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Brief Definit ive Report

Cardiovascular disease represents a leading 
cause of death in the developed world, and 
many pathologies result from insufficient repair 
of cardiac injury. Mammalian wound healing 
mechanisms in the adult heart involve scar for-
mation, but for a short time window after birth 
the neonatal heart maintains full regeneration 
capacity of cardiac tissue (Porrello et al., 2011), 
a process which requires macrophages (Aurora 
et al., 2014). Studies of cardiac repair after myo-
cardial infarction in the adult have highlighted 
the critical role of infiltrating monocytes and 
monocyte-derived macrophages for the healing 

process (Nahrendorf et al., 2007; Swirski et al., 
2009). The focus of these studies has been on 
monocyte-derived cells, consistent with the tra-
ditional view that macrophages are part of the 
mononuclear phagocyte system and monocyte-
derived (van Furth and Cohn, 1968; Geissmann 
et al., 2010). Recent evidence, however, sug-
gests that monocyte contribution to macro-
phages only represents an emergency pathway, 
as many tissue macrophage populations get 
seeded in the developing embryo and can self-
maintain without major monocyte contribution 
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Cardiac macrophages (cM) are critical for early postnatal heart regeneration and fibrotic 
repair in the adult heart, but their origins and cellular dynamics during postnatal develop-
ment have not been well characterized. Tissue macrophages can be derived from embryonic 
progenitors or from monocytes during inflammation. We report that within the first weeks 
after birth, the embryo-derived population of resident CX3CR1+ cM diversifies into 
MHCII+ and MHCII cells. Genetic fate mapping demonstrated that cM derived from 
CX3CR1+ embryonic progenitors persisted into adulthood but the initially high contribution 
to resident cM declined after birth. Consistent with this, the early significant prolifera-
tion rate of resident cM decreased with age upon diversification into subpopulations. 
Bone marrow (BM) reconstitution experiments showed monocyte-dependent quantitative 
replacement of all cM populations. Furthermore, parabiotic mice and BM chimeras of 
nonirradiated recipient mice revealed a slow but significant donor contribution to cM. 
Together, our observations indicate that in the heart, embryo-derived cM show declining 
self-renewal with age and are progressively substituted by monocyte-derived macrophages, 
even in the absence of inflammation.

© 2014 Molawi et al.  This article is distributed under the terms of an Attribution–
Noncommercial–Share Alike–No Mirror Sites license for the first six months 
after the publication date (see http://www.rupress.org/terms). After six months  
it is available under a Creative Commons License (Attribution–Noncommercial– 
Share Alike 3.0 Unported license, as described at http://creativecommons.org/ 
licenses/by-nc-sa/3.0/).
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et al., 2012; Tamoutounour et al., 2013). Thus, origin and 
turnover of tissue macrophages are highly tissue specific and 
need to be assessed individually for different organ systems 
(Sieweke and Allen, 2013).

Resident macrophages can be found in all tissues, where 
they fulfill a variety of tissue-specific functions contributing 
to homeostasis, development, and regeneration (Davies et al., 
2013), making them prominent candidates for therapeutic in-
tervention. This holds in particular for the heart, where tissue-
resident cardiac macrophages (cM) have been described as 
CX3CR1+ cells that can be found throughout the myocar-
dium (Pinto et al., 2012). A recent study identified several 
cM populations, including short-lived monocyte-derived 
cells that resemble monocyte-derived DCs as well as tissue-
resident cM, which were suggested to be primarily of embry-
onic origin and to self-maintain under homeostatic conditions 
(Epelman et al., 2014).

(Chorro et al., 2009; Ginhoux et al., 2010; Hoeffel et al., 
2012; Schulz et al., 2012; Hashimoto et al., 2013; Yona et al., 
2013). Macrophages can massively expand in the tissue by 
local proliferation in response to challenge (Jenkins et al., 
2011; Hashimoto et al., 2013; Sieweke and Allen, 2013) and 
can extensively self-renew without loss of differentiated func-
tion in culture upon inactivation of MafB and cMaf tran-
scription factors (Aziz et al., 2009). This has led to the 
proposition that tissue macrophages may have a long-term 
self-renewal capacity akin to that of stem cells (Sieweke and 
Allen, 2013).

Examples of tissue macrophages that are independent 
from monocytes are microglia in the brain and epidermal 
Langerhans cells (Ajami et al., 2007; Chorro et al., 2009; 
Ginhoux et al., 2010; Hoeffel et al., 2012). In contrast, intesti-
nal or dermal macrophages have a high turnover rate and are 
constantly replaced from Ly6C+ blood monocytes (Zigmond 

Figure 1.  cM develop into 4 subpopulations after birth. (A and B) Cytometry analysis of cM from adult CX3CR1GFP/+ mice. (A) FACS profiles of 
cM populations, pregated on living single CD11b+ cells with low CD11c and Ly6C expression. (B) Mean of total and subpopulations of cM in absolute 
numbers (left) or as percentage of total (right) as determined by bead-normalized flow cytometry. Error bars represent SEM (n = 4). (C and D) Cytometry 
analysis (C) and mean percentage (D) of cM subpopulations from CX3CR1GFP/+ mice of indicated age. Error bars represent SEM (n = 3–4). (E) MHCII and 
MHCII+ cM from adult CX3CR1cre:R26-yfp mice (black line) were analyzed for YFP expression and compared with Cre littermate controls (gray area; 
n = 3–4). Data in all panels are representative of at least two independent experiments.
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(Tamoutounour et al., 2013). We found that in 8-wk-old 
mice, the majority of cM was CX3CR1+ (80%) and 
MHCII+ (70%), allowing the delineation of four distinct 
cM subpopulations (Fig. 1, A and B). Additional populations 
of CD11c+MHCII+ or Ly6C+ cells, referred to as cM  
by others (Epelman et al., 2014), were excluded from our 
analysis (Fig. S1 B), as data from other tissues suggest that 
these are monocytes and monocyte-derived dendritic cells 
(Tamoutounour et al., 2013). Consistent with this, these cells 
have been shown to be short-lived and monocyte-derived 
(Epelman et al., 2014).

To investigate the development of the four cM popula-
tions, we analyzed CX3CR1 and MHCII expression in cM 
from newborn to 30-wk-old mice (Fig. 1, C and D). We ob-
served that almost all embryo-derived cM present at birth 
were CX3CR1+MHCII. This homogenous cM compart-
ment diversified with age into four subpopulations with a pro-
gressive increase of MHCII+ cM and a decrease of CX3CR1+ 
cM. Importantly, genetic fate mapping analysis using 
CX3CR1cre mice crossed to R26-yfp reporter mice (CX3CR1cre:
R26-yfp; Yona et al., 2013) revealed that all adult cM sub-
populations must have developed from a CX3CR1+ stage 
(Fig. 1 E). These results suggested two not mutually exclusive 
possibilities for cM subpopulation development: persistence 

Here, we examined the origin and turnover of tissue-
resident cM during postnatal development. Using genetic 
lineage tracing, parabiotic mice, and unconditioned BM chi-
meras, we demonstrate that embryo-derived cM are gradu-
ally replaced by monocyte-derived macrophages with age and 
in the absence of inflammation or injury. This replacement is 
mirrored by dynamic changes in the resident cM population 
composition and decreasing cM self-renewal over time.

RESULTS AND DISCUSSION
We focused on the resident cM population and applied a 
rigorous flow cytometry gating strategy to exclude potential 
infiltrating leukocytes (Fig. S1, A–C). Tissue-resident macro-
phages were identified as positive for the core macrophage 
signature markers CD14, CD64, and MerTK (Gautier et al., 
2012; Tamoutounour et al., 2013) and the classical macro-
phage marker F4/80 (Fig. 1 A). The chemokine receptor 
CX3CR1 is widely expressed in the mononuclear phagocyte 
system (Jung et al., 2000) and cM have been reported to be 
CX3CR1-positive (Pinto et al., 2012). Therefore, we refined 
our analysis of the global cM population by testing CX3CR1 
expression in CX3CR1GFP/+ knock-in mice (Jung et al., 
2000). Additionally, we included MHCII in our analysis, 
which can be differentially expressed on tissue macrophages 

Figure 2.  Decreased contribution of embryo-
derived macrophages to cM with age.  
(A) CX3CR1creER:R26-yfp embryos were treated with 
TAM on E9 or E13 and analyzed on the day of delivery 
(P0) or 6 wk after delivery (P42). (B) Percentage of 
microglia-normalized YFP+ cM and representative 
cytometry plots pregated on total cM at P0 and 
P42 after E13 labeling. Bars show median (n = 9–13). 
***, P ≤ 0.005, Mann-Whitney test. Data were pooled 
from two independent experiments. (C) Representa-
tive cytometry plot showing YFP+ within total cM 
at P42 and percentage of microglia-normalized YFP+ 
cM at P0 and P42 after E9 labeling. Bars show 
median (n = 7) *, P ≤ 0.05. Data were pooled from 
three independent experiments. (D) Representative 
cytometry plots showing YFP+ cells within MHCII 
and MHCII+ cM at P0 and P42 after E13 labeling  
(n = 9–13). (E) Quantification of YFP+ cells within 
MHCII and MHCII+ cM at P42 after E13 labeling. 
Bars show the median (n = 9–13). ***, P ≤ 0.005, 
Mann-Whitney test. Data were pooled from two 
independent experiments. (F) Adult TAM-treated 
CX3CR1creER:R26-yfp mice were analyzed for YFP+ 
cM and microglia at 1 and 4 wk after treatment. 
Percentage of microglia-normalized YFP+ cM is 
shown as median with extreme samples as error 
bars (n = 3). Representative cytometry plots 
show YFP+ within total cM. Unless otherwise 
indicated data in all panels are representative of 
two independent experiments.

http://www.jem.org/cgi/content/full/jem.20140639/DC1
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We further assessed the turnover of CX3CR1+ cM in 
the adult heart by pulse labeling adult CX3CR1creER:R26-yfp 
(Fig. 2 F). 1 wk after treatment, labeling in cM corresponded 
to 60% of microglia labeling but drastically decreased to 
20% after 4 wk. By comparison, microglia labeling was 
nearly complete after 1 wk and remained unchanged there-
after (Goldmann et al., 2013). Collectively, our lineage tracing 
experiments argue that a significant proportion of macro-
phages established in early embryonic development is still 
present at birth but is gradually lost with age.

The relatively fast turnover of labeled tissue-resident cM 
suggested that local self-renewal was insufficient to maintain 
the resident cM pool. We therefore analyzed the prolifera-
tive activity of cM subpopulations in adult mice by BrdU 
incorporation after a 4-h pulse labeling period and by Ki67 
staining (Fig. 3 A). The overall number of proliferating mac-
rophages in adult hearts was low, particularly in MHCII+ 
populations, but the proliferative rate of CX3CR1+MHCII 
cM significantly exceeded that of all other subpopulations. 
Interestingly, this population was also the only cM subset 
present at birth but declined with age at the expense of the other 
cM populations (Fig. 1, C and D). We therefore analyzed the 
evolution of cM proliferation with age. Both BrdU incor-
poration and Ki67 staining showed a high proliferative rate 
in newborn CX3CR1+MHCII cM, which gradually de-
creased by 8–10-fold both in total cM (Fig. 3 B) and in the 
CX3CR1+MHCII cM population (Fig. 3 C). Together, 
these data suggest that both a successive loss of the cell popu-
lation with the highest proliferative rate (CX3CR1+MHCII 
cM) and a strong decrease of the proliferation rate collectively 
result in progressively decreasing self-renewal of the tissue-
resident cM pool.

and diversification of embryo-derived cM as suggested else-
where (Epelman et al., 2014), or replacement of embryo-
derived cM by adult monocyte-derived macrophages.

To address these alternatives, we first analyzed the persis-
tence of embryo-derived cM by genetic lineage tracing using 
CX3CR1-driven tamoxifen (TAM)-inducible Cre recom-
binase (CreERT2) and R26-yfp reporter mice (CX3CR1creER: 
R26-yfp; Fig. 2 A; Yona et al., 2013). Tamoxifen-induced 
pulse labeling at E9 permits us to identify cells derived from 
yolk sac (YS) CX3CR1+ macrophages before the onset of 
definitive hematopoiesis. Labeling at E13 cannot distinguish 
YS- and hematopoietic stem cell (HSC)–derived macro-
phages, but should increase cM labeling because the heart 
is colonized by CX3CR1+ macrophages at this time (Epelman  
et al., 2014). cM labeling was normalized to YFP+ mi-
croglia, which are YS-derived, remain CX3CR1+ throughout 
development, self-maintain without contribution of HSC-
derived cells (Ginhoux et al., 2010; Kierdorf et al., 2013), 
and therefore represent an internal control for maximal 
CX3CR1 labeling efficiency. E13 labeling revealed that rela-
tive cM labeling declined from 35% in newborn mice 
to 18% in 6-wk-old mice (Fig. 2 B), indicating a loss of 
embryo-derived cM with age. E9 labeling showed that 
embryo-derived cM were at least partially of YS origin and 
similarly declined from 14% in neonates to 4% in 6-wk-
old mice (Fig. 2 C). Interestingly, all embryo-derived YFP+ 
cM were MHCII at birth but had partially differentiated 
into MHCII+ cM after 6 wk (Fig. 2 D). Although this 
demonstrated that both populations can develop from cells of 
embryonic origin, the relative contribution of embryo-derived 
YFP+ cM to MHCII+ cM was significantly lower than to 
MHCII cM, (Fig. 2 E).

Figure 3.  Decreased proliferation rate of embryo-derived cM with age. (A) cM subpopulations of adult CX3CR1GFP/+ mice were analyzed for 
BrdU incorporation and expression of Ki67 by flow cytometry four hours after BrdU injection (i.p.). Bars show median (n = 12–13). *, P ≤ 0.05; **, P ≤ 0.01; 
***, P ≤ 0.005; Wilcoxon test. (B and C) Total (B) or CX3CR1+MHCII (C) cM of CX3CR1GFP/+ mice of indicated age were analyzed for BrdU incorporation 
and Ki67 expression by flow cytometry 4 h after BrdU injection (i.p.). Bars show median (n = 4–15). ***, P ≤ 0.005, Mann-Whitney test. Data in all panels 
were pooled from 2–3 independent experiments.
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However, a small radio-resistant population (10%) persisted 
for 36 wk without monocyte contribution. To further analyze 
whether cM replacement was monocyte-dependent, we 
generated mixed chimeras with BM from WT (CD45.1) 
and CCR2/ (CD45.2) CX3CR1GFP/+ mice in CD45.1/
CD45.2 double-positive WT hosts (Fig. 4 B). CCR2/ mice 
have reduced numbers of Ly6C+ monocytes in the blood 
(Serbina and Pamer, 2006) and can therefore be used to ana-
lyze the contribution of circulating monocytes and CCR2-
dependent progenitors to tissue macrophage populations (Yona 
et al., 2013; Tamoutounour et al., 2013). Blood analysis indeed 

We next addressed the question of how the age-dependent 
loss of embryo-derived macrophages is compensated. To test 
the ability of monocytes to contribute to cM populations, 
we generated BM chimeras using WT hosts and BM from 
transgenic mice expressing dTomato from a ubiquitously ex-
pressed human Ubiquitin-C promoter (Ubow mice; Ghigo  
et al., 2013) and GFP from the CX3CR1 locus that makes it 
possible to monitor grafted cells in all four cM populations. 
Graft-derived dTomato+ cM contributed to all four cM 
populations from 4 wk after transplantation and almost com-
pletely replaced host cM populations within 8 wk (Fig. 4 A). 

Figure 4.  Monocytes contribute to four cM subpopulations in adult mice. (A) WT mice were lethally irradiated and reconstituted with BM from 
Ubow:CX3CR1GFP/+ mice. cM were analyzed for contribution of dTomato+ cells at indicated time points after reconstitution and graft-derived cells were 
analyzed for CX3CR1 and MHCII expression. Data are presented as mean percentage ± SEM (n = 3–7) and derived from two independent experiments.  
(B) Mixed BM chimeras were generated by reconstituting lethally irradiated WT mice (CD45.1/CD45.2) with BM from CCR2/:CX3CR1GFP/+ (CD45.2) and 
WT CX3CR1GFP/+ (CD45.1) mice. cM, circulating CD11b+CD115+ monocytes (Ly6C+ and Ly6C) and B220+ B cells were analyzed for WT (CD45.1) and 
CCR2/ (CD45.2) contribution. Host- and graft-derived cM were analyzed for the ratio of MHCII+/MHCII cM. Bars show median (n = 4). *, P ≤ 0.05, 
Mann-Whitney test. (C) Parabiosis was established between adult CCR2/ (CD45.2) and WT (CD45.1) mice. After 10 wk, CCR2/ mice were analyzed for 
contribution of CD45.1+ non-host cells to cM (total, MHCII+, and MHCII), circulating monocytes (Ly6C+ and Ly6C), and B cells. For CD45.1 host and 
CD45.1+ non-host cM, the ratio of MHCII+/MHCII cM was calculated and compared. Bars show median (n = 4). **, P ≤ 0.01, Mann-Whitney test.  
(D) BM chimeras were generated by transfer of LT-HSC isolated from panYFP mice into nonirradiated Rag2/c

/KitW/Wv mice. cM (total, MHCII+, and 
MHCII) and neutrophils (Gr1hi and SSChi) were analyzed for contribution of grafted YFP+ cells 8 wk after transplantation. Bars show median (n = 6).  
**, P ≤ 0.01, Mann-Whitney test. Data in all panels are representative of two independent experiments.
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MHCII cells, explaining the relative increase of MHCII+ cM 
and the reduction of the CX3CR1+MHCII cM subpopu-
lation with age. The dynamic change of the cM subpopulation 
distribution therefore appears to reflect the gradual replace-
ment of embryo-derived cM by monocyte-derived macro
phages. The increasing contribution of monocyte-derived 
macrophages to the cM pool with age may be explained by 
the decreasing self-renewal of embryo-derived cM. Although 
CX3CR1+MHCII cM that contain the majority of em-
bryo-derived macrophages have a higher proliferative rate than 
the other subpopulations, overall cM self-renewal is decreas-
ing with age and is insufficient to sustain the cM pool with-
out input from infiltrating monocytes. It will be interesting to 
determine whether the loss of self-renewal capacity in cM is 
permanent or might be reactivated. The observed mechanism 
of cM homeostasis differs from other macrophage popula-
tions such as microglia, Langerhans cells, or alveolar macro-
phages, which in the absence of tissue damage or inflammation 
appear to self-maintain in tissues without replacement from 
circulating cells. It is also distinct from the high turnover rate of 
dermal tissue macrophages or intestinal lamina propria macro-
phages that are constantly replenished from circulating mono-
cytes (Zigmond et al., 2012; Tamoutounour et al., 2013). In 
contrast to what was proposed elsewhere (Epelman et al., 2014), 
our results also show that inflammation or injury are not neces-
sarily required for replacement of embryo-derived cardiac 
tissue macrophages by monocytes. It will be interesting to 
determine whether dynamic age-dependent changes in resi-
dent tissue macrophage populations also occur in other tissues 
and whether they may be important for the differences in re-
pair mechanisms and regenerative capacity observed between 
young and old individuals.

MATERIALS AND METHODS
Mice. CD45.1 and CD45.2 C57BL/6 mice were obtained from Charles 
River. All transgenic mice used in this study have a C57BL/6 background 
(>7 backcrosses). CX3CR1GFP/+ mice (Jung et al., 2000), CCR2/, Rosa-26-
yfp, CX3CR1cre (JAX Stock No. 25524 B6.C-Cx3cr1<tm1.1(cre)Jung>/J), and 
CX3CR1creER mice (JAX Stock No. 20940 B6J.129-Cx3cr1<tm1.1(cre/
ERT2)Jung>/J; Yona et al., 2013), Ubow mice (Ghigo et al., 2013), Rag2/c

/ 
KitW/Wv mice (Waskow et al., 2009), and panYFP mice (Luche et al., 2013) 
were described elsewhere. Experiments were performed on 6–10-wk-old 
mice, if not stated otherwise. Experiments involving CX3CR1cre and  
CX3CR1creER mice included littermate controls. For other experiments 
C57BL/6 mice served as controls. All mouse experiments were performed 
under specific pathogen-free conditions. Animals were handled according 
to protocols approved by the Weizmann Institute Animal Care Committee 
(Israel), the Federal Ministry for Nature, Environment and Consumers’ Pro-
tection of the state of Baden-Württemberg (Germany) or the animal ethics 
committee of Marseille (France) and were performed in accordance to the 
respective international, national, and institutional regulations.

Parabiosis. 9-wk-old C57BL/6 CD45.1 mice were sutured together with 
9-wk-old B6 CCR2/ CD45.2 and subsequently kept under Bactrim for 
10 wk before analysis.

BM chimeras. 7–10-wk-old host animals were lethally irradiated and were 
reconstituted with donor BM by i.v. injection of minimum 106 BM cells. 
Donor BM was isolated from femurs and tibias of donor mice, filtered through 
a 70-µm mesh and resuspended in PBS for i.v. injection. Rag2/c

/KitW/Wv 

confirmed that the vast majority of monocytes but not B cells 
were of WT origin. Graft-derived cM were almost com-
pletely derived from WT cells (Fig. 4 B). Collectively these 
two experiments established that HSC-derived CCR2- 
dependent cells, most likely Ly6C+ monocytes, have the capac-
ity to differentiate into all cM subsets. Residual host-derived 
cM included both MHCII+ and MHCII cM but showed 
a lower proportion of MHCII+ cells than grafted monocyte-
derived cM (Fig. 4 B).

To examine monocyte contribution to cM populations 
under homeostatic conditions, we generated parabiotic cou-
ples of WT (CD45.1) and CCR2/ (CD45.2) mice and 
analyzed non-host contributions after 10 wk of parabiosis in 
CCR2/ partners (Fig. 4 C). Circulating B cells were equally 
distributed between the partner mice. In the CCR2-deficient 
host Ly6C+ monocytes had reached 70% non-host chime-
rism. About 16% of total cM in CCR2-deficient mice were 
of non-host origin. Given a 70% chimerism in Ly6C+ mono-
cytes, the likely cells of origin, and the possibility that de-
pending on lifetime and exchange rate cM may not be fully 
equilibrated after 10 wk, these observations indicated a signif-
icant monocyte contribution to tissue-resident cM. Again, 
non-host contribution to MHCII+ cM (30%) was signifi-
cantly higher compared with MHCII cM (5%) as high-
lighted by MHCII+/MHCII cM ratios for non-host and 
host-derived cells (Fig. 4 C).

As a complimentary experimental approach that does not 
depend on myeloablative conditioning, we used Rag2/c

/

KitW/Wv mice, which are universal HSC recipients that accept 
grafts without prior irradiation (Waskow et al., 2009), and 
generated BM chimeras by transplantation of HSC from  
panYFP mice (Luche et al., 2013). More than 90% of neutrophils 
were YFP+ after 8 wk, demonstrating efficient reconstitution 
(Fig. 4 D). Analysis of cM revealed 7% YFP+ cells in the 
total population. Again, donor cells showed a higher contribu-
tion to MHCII+ (8% YFP+) than to MHCII cM (4% 
YFP+) (Fig. 4 D). In the same mice, no donor contribution 
to microglia cells was observed (K. Klapproth and H.R. 
Rodewald, personal communication). Together, these experi-
ments clearly demonstrated a slow but significant replacement 
of tissue-resident cM by infiltrating monocyte-derived mac-
rophages, which preferentially contributed to MHCII+ cM.

In the present study, we have analyzed homeostasis, origin, 
and turnover of resident macrophages in the heart during 
postnatal development. We have shown that the cM com-
partment is undergoing dynamic changes with age. Embryo- 
derived macrophages present in newborn mice are all CX3CR1+ 
MHCII and at least partially YS-derived. After birth, the 
cM compartment diversifies into four subpopulations 
defined by MHCII and CX3CR1 expression. Our results 
show that this diversification is due both to differentiation  
of persisting embryo-derived CX3CR1+MHCII cM and 
infiltrating monocyte-derived macrophages, which both can 
contribute to all four cM subpopulations. However, mono-
cytes preferentially give rise to MHCII+ cM, whereas embryo-
derived or radio-resistant cM had a higher proportion of 
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