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Abstract: p53 plays critical roles in regulating cell cycle, apoptosis, senescence and metabolism
and is commonly mutated in human cancer. These roles are achieved by interaction with other
proteins, but particularly by interaction with DNA. As a transcription factor, p53 is well known
to bind consensus target sequences in linear B-DNA. Recent findings indicate that p53 binds with
higher affinity to target sequences that form cruciform DNA structure. Moreover, p53 binds very
tightly to non-B DNA structures and local DNA structures are increasingly recognized to influence
the activity of wild-type and mutant p53. Apart from cruciform structures, p53 binds to quadruplex
DNA, triplex DNA, DNA loops, bulged DNA and hemicatenane DNA. In this review, we describe
local DNA structures and summarize information about interactions of p53 with these structural
DNA motifs. These recent data provide important insights into the complexity of the p53 pathway
and the functional consequences of wild-type and mutant p53 activation in normal and tumor cells.
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1. Introduction

p53 is one of the most intensively studied tumor suppressor proteins and its regulation and relation
to cancer has been reviewed extensively [1–3]. The reason for such interest is obvious; more than
50% of all human tumors contain Tp53 mutations and inactivation of this gene plays a critical role
in malignant transformation [1,3]. As a transcription factor, p53 regulates the expression of many
downstream genes in cells undergoing various types of stress and DNA binding is crucial for its
function [4–6]. It has been demonstrated that p53 binds not only to sequence-specific p53 target sites
in linear DNA, but also to local DNA structures such as cruciforms, quadruplexes and triplexes, and to
DNA loops, bulged DNA, hemicatenane DNA, etc. In this review, we summarize these data of p53
binding to local DNA structures and how such differential binding influences the activities of p53.

1.1. Local DNA Structures

The discovery of B-DNA structure by Watson and Crick in 1953 showed the basic structure
of DNA [7]. Further discoveries have led to fascinating findings of the dynamic world of DNA
structure, with various DNA forms that differ from this canonical B-DNA structure. These DNA
structures, which do not fit the basic double helical model, were originally termed “unusual” DNA
structures [8–11], implying that they are rare structures. However, these local DNA structures are in
fact common in the genomes of all organisms and play critical roles in regulating many fundamental
biological functions. The negative supercoiling of DNA and protein binding can increase the stability
of local conformation and/or induce conformational changes that give rise to various alternative
DNA structures, the best described being cruciforms, left-handed DNA (Z-DNA), triplexes and
quadruplexes [9,12,13].
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1.1.1. Hairpins and Cruciform Structures

Hairpin and cruciform formation is dependent on DNA sequence and requires inverted repeats
in the nucleic acid sequence. The length of this repeat should be six or more nucleotides [14,15].
High non-random occurrences of these inverted repeats were detected in the proximity of breakpoint
junctions, promoters and sites of replication initiation [10,16,17] and the probability of cruciform
formation can be analyzed by several informatics tools [18,19]. Cruciforms have the ability to affect
DNA supercoiling, positioning of nucleosomes in vivo and also the formation and stabilization of
other secondary DNA structures [20]. Structurally, they consist of a branch point, a stem and a loop
(Figure 1A). Atomic force microscopy has shown two types of cruciform; one has a square planar
conformation and the second type consists of a folded conformation, where arms are not perpendicular
and neighboring arms are arranged in sharp angle with the B-DNA strand [21–23]. Cruciforms are
unstable in linear naked DNA because of branch migration [24], although cruciform formation has been
identified in both prokaryotes and eukaryotes in vivo [25,26]. A number of proteins with preferential
affinity for hairpins and cruciforms have been identified [27]. For example, HMG proteins in various
species bind to specific DNA structures [28]; 14-3-3 proteins bind to cruciforms and omission of
the 14-3-3 cruciform binding domain reduces initiation of DNA replication [29]. In plants, it was
demonstrated that palindromic regions act as hot spots for de novo methylation [30]. The development
of new assays that identify DNA cruciforms [31] is expected to increase their reliable detection and
further analysis.
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1.1.2. Triplexes

A DNA triplex is a non-B-DNA structure consisting of three DNA strands (Figure 1B) where
both Watson–Crick and Hoogsteen base pairing are involved [32]. DNA triplexes can be divided
into two groups based on the number of DNA strands involved: intramolecular (the third strand
is from the same duplex) and intermolecular (the third strand is from a different duplex). In both
cases, the third DNA strand binds into the major groove of the DNA duplex. Intramolecular triplexes
(also called H-DNA) originate from sequences with homopurine/homopyridine repeats and their
role in gene expression regulation has been demonstrated [33]. According to the orientation of the
third strand, triplexes are described as parallel (requires N3 protonation for Hoogsteen base pair
forming), or antiparallel (does not require acidic conditions). Triplexes in general are relatively
unstable compared to DNA duplexes because of a lower number of hydrogen bonds and also due to
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electrostatic repulsion in negatively charged phosphate backbones. Triplex stability can be enhanced
by the presence of Mg2+ ions, which relieves the electrostatic repulsion [34]. Triplex formation
is affected by the length of triplex-forming sequence, type of triplet, ionic conditions, molecular
crowding and chromatin accessibility [35]. Triplex-forming sequences are abundant, especially in
eukaryotes [36,37]. Most polypurine-polypyrimidine DNA tracks are found in introns, promoters,
and 5′ and 3′ untranslated regions. It was shown that triplex-forming sequences are enriched in
genes related to cell communication and signaling [38]. In human cells, H-DNA structures were
immunodetected by antibodies with triplex specificity [39]. Results have shown the importance
of triplexes in different cellular processes; for example H-DNA structure creates an effective block
for Taq DNA polymerase [40], an H-DNA forming sequence stops replication fork progression on
plasmid in S. cerevisiae and triplex formation reveals single stranded DNA (Figure 1D), potentially
leading to DNA breaks [41]. It was shown that GAA/TTC triplet expansion in the first intron of the
frataxin gene forms triplex structure [42] and this triplet expansion is associated with Friedreich’s
ataxia [43,44]. DNA triplet repeats can adopt several unusual DNA structures, including hairpins,
triplexes, or quadruplexes [45]. Moreover, purine repeats capable of forming stable DNA triplex
structures are associated with neurological disorders [46].

1.1.3. Quadruplexes

Another known non-B DNA structure is the quadruplex (Figure 1C) [47,48]. The tetrameric
arrangement of guanines was demonstrated by crystallographic methods as the G-quartet in
1962 [49]. One of the first quadruplexes to be characterized in detail was from human telomere
sequences [50]. Nowadays, there are numerous software tools for quadruplex prediction [51–53].
The existence of quadruplex forming sequences correlates with functional genomic domains and over
40% of human genes have G-rich areas [51]. Both DNA and RNA can form quadruplex structures
and the presence of a G-quadruplex was shown in the 5′ untranslated region of the majority of
mRNAs [54]. G-quadruplexes have been detected in vivo with specific antibodies and by quadruplex
specific interacting fluorescent compounds [55,56] that bind and stabilize G-quadruplex structures
in DNA and RNA [48,57]. It has also been demonstrated that quadruplexes are important for gene
expression [58,59].

1.1.4. T-Loops

Mammalian telomeres form large duplex loops (T-loops, Figure 1D) in vivo [60]. T-loop
formation requires the presence of TRF2 protein, a telomere junction consisting of a 3′ single strand
overhang and TTAGGG repeats bordering the double strand part of the telomere [61]. Similarly,
evolutionarily divergent organisms protect the ends of their DNA sequences via looping, for example
Oxytricha nova [62] and Trypanosoma brucei [63]. Telomere looping is probably a common mechanism
for protecting the ends of linear chromosomes.

2. Interaction of p53 with DNA

p53 controls an extensive transcriptional network, providing response to cellular and environmental
stresses or damage [64,65]. p53 is a multifunctional protein, however its main function as a tumor
suppressor is provided by its interaction with DNA. p53 protein structure has been extensively
reviewed [66–68]. The p53 protein contains a natively unfolded amino-terminal transactivation
domain, which can be further subdivided into two subdomains, followed by a proline-rich region.
The structured DNA-binding and tetramerization domains are connected through a flexible linker
region. The C-terminal part of the protein is the regulatory domain (Figure 2). It is generally accepted
that p53 contains two DNA binding domains: (a) the core domain; and (b) the basic C-terminal domain.



Int. J. Mol. Sci. 2017, 18, 375 4 of 18
Int. J. Mol. Sci. 2017, 18, 375  4 of 18 

 

 
Figure 2. Schematic structure of p53. p53 is composed from several domains: a transactivation 
domain (TAD) with TAD1 and TAD2 subdomains, a proline-rich region (PR), the core domain (CD, DNA 
sequence specific binding domain), a flexible linker region (L), a tetramerization domain (T), and the 
regulatory domain at the extreme carboxyl terminus (CTD). The vertical bars indicate the relative 
missense-mutation frequency in human cancer for each residue (Tp53 Mutation Database [69]. 
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Figure 2. Schematic structure of p53. p53 is composed from several domains: a transactivation domain
(TAD) with TAD1 and TAD2 subdomains, a proline-rich region (PR), the core domain (CD, DNA
sequence specific binding domain), a flexible linker region (L), a tetramerization domain (T), and the
regulatory domain at the extreme carboxyl terminus (CTD). The vertical bars indicate the relative
missense-mutation frequency in human cancer for each residue (Tp53 Mutation Database [69]. Adapted
from [66].

2.1. Sequence-Specific Interaction

p53 regulates target gene expression by either activation or inhibition of p53-responsive promoters.
Critical for its function is the DNA sequence-specific binding [70]. The p53 target sequence comprises
two copies of a 5′-RRRC(A/T)(T/A)GYYY-3′ sequence, which can be separated by a spacer of 0 to
13 bp [71]. p53 interacts with its target sequence as a tetramer [72,73]. Interestingly, natural p53
target sequences are highly heterogeneous [74] and different bases may be located anywhere except at
positions 4 and 7 in each half site [75,76]. The core domain of the p53 protein is mainly responsible
for DNA target sequence interactions [77,78], but C-terminal modification is mandatory for effective
binding of the full-length protein to the target sequence [79]. The length of the DNA spacer between
decamers is another important determinant for p53 binding and transactivation, and the insertion
of nucleotides between the two decamers leads to lower transactivation. p53 transactivation is also
possible in yeast or human cell systems from just one decamer [80]. Even though the core domain of
p53 is able to bind target sequences on its own, the full-length protein is required for efficient specific
DNA binding and for the effective searching for the p53 target site in long DNA [81–83]. It was shown
that p53 searches for the target by combining three-dimensional diffusion and one-dimensional sliding
along the DNA [6,84]. The C-terminal domain mediates fast sliding of p53, while the core domain
samples DNA by frequent dissociation and reassociation, allowing for rapid scanning of long DNA
regions [85]. Using single-molecule fluorescence microscopy, it was demonstrated that p53 protein
sliding was significantly accelerated by the presence of divalent cations and depended on the sequence
of DNA, suggesting that p53 possesses two sliding modes with different diffusion coefficients [84,86].
This proposal is supported by molecular simulation, showing that p53 diffuses along nonspecific DNA
via rotation-uncoupled sliding with its C-terminal domain, whereas the core domain repeats cycles of
dissociation and association [87]. Target sequences and their recognition by p53 has been extensively
studied and reviewed [76,88–93], therefore we will focus in this review on p53 binding to DNA with
non-B DNA structures.

2.1.1. DNA Bending by p53 Protein Binding

It was demonstrated that p53 interaction with DNA target sites causes their bending, and that
bending angles correlate with binding affinity to these response elements [94]. In vitro assays have
shown that the p53 core domain bends linear B-DNA up to 52 degrees for an ideal p53 target sequence
and that the bending of symmetrical p53 sequences is about 50 degrees for the CDKN1A/p21 promoter;
37 degrees for the RGC site; and 25 degrees for the SV40 promoter binding site [94]. Angles are higher
for full-length p53 protein, meaning that amino acids flanking the core DNA binding domain take part
in DNA binding/bending [95]. It was also demonstrated that binding cooperativity is determined
by the structural properties of this region, particularly the torsional flexibility of the CWWG motif;
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transactivation properties of p53 target sequences are therefore strictly determined by their intrinsic
physical properties [96]. Moreover, it was demonstrated that the conformational switch influences DNA
binding off-rates independently of affinity [97,98]. Molecular dynamic simulations have identified
sequence-dependent differential quaternary binding modes of the p53 tetramer interfacing with DNA
and showed direct interactions of the p53 C-terminal region with DNA [99]. A structure with four p53
core domains bound to bent DNA is shown (Figure 3. These results point to the importance of DNA
structure for effective p53 binding to its target.
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R273H and R282W) also have the ability of wild-type p53 to preferentially bind supercoiled DNA, 
while the same DNA molecules in linear or relaxed circular DNA were poorly bound [102]. Using 
chromatin immunoprecipitation, prior binding of mutant p53 to target sites in superhelical DNA 
was detected also in cells [103]. Interestingly, supercoiled DNA can stabilize different non-B DNA 
structures including cruciforms, triplexes and quadruplexes [9]. 

2.1.2. p53 Binding to p53 Target Site Enhanced by Cruciform Extrusion 

There is a strong correlation between the inverted repeat in the p53 target site and enhancement 
of p53 binding to DNA [104,105]. p53 binds p53 response sites capable of forming cruciform 
structures in topologically constrained DNA with a remarkably higher affinity compared to 
asymmetric p53 response sites [106]. These results implicate DNA topology as having an important 
role in modulation of the p53 regulon. p53 binding to supercoiled DNA with and without a p53 
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Figure 3. A structure with four p53 DBD domains bound to bent DNA (adapted from [95], Proc. Natl.
Acad. Sci. USA, 1999, 96, 1875–1880). Four p53 core domains bound to bent DNA. The figure is based
on the computational model that was further corroborated by gel electrophoresis experiments [100];
the overall DNA bend is ~40◦. The red arrows show the major-groove bending (M) in the CWWG
tetramers; the blue arrow denotes the minor-groove bend (m) in the center of the site. The lateral
positioning of p53 DBDs on the external side of the DNA loop and the degree of DNA bending imply
that, in principle, the p53 tetramer can bind to nucleosomal DNA. The dashed lines indicate that
the N-termini of the p53 tetramer (N1–N4) are accessible for interactions with trans-activation and
trans-repression factors. Large colored arrows (1–4) at the bottom of the figure indicate the orientations
of the four p53 target site subunits.

Palecek et al. showed preferential binding of wild-type p53 protein to supercoiled DNA [101].
It was later demonstrated that hot-spot mutant p53 proteins (R175H, G245S, R248W, R249S, R273C,
R273H and R282W) also have the ability of wild-type p53 to preferentially bind supercoiled DNA,
while the same DNA molecules in linear or relaxed circular DNA were poorly bound [102]. Using
chromatin immunoprecipitation, prior binding of mutant p53 to target sites in superhelical DNA
was detected also in cells [103]. Interestingly, supercoiled DNA can stabilize different non-B DNA
structures including cruciforms, triplexes and quadruplexes [9].

2.1.2. p53 Binding to p53 Target Site Enhanced by Cruciform Extrusion

There is a strong correlation between the inverted repeat in the p53 target site and enhancement
of p53 binding to DNA [104,105]. p53 binds p53 response sites capable of forming cruciform structures
in topologically constrained DNA with a remarkably higher affinity compared to asymmetric p53
response sites [106]. These results implicate DNA topology as having an important role in modulation
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of the p53 regulon. p53 binding to supercoiled DNA with and without a p53 target sequence has
been demonstrated [101]. Moreover, the cruciform structures in p53 target sequences are preferred by
p53 both in vitro [107] and in vivo as demonstrated by chromatin immunoprecipitation [108] and by
transactivation assay with full-length p53 protein [109]. It seems that both better accessibility of the
p53 target sequence and higher stability of the complex play roles in the preferential binding of p53 to
target sequences in a cruciform structure (Figure 4).
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Figure 4. Scheme of p53 binding to its response sequence in linear and superhelical states. p53 target
(blue) can be presented in: (A) linear DNA; or (B) cruciform DNA. p53 (green) binds to its target in:
linear (C); or cruciform (D) structure with preference to cruciform structure probably due to better
accessibility and/or stability of the complex.

2.2. p53 Binding to Local DNA Structures

It was demonstrated that p53 interacts with a set of non-canonical DNA structures: p53
preferentially binds to duplexes with mismatches, cruciforms [110], bent DNA [81], structurally flexible
chromatin [111], hemi-catenated DNA [112], DNA bulges, three way or four way junctions [113],
telomere T-loops [114] and superhelical DNA [106,115,116].

2.2.1. Bulged DNA and Mismatches

When two similar DNA molecules containing some non-homologies undergo recombination,
some single based mismatches and extra base bulges may be left behind. Their presence must be
signaled for repair. These mistakes in base pairing and bulges may also arise as a consequence of
errors in replication or repair of DNA damage. p53 and its C-terminal domain can form a complex
with base bulges, insertion/deletion mismatches, and extra bases on one strand. Complexes formed
in this way are quite stable [117]. Comparison of bulge, regular and mismatch sequences (every
mismatch possible) using filter binding analysis identified the most attractive binding substrate for p53
as 3-cytosine bulge and then mismatches C/C, A/G, regular, A/C and G/T. When comparisons were
made on agarose gels, the results were slightly different; 3-cytosine bulge was still the most attractive,
followed by C/C, A/G, A/C and T/T, both experiments were performed at low ionic strength (50 mM
KCl or NaCl) [110]. At higher ionic strength, the interaction with double stranded linear DNA was
quite weak and insertion of a G/T mismatch had almost no effect on p53 binding, but insertion of
an A/G mismatch enhanced binding almost threefold compared to linear DNA [118].

2.2.2. Holliday Junctions and Cruciforms

Lee et al. demonstrated p53 interaction with DNA Holliday junctions. Using electron microscopy,
it was shown that DNA junctions are bound mostly by p53 trimers or tetramers (46%) and
less by dimers (15%) or monomers (6%), but are also bound by higher oligomeric p53 forms
(33%) [119]. T4 endonuclease and T7 endonuclease I are well characterized junction resolvases [120].
They interact specifically with the junction and cleave these four way junctions by introducing
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nicks at asymmetrically related positions across the junction. Preincubation of four way junctions
with p53 before adding one or other endonuclease leads to more effective cleavage of the junction;
for T4 endonuclease VII about nine-fold lower concentration of enzyme was required for the same
cleavage efficiency [119]. Although the molecular mechanism for this phenomenon is unclear, these
results indicate the importance of p53 in the recognition of DNA junctions. Negative superhelicity and
protein interactions with DNA lead to stabilization of non-B DNA structures. It was demonstrated
that p53 binds with higher affinity to both negatively and positively supercoiled DNA [101,121].
Interestingly, cruciform structures, which can be stabilized by DNA supercoiling, share two or three
structural parts (four-way junction and the stem) with Holliday junctions. It is therefore not surprising
that p53 interacts with topologically constrained DNA [105,122] and with cruciforms [108,123].
By electron and scanning force microscopy it was demonstrated that the p53 core domain binds
to cruciform in plasmids with an inserted sequence (AT)34 (Figure 5) [123,124]. The strong correlation
between negative superhelix density changes and p53 binding enhancement to cruciform-forming
DNA sequences pointed to the importance of three-dimensional DNA structure for effective p53
binding [105]. Interestingly, in silico analysis of the CDKN1A gene promoter with three p53 binding
sites situated at positions ~1400, ~2300 and ~4500 [125] shows a correlation between inverted repeat
presence and effective p53 binding demonstrated by chromatin immunoprecipitation [108].
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Figure 5. Binding of p53CD to supercoiled DNA forming cruciform structures. (A,B) Scanning force
microscopy images of the sc pXG(AT)34 plasmid DNA bearing an (AT)34 sequence; small arms forming
Y-shapes (arrows) are clearly visible. (C–F) SFM images of complexes formed between p53CD and
sc pXG(AT)34 plasmid DNA at a molar ratio of 2.5; the bound proteins are clearly seen as large
protuberances on surface plots (E,F). The scale bars represent 200 nm. The color bars represent 5 nm
(reprinted from [123], with permissions from Elsevier).
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2.2.3. Hemicatenane DNA

Hemicatenanes are thought to be important intermediates for DNA replication, repair and
recombination. This structure is created by a denaturated DNA duplex that renatures in the presence
of HMGB1 or HMGB2 [126] and is resolved by topoisomerases [127]. Hemicatenane DNA is made by
DNA reassociation of fragments containing a poly(CA)poly(TG) repeat [126]. It was shown that p53
shares similar preferences for structures such as extra base bulges, UV irradiated DNA, DNA modified
with the anticancer drug cisplatin, three stranded DNA structures, Holliday junctions and DNA
minicircles with HMGB1 protein [81,117,128]. p53 protein isolated from baculovirus infected insect
cells could bind hemicatenate DNA forming three bands (three types of complexes) on agarose
gels. Complex I is formed by p53 binding to a high affinity site (DNA loop and hemicatenane) and
complex II contains p53 bound to low affinity sites (linear segments outside of the DNA loop) within
complex I. When complex I has both low affinity sites occupied by p53, then it forms complex III [112].
Interestingly, p53 with deletion of the last 30 amino acids can interact with hemicatenane DNA [112].

2.2.4. Telomeric T-Loop and Single Strand Overhangs

Mammalian telomeres are organized into large duplex loops in vivo (T-loops) [60]. In vitro,
these structures are created in the presence of TRF2 at a telomeric junction consisting of a 3′ single
stranded overhang of at least one TTAGGG repeat neighboring the double stranded part of the
telomere [61]. It is also possible that a portion of the C-rich strand of the double and single stranded
telomeric junction may invade the duplex, creating a Holliday junction-like structure at the base of the
T-loop [61]. When T-loops created by TRF2 are incubated with p53, 88% have p53 bound exclusively
at the T-loop junction and it seems that p53 interacts with this structure as a tetramer or as two
tetramers, but when the TTAGGG sequence is present in double stranded linear form, there is no/very
low binding—depending on protein concentration. TTAGGG presented as double stranded DNA in
a plasmid is also not very attractive for p53, whereas p53 binds single stranded TTAGGG with high
affinity [114]. Another interesting finding is that p53 also has strand transfer activity [129] that may
assist TRF2-mediated T-loop formation or p53 may even create these T-loops. In vitro experiments
showed that p53 does not mediate T-loop formation itself, but T-loop formation is increased when
TRF2 and p53 cooperate (compared to TRF2 T-loop formation). TRF2 transformed about 13% of DNA
molecules into T-loops, but together with p53 this increased to 24% and both proteins were often
detected together (86%) at the T-loop junction [114].

2.2.5. Triplexes

Triplex-forming sequences occur in many gene promoters, for example IL2R, DNA-POL1 and
MYC [130], which suggests a potential role of triplexes in transcription. A structure-selective DNA
binding of wild-type and G245S mutant p53 proteins on the intermolecular triplex (dT)50.(dA)50.(dT)50
has been described [131]. Binding of wild-type p53 on plasmid DNA containing triplex-forming
sequence demonstrated that p53 prefers a superhelical form of plasmid with triplex extrusion. The use
of antibodies to the p53 N- and C-terminal domains showed that the C-terminus of p53 probably plays
a key role in triplex TAT binding [131]. Recently, comparative analyses of p53 binding to triplex DNA
in vitro and in vivo have been published [132]. The influence of triplex structure on p53 transactivation
in cells was measured by luciferase reporter assays in H1299 cells with pCDNAp53 vector and
transactivation of the candidate p53 target genes with TAT triplex-forming motifs in promotor region
was validated by RT-PCR [132]. Comparative analyses show that p53 binding to triplex DNA is
comparable to recognition of hairpin structure. Comparison of gel-shifts and ELISA with full-length
protein and isolated parts of the protein—core domain and C-terminal domain—showed surprisingly
that all constructs are able to bind a TAT triplex, however the affinity of the full-length and C-terminal
domain of p53 is significantly higher than the affinity of the p53 core domain, showing the crucial
importance of the C-terminal domain in triplex recognition [132].
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2.2.6. Quadruplexes

Recent research has highlighted the importance of quadruplexes in multiple cellular processes,
including DNA replication, telomere maintenance and the binding and activity of transcription
factors [133,134]. Compared to wild-type p53, mutant p53 proteins do not bind or bind only weakly
to p53 target sequences [135,136]. However, both mutant p53 (G245S, R248W and R273H) and wild
type p53 have the ability to interact with quadruplex structures in vitro [137]. It was shown that
mutant p53 proteins modulate transcription on a global scale through their binding to intronic and
intergenic sequences predisposed to form non-B DNA structures [138]. There was also enrichment
of mutant p53 bound to regions from 1 kb upstream to 1 kb downstream of transcription start
sites [137]. This frequent association of mutant p53 with transcription start site regions corresponds
with a significant overlap with CpG islands (about 90% overlap). Mutant p53 was found to bind
regions of DNA containing 20–21 bp long G-rich motifs, which are predisposed to formation of local
DNA structures. About 75% of mutant p53 binding regions comprise G-quadruplex motifs and mutant
p53 can also stabilize quadruplex folding in vitro as revealed by circular dichroism spectroscopy [137].
Association of p53 with G/C-rich DNA motifs could be mediated by other transcription factors
(SP1 and ETS1) that interact with these motifs [139,140]. Reciprocal coimunoprecipitation discovered
only low levels of these proteins forming a complex with p53, and direct evaluation of mutant p53,
ETS1 and SP1 binding regions showed that only a small fraction of mutant p53 binding regions
serve also as a binding site for EST1 or SP1, or for both of these transcription factors [137]. It has
been shown recently by chromatin immunoprecipitation that p53 binds the G-quadruplex forming
sequence in the Myc promoter and by luciferase transactivation assay in cell lines that this p53
binding leads to represssion of transcription [141]. It was also demonstrated that p53 binds to
telomeric G-quadruplexes and that binding is stronger with an increased number of telomeric repeats.
Furthermore, p53 strongly favors G-quadruplexes folded in the presence of potassium ions over those
formed in sodium ions, thus indicating the telomeric G-quadruplex conformational selectivity of p53.
N-methyl mesoporphyrin IX (a quadruplex-stabilizing ligand), increases quadruplex recognition by
p53. Experiments with separated p53 domains and with selective oxidation of the p53 core domain
show that both p53 DNA binding domains are important for its G-quadruplex recognition [103].

3. Conclusions

DNA binding is fundamental for the ability of p53 to act as a tumor suppressor. p53 has
diverse activities in transcription, repair, recombination, replication and chromatin accessibility. These
functions are realized through versatile modes of p53 interaction with DNA (Figure 6). p53–DNA
interaction with p53 target sites is highly sensitive to DNA topology and architectural features
are a key parameter contributing to p53 DNA affinity and specificity [105,108,135]. It was also
demonstrated in vitro and in vivo that p53 has a strong preference for conformationally flexible
CTG·CAG trinucleotide repeats [142], cruciform structures, triplexes, quadruplexes, DNA damage, etc.
Many studies have shown that p53 binds to target sequences as a tetramer (Figure 6C) [143,144]. The
known “gain of function” role of p53 mutants can therefore be partly caused by heterodimerization of
the mutant and wild-type proteins in a dysfunctional complex [145,146]. However, another possibility
for “gain of function” roles of p53 mutants can be due to introduction of an imbalance among p53
sequence-specific and structure-specific binding. The three-dimensional organization of DNA is
a critically important and basic feature of organisms and local structure of DNA is often a target for
different proteins [27,147,148]. The recognition of non-B DNA structures plays important roles in gene
regulation and is critical for DNA replication. It seems that p53 acts as a DNA topology-modulating
factor [142] and this role could be another basic part of the importance of this protein in the prevention
of cancer development.
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Figure 6. Scheme of p53 DNA recognition to different targets: p53 recognizes damaged DNA (A);
different DNA structures (B); and sequence-specific p53 target sequences (C). Wild-type protein is
shown in green, mutant p53 by red color, DNA strands by black, p53 target sequence by blue, DNA
damage is marked by DNA breaks and by yellow. p53 protein has affinity to different DNA targets,
after DNA damage p53 binding to DNA leads to p53 stabilization and protection before degradation,
these processes could lead to both increased association with local DNA structures (B) and increased
p53 binding to p53 targets in linear and cruciform structure (C). However, p53 binds to p53 target
sequences effectively only as a tetramer and p53 core domain mutants bind to p53 target sequences
only weakly or not at all. Therefore, we suppose that the equilibrium among different p53 DNA
binding properties is moved to preferential binding to different local DNA structures especially to
DNA triplexes and quadruplexes where the C-terminal part of p53 plays the critical role. However,
even wild-type p53 protein binds to local DNA structures, so probably exact equilibrium during basic
cell processes is essential for correct p53 function.

An important part of the complex role of p53 in cancer development is DNA binding of mutant
p53. Despite the partial or complete loss of sequence specific DNA binding, mutant p53 proteins can
induce or repress transcription of mutant p53-specific target genes and various mutant p53 proteins can
bind to oligonucleotides mimicking non-B DNA structures [149]. Mutant p53 proteins bind selectively
and with high affinity to local DNA structures, this binding depends on the spatial arrangement of
the DNA, but not on DNA sequence. It has been proposed that DNA structure-selective binding of
mutant p53 proteins is important for mutant p53 interaction with nuclear matrix attachment region
DNA elements (that are important for large-scale chromatin structural organization) and also for
transcriptional activities mediated by mutant p53 [135,150,151]. According to recent data indicating
a crucial role of the C-terminal domain of p53 for binding to triplex DNA [132] and a similarly
important role of the C-terminal domain in binding to G-quadruplex [141], as well as the results of
hot-spot p53 mutants binding selectively to G-quadruplex [103], the importance of the C-terminal
domain in p53 binding to local DNA structures is an emerging concept. The importance of the
intrinsically disordered C-terminal domain in the complex process of p53 regulation has been recently
reviewed [152]. Interestingly, not only the C-terminal domain but also the core domain of p53 is
important for mutant p53/DNA interactions. The biological implications of mutant p53 binding to
DNA have been reviewed [153] and both wild-type and mutant p53 are able to bind quadruplex
DNA [103,137].
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It was demonstrated that the stability of p53 is enhanced by its binding to local DNA structures.
These structures can therefore remarkably change p53 dependent transactivation as was demonstrated
for triplex structures in promotor regions [132]. Besides its effect on gene transcription, local DNA
structures recognition by p53 can play important role in DNA repair, replication and recombination.
For example, it was shown that p53 binding to subtelomeric regions leads to prevention of
accumulation of DNA damage [154] and it was also shown by genome-wide analyses that p53 is
associated with many different genome locations, including sites not associated with transcriptional
control [155]. p53–DNA interactions are highly versatile as demonstrated by the wide spectrum of
p53 sequence- and structure-specific targets. Flexibility of p53 is probably one of its most important
features, allowing subtle cellular regulation which lead to its key role in basic biological processes
and protection against cancer development. An interplay of p53 DNA recognition among different
DNA targets seems to be a crucial aspect of p53 function. A deeper understanding of p53’s DNA
sequence-specific and structure-specific binding properties in the context of topology and chromatin
will help to elucidate the exact role of this “guardian of the genome”.
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