genetic study, the
principle has its theoretic root in the causal inference literature.
We describe the method here and illustrate it with data from the
Framingham Heart Study (FHS).

MATERIALS AND METHODS
STATISTICAL MODEL
The essential proposition underlying the validity of the method
we offer is that, under Mendelian theory, at any genetic locus,
conditional on the parents’ mating types at that locus, the off-
spring’s genotype at that locus is a random variable for which the
probability of each possible genotype is equal for all offspring.
Therefore when we condition on parents’ mating types at a locus
of interest, then we have effectively a randomized experiment
in which offspring are randomly assigned to genotypes at that
locus. Stated, equivalently, mothers are randomized to carry off-
spring of different genotypes at that locus. Hence, if we test for
relations of offspring genotype with mother’s phenotype during
pregnancy (e.g., preeclampsia, gestational diabetes, weight gain, or
for that matter any time after conception), we can reasonably draw
causal inferences about the effects of fetus genotype on mother’s
pregnancy because of the aforementioned randomization, if we
condition on parental mating types at the locus under study (Allison
and Neale, 2001; Tiwari et al., 2008). Note that this causal infer-
ence refers to the effect of the fetus genotype, not necessarily the
fetus’ genotype at the locus being used in the analysis. More specif-
ically, the causal effect identified may be due to the fetal genotype
at the locus under study or to the fetal genotype at another locus
physically linked to and in disequilibrium with the locus under
study. By this reasoning, the sex of offspring is also randomized
in mammals, thus the finding that women carrying male fetuses
had higher rates of gestational diabetes mellitus, indicates that
having a fetus with a Y chromosome causes changes in mother’s
physiology.

The above principle has been formalized in the literature of
causal inference (Rubin, 1974, 1977; Hernán and Robins, 2006;
Greenland and Robins, 2009). Using Rubin’s (1977) language and
notation, if the experimental units are assigned into two treatment

groups solely on the basis of a covariate, X, and random factors
then causal inference can be made and in addition, causal effects
of treatments can be estimated without bias. The assignment to
treatment group means that if two units have the same value of
X, then they either must receive the same treatment or must be
randomly assigned to treatments (not necessarily with the same
probability). The critical point is that the probability that a study
unit is assigned to one treatment rather than others is a function
only of the values of X in the sample and purely random factors.
Here, X can either be univariate or multivariate. The principle has
been further explored for observational data explicitly in Hernán
and Robins (2006). They argued that in ideal randomized exper-
iments, causal inference can be made because the randomization
ensures that the exposed and unexposed are exchangeable; whereas
in observational studies, because the exposed and the unexposed
are not generally exchangeable therefore causal inference cannot
be generally made. They reviewed a condition that permits causal
inference from observational studies, that is, the conditional ran-
domization which guarantees conditional exchangeability. These
works lay a theoretical foundation for our method. Specifically,
here the study unit is parents–child trio; the parental mating types
which are functions of the two parental genotypes, (gF , gM ), are
the X in Rubin’s (1977) paper and the covariate used to assign
study units to treatment groups; the genotype of children, gk ,
is the treatment although we have three groups here (i.e., three
types of genotype); mother’s phenotype is the dependent variable
Y using Rubin’s notation. Therefore conditional on parents’ mat-
ing types at a locus, then the offspring are randomly assigned to
genotypes at that locus. Equivalently, the study unit, the parents–
child trio, is randomly assigned to the genotypes of offspring solely
based on the parental mating types. Based on the aforementioned
previous work, causal inference can be made on the effect of
offspring’s genotype (i.e., treatment effect in Rubin’s words) on
mother’s phenotype (i.e., the dependent variable Y ). Note that
the causal inference is to ‘treatment assignment’ which in this
case is the offspring’s genotype at the locus under study and/or
the other loci physically linked to and correlated (in disequilib-
rium) with it (Allison, 1997). This is analogous to a randomized
trial of a treatment (e.g., a diet involving eating more meat) in
which strictly speaking the causal inference is about treatment
assignment rather than meat per se because one cannot separate
the effect of meat per se from other factors which may covary
with assignment to more meat consumption such as the need
to chew more. This is the reason why the class of genetic tests
we are relying on are referred to as transmission disequilibrium
tests.

Rubin (1977) discussed two general methods to estimate the
causal effect. Because our primary interest is hypothesis testing,
we choose to use a linear model as follows:

Y = β0 + X β1 + βkgk + βmm + ε

where Y is mother’s phenotype during pregnancy, X is a matrix
for covariates including environmental factors, gk is genotype of
fetus, m is the parental mating types at the same locus, ε is ran-
dom error. In order to test the hypothesis, we only need to test
H0 : βk = 0. Note that the genotypes should be treated as
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categorical in the model (Rubin, 1977; Allison, 1997) so the test
of null hypothesis is a two degrees of freedom test. Here, Y is
assumed to be continuous. The same principle can be used when
Y is other type of data (e.g., categorical, count, or survival), by use
of a link function (i.e., in a generalized linear model framework;
Nelder and Baker, 2004). Note also that the causal inference about
the effects of fetal genotype on the mother’s pregnancy is based on
the randomization achieved by conditioning on parental mating
types at the locus under study, resulting in the inclusion of mating
types m in the model (Rubin, 1977). Given the above principle,
from the point of view of genetic study, the statistical model is
in spirit the same as the method proposed by one of the authors
(Allison, 1997), for testing such hypotheses. This work can be seen
as an application of a previously validated and analytically derived
method (Model Q5) to a novel context (Allison, 1997; Ewens et al.,
2008; Of course, it is also an application of the work of Rubin,
1977). Given that the theoretical work in the literature and the
extensive simulation studies have already demonstrated both the
validity of concept and the performance of the model (Allison,
1997) we will not perform the simulations here. The analysis of
data below is for illustration of this novel application, rather than
a test of the previously established method (Allison, 1997), nor
an attempt to draw biological conclusions from the small sample
dataset.

DATA
For illustration, we applied the concept and the model to a dataset
from the FHS. The study began in 1948 with 5,209 adult subjects
(i.e., the first generation) from Framingham, Massachusetts, and
is now on its third generation of participants. The Offspring Study
(i.e., the second generation) was initiated in 1971. A sample of
5,124 men and women, consisting of the offspring of the Original
Cohort and their spouses was recruited. The recruitment of the
third generation participants who had at least one parent in the
Offspring Study and would be at least 20 years old by the close of
the first exam cycle was started in 2001. A recruitment target of
4,095 Gen III participants was achieved by July of 2005. In order to
draw causal inference using the model as described above, we need
information from both parents and offspring (although extensions
to allow for missing data from one parent with substitution of sib-
ling data are possible (Dudbridge, 2008)), and most importantly,
measurements during mothers’ pregnancy. Because there is lit-
tle information about pregnancy for the original cohort, we had
to use only the offspring generation (i.e., the second generation)
and their offspring (the third generation). We focus on metabolic
related measurements during pregnancy, specifically, gestational
hypertension, diabetes, and weight gain which are all available in
FHS. We chose to focus our examination on maternal metabolic

function because the large variability of maternal phenotypic in
response to the metabolic sequelae of pregnancy may be influ-
enced by fetal genotypes. Gestational hypertension and diabetes
are binary. For weight gain, there is only information about gain-
ing more than 30 pounds during pregnancy or not in FHS. We
need information (including genotype information) from both
parents and children. After applying all the criteria, there are 109
families left, with a total of 282 children, clearly a small sample,
but suitable for illustrative purposes. In the data, there are four
observations of gestational hypertension, no observation of ges-
tational diabetes, and 49 observations of weight gain in excess of
30 pounds. In the following analysis, we only use the first child
in each family to avoid the complexities introduced by potential
correlations among siblings.

Although information on gestational hypertension, diabetes,
and weight gain is available in FHS, in the final dataset we obtained,
the number of observations of hypertension and diabetes are
small. Therefore we only focus on weight gain, which is binary
with value 1 if the mother reported to have >30 pounds weight
gain during pregnancy and 0 otherwise, that is:

y = I (had over 30 lbs of weight gain)

where I( ) is the indicator function.
FTO is a gene located in chromosome region 16q12.2. Stud-

ies have revealed association of single nucleotide polymorphisms
(SNPs) in this gene with obesity. The genotype we tested are
four SNPs (i.e., rs9930506, rs9939609, rs1121980, and rs8050136)
in FTO gene which have been shown to be associated with
obesity (Dina et al., 2007; Frayling et al., 2007; Price et al.,
2008; Li et al., 2010; Liu et al., 2013). We performed a test of
Hardy–Weinberg equilibrium and no significant departure was
found.

RESULTS
To analyze the data, we used logistic regression. We performed
analyses including and excluding mother’s age at children’s birth
in the model. For the analyses we conducted, none of the mother’s
age at children’s birth was significant (at α = 0.05). Therefore
they were not included in the final models. Table 1 depicts the
results from the logistic regression for SNP rs9930506. The results
from additional analyses are summarized in Table 2. P-values for
the genotypes are from two degrees of freedom test of the two
dummy variables for each genotype. Neither of the results is sig-
nificant at α level of 0.05. This may indicate that the variants of
these four SNPs carried by children do not have effect on mothers’
weight gain during pregnancy. Of course, given the small sample
size, there is a possibility that there is not enough power to detect

Table 1 | Results from logistic regression for SNP rs9930506 from data with only the first child in each family.

Independent variable Intercept Fetal genotype Mating type

Coefficient –1.504 –0.049 0.239 0.177 –0.527 0.200 0.860 0.133

P -value 0.054 0.928 0.974

P-values for the genotypes are from two degrees of freedom test.
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such effect. Given that this is an illustration of the application
of a previously validated method, and the small sample size, we
did not intend to arrive at any biological conclusions from this
analysis.

DISCUSSION
The hypothesis that the fetal genotype affects maternal physiology
and behavior represents a complementary view about not only
some gestational diseases (e.g., pregnancy-induced hypertension
and gestational diabetes) of mothers, but also long-term effects on
metabolic health of both mother and offspring. In addition, the
effects of this process may be cyclic over generations (Petry et al.,
2007). This hypothesis does not contradict the common belief that
association between fetal growth and diseases in pregnancy results
from effects of the mother’s genotype and/or environment on her
physiology which subsequently affect the fetus. Rather, both of
these causal paths can, in principle, be active.

Both animal studies and human studies have shown the
effect of fetal genotype on mother’s physiology during pregnancy
(Galbarczyk, 2011; Hinde et al., 2014). This provides indirect
evidence for our hypothesis. However, the direct test of this
hypothesis is very difficult, especially in human studies. We illus-
trate that the process of meiosis provides a natural randomization
which can be used in statistical analysis for causal inference and
offer a simple statistical model for such analysis. This statistical
model can be viewed either as stemming from causal inference
literature or stemming from our previous work in genetic study.
Of course, the theoretical work in causal inference provides foun-
dation and our previous work in genetic study provides intuition
and specific model (Model Q5 in Allison, 1997). Although Model
Q5 proposed by Allison (1997) is conditional on three mating
types excluding families with both homozygous parents, this can
actually be released, leading to the more general model as pro-
posed in this work. Allison’s (1997) Q5 model excludes families
with both parents homozygous because such families add no
information to the estimation of the elements of β. However,
under the homoscedasticity assumption, they do contribute to
the precision of the estimation of residual variance and there-
fore can be included, and their inclusion should result in slightly
greater power under the alternative hypothesis. From the point of
view of causal inference (Rubin, 1977), in principle causal infer-
ence can be made when conditional on parental mating types,
given that we do not consider parent-of-origin effects (that is we
assume that alleles in offspring have the same effects regardless
of which parent those alleles were inherited from), because the
probability of offspring genotypes can be fully determined by

Table 2 | P -values of children’s genotypes from the analyses with only

the first child in each family.

Statistical model SNPs

rs9930506 rs9939609 rs1121980 rs8050136

Logistic regression 0.928 0.946 0.944 0.965

P-values for the genotypes are from two degrees of freedom test.

parental mating types. Therefore in our model we conditional
on parental mating types. By using this analytic method, if a sig-
nificant finding is obtained, one can justifiably claim that either
the fetal genotype at the locus in question or a genotype physi-
cally linked to it has a causal effect on the maternal phenotype. It
should be noted that many factors may contribute to the mater-
nal phenotype. Our model only tests if fetal genotype is one of
the factors, and if it is, it is a causal factor. To illustrate the
principle, we analyzed a dataset from FHS using the model we
proposed.

It should be noted that random mating is not assumed for
our model. The model is based on the randomization of off-
spring via the random assignment to genotypes at the locus
under study. The randomization holds if we condition on parental
mating types at that locus under Mendelian theory (Allison and
Neale, 2001; Tiwari et al., 2008). The inclusion of the mat-
ing types in the model is necessary for this “conditioning” to
achieve the randomization, as pointed out by Rubin (1977).
Because the fetal genotype is derived from parental genotypes,
they are highly correlated. This may raise the concerns related
to collinearity in numerical computation. However, collinearity
is caused by high linear correlations between independent vari-
ables in the model. Although fetal genotype is correlated with
parental genotypes, the linear correlations via Pearson corre-
lation coefficients suggest that they are not prohibitively high.
In our model, we treat the offspring’s genotypes and parental
mating types as categorical so dummy variables are created for
each of them. Therefore the correlation between parental mat-
ing types and fetal genotypes is modest. In the data we analyzed
above, the correlation coefficients are less than 0.474 between fetal
genotype and paternal mating types for the four SNPs, respec-
tively. These low to moderate correlations may not induce undue
issues of collinearity. Nevertheless, we recommend investigators
assessing collinearity in their datasets and interpreting results
accordingly.

Our model is based on a linear model (more general, gener-
alized linear model) and assumes samples with unrelated study
units. The model can be extended to handle data with related
study units, such as biological siblings, by the use of a linear
mixed model (or more general, generalized linear mixed model).
The correlation between the related individuals can be dealt with
via a random effect by using a matrix of kinship coefficients (a
kinship coefficient is a measure of degree of genetic correlation
between two individuals; Yu et al., 2006; Kang et al., 2010; Liu
et al., 2011). In this work, we only use a linear model to test the
fetal drive effects. Causation can be inferred because of the condi-
tional randomization in the process of meiosis. More complicated
models, such as structural equations models, may capture more
about the complexity of the data and may work more efficiently.
However, we focus on causal inference; therefore care must be
taken in order to test causation with more complicated models.
This is beyond the scope of this work and is a good topic for future
research.

There are no significant findings in our data analysis. This may
be because that the four SNPs we tested did not have deleterious
effects on maternal metabolic function, or our analysis lacked the
requisite power to detect an effect. Statistical power is influenced
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by many factors including effect size and sample size. Metabolic
function is a complex phenotype, and we did not expect a large
effect size for any of its risk factors. We only tested four SNPs in
FTO gene due to its relationship with obesity, in a small sample,
and think that a genome-wide scan in a much larger sample is
warranted for more reliable inferences.

Although our statistical method makes the direct test of our
hypothesis possible in human studies, it should be noted that con-
ducting such studies necessitate a great deal of time and effort
because both parents and offspring need to be included in the
study and relevant physiological measurements must be made in
the mothers during pregnancy. The effort is worthwhile because if
the hypothesis is validated, our understanding of some gestational
metabolic conditions may be shifted to a new level. New strategies
may be developed to prevent and reduce morbidity and possi-
bly mortality in both the mother and offspring and their future
descendants.
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