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The majority of infants’ breastfeeding from their HIV-infected mothers do not acquire 
HIV-1 infection despite exposure to cell-free virus and cell-associated virus in HIV-
infected breast milk. Paradoxically, exclusive breastfeeding regardless of the HIV status 
of the mother has led to a significant decrease in mother-to-child transmission (MTCT) 
compared with non-exclusive breastfeeding. Although it remains unclear how these 
HIV-exposed infants remain uninfected despite repeated and prolonged exposure to 
HIV-1, the low rate of transmission is suggestive of a multitude of protective, short-lived 
bioactive innate immune factors in breast milk. Indeed, recent studies of soluble factors 
in breast milk shed new light on mechanisms of neonatal HIV-1 protection. This review 
highlights the role and significance of innate immune factors in HIV-1 susceptibility and 
infection. Prevention of MTCT of HIV-1 is likely due to multiple factors, including innate 
immune factors such as lactoferrin and elafin among many others. In pursuing this field, 
our lab was the first to show that soluble toll-like receptor 2 (sTLR2) directly inhibits HIV 
infection, integration, and inflammation. More recently, we demonstrated that sTLR2 
directly binds to selective HIV-1 proteins, including p17, gp41, and p24, leading to 
significantly reduced NFκB activation, interleukin-8 production, CCR5 expression, and 
HIV infection in a dose-dependent manner. Thus, a clearer understanding of soluble 
milk-derived innate factors with known antiviral functions may provide new therapeutic 
insights to reduce vertical HIV-1 transmission and will have important implications for 
protection against HIV-1 infection at other mucosal sites. Furthermore, innate bioactive 
factors identified in human milk may serve not only in protecting infants against infections 
and inflammation but also the elderly; thus, opening the door for novel innate immune 
therapeutics to protect newborns, infants, adults, and the elderly.

Keywords: breast milk, breastfeeding behaviors, Hiv-1, human breast milk stem cells, human milk oligosaccharides, 
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iNTRODUCTiON

Although it had been recognized for centuries that breastfeeding 
and infant health were associated, one of the earliest systematic 
studies to demonstrate this was conducted by Grulee et al. in 
1935 (1). They studied over 20,000 mother–infant dyads and 
showed that compared with breastfed infants, non-breastfed 
infants had 3.1-fold higher morbidity and 7.1-fold higher 
mortality due to gastrointestinal disease, 1.4-fold higher mor-
bidity and 1.9-fold higher mortality due to respiratory disease, 
and 2.5-fold higher morbidity and 4.3-fold higher mortality 
from other diseases (1). These differences clearly indicate that 
breastfeeding and breast milk have protective activities. Indeed, 
it has been established that human milk contains a growing 
list of bioactive molecules, including components of the innate 
and adaptive immune system of the mother, primarily secre-
tory immunoglobulin A (SIgA) (2–4). The title of this review is 
taken, in part, from Dr. David S. Newburg who coined the term 
“innate immune system of human milk” (2).

Newborns and infants bear the greatest burden of infectious 
disease. The World Health Organization estimates 10.6 million 
children under the age of 5 die every year with the highest mor-
tality rates occurring in the first month of life (5, 6). Importantly, 
95% of infant morbidity and mortality occur in low and middle-
income countries, such as sub-Saharan Africa where HIV and 
TB are endemic. Universal breastfeeding could prevent annual 
deaths of 823,000 children under the age of 5  years as well as 
20,000 breast cancer deaths each year (7). Economic losses close 
to three billion dollars per year are associated with not breast-
feeding (8).

Breastfeeding unquestionably protects against death and 
disease. Studies conducted in low and middle-income countries 
have clearly demonstrated that exclusively breastfed infants are 
protected against morbidity and mortality with only 12% of the 
risk of death compared with those who were not breastfed (9). 
Non-breastfed infants younger than 6  months had 3.5 times 
(boys) and 4.1 times (girls) increased mortality compared with 
infants receiving breast milk (10). In high-income countries, 
breastfeeding has been shown to be associated with a 36% reduc-
tion in sudden infant death and a 58% decrease in necrotizing 
enterocolitis (11). Furthermore, breastfeeding protects infants 
against 50% of all diarrhea episodes and a third of respiratory 
infections in infants who are not breastfed (12).

These protective effects of breast milk undoubtedly can be 
attributed to the multitude of bioactive molecules that have 
been shown protective against infections, reducing inflam-
mation, facilitating immune system and organ development, 
and beneficially influencing the infant microbiome. Since the 
majority of bioactive factors in milk have not yet been identified, 
characterization of novel factors in milk will open the door for the 
development of novel antimicrobial immunotherapeutics.

BReASTFeeDiNG BeHAviORS AND Hiv-1

The benefits of breastfeeding for infants arise from the unique 
composition of breast milk. Breast milk completely nourishes the 
infant while establishing and promoting a healthy microbiome, 

and providing passive protection through maternal innate and 
adaptive immunological factors. Breastfeeding is well recognized 
to protect infants against gastrointestinal and respiratory infec-
tions, diarrheal diseases, and provides long-term health benefits 
(13–16). Additional socioeconomic benefits extend to the mother 
and family since breastfeeding promotes child spacing, social 
acceptance of the nursing woman, and is cost effective (17, 18).

It became clear in the 1980s that breast milk serves as a medium 
for HIV-1 transmission. The exact mechanism(s) of postnatal 
mother-to-child transmission (MTCT) of HIV remains unclear. 
In addition to postnatal transmission via breast milk, infants can 
become infected from their HIV-infected mothers in  utero or 
following exposure to maternal fluids during parturition (19). 
However, this risk is significantly attenuated if the mother is given 
antiretroviral (ARV) therapy pre- and post-cesarean delivery (19). 
Without proper intervention strategies, an estimated 11–42% of 
infants will become infected from their HIV-infected mothers 
(19, 20) depending on factors such as maternal viral load and CD4 
count, breast milk composition including innate immune factor 
levels, ARV treatment, breast pathology (particularly mastitis that 
can increase milk HIV RNA up to 10-fold in the affected breast), 
duration of breastfeeding, weaning practices and breastfeeding 
behavior (exclusive versus mixed) (21–24).

The past decade has shown significant progress in the preven-
tion of mother-to-child transmission (PMTCT) of HIV globally 
through improved access to ARV therapies for women and 
infants, as well as the universal promotion of exclusive breastfeed-
ing (EBF) when safe and sustainable alternatives are not readily 
available. As a result of these prevention strategies, for the first 
time the elimination of MTCT of HIV is considered a realistic 
public health goal (25). For example, ARV therapies such as 
single-dose nevirapine, given to the mother during delivery and 
the infant within 72 h postpartum has proven effective and has 
undoubtedly played an important role in the drastic decrease of 
approximately 800,000 cases of MTCT of HIV in 2002 to 300,000 
cases in 2011 (26). Recently, an infant born infected with HIV 
was immediately treated with ARVs and cleared the infection 
(27). However, follow-up studies revealed that the HIV infection 
reappeared. Despite the effectiveness of these therapies, in 2011 
only an estimated 57% of pregnant or lactating HIV-infected 
women globally were receiving any ARV therapy (25), largely due 
to the cost, lack of health-care support workers and inconsist-
ent supply of ARVs (28). In many resource-limited areas where 
HIV-infected mothers have inadequate access to ARV therapies, 
mothers are encouraged to exclusively breastfeed their infants as 
an alternative preventive intervention (29).

Given that HIV-infected breast milk can contain high levels 
of cell-free virus (CFV) and cell-associated virus (CAV), it seems 
paradoxical that with prolonged and repeated exposure to HIV 
during EBF can significantly decrease postnatal MTCT of HIV 
compared with mixed feeding or non-exclusive breastfeeding 
(nEBF) (21–24). Thus, EBF infants of HIV-positive mothers who 
regularly consume HIV containing breast milk have increased pro-
tection against infection compared with mixed fed infants who are 
less frequently exposed to the virus. In four large cohort studies, 
EBF reduced HIV MTCT by 4- to 10-fold compared with nEBF 
or mixed feeding. Kuhn et al. (21) showed that nEBF more than 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


TABle 1 | Innate factors in human milk.

Lactoferrin Inhibits gp120 interaction with CD4

Mucin-1 Prevents dendritic cell (DC)-SIGN 
mediated transmission from DCs 
to CD4+

Habte et al.  
(120, 121)

Secretory leukocyte 
protease inhibitor

Interacts with target cells Farquhar et al. (49)

Tenascin-C Neutralizes virions by binding to 
chemokine receptors on env

Fouda et al. (51)

Lysozyme Inhibits HIV entry and replication

Soluble toll-like  
receptor 2

Inhibits inflammation and HIV 
infection

Henrick et al. (44)

Human Milk 
Oligosaccharides

Pathogen blocking agents and 
decoy receptors

Newburg et al. (73)
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doubled the risk of postnatal HIV transmission, while Iliff et al. 
(23) showed transmission rates as low as 1.3% in women who were 
EBF up to 6 months. Furthermore, there were no significant dif-
ferences in viral load, CD4+ T cell levels or co-infections between 
the women who EBF and those that nEBF their infants that could 
account for the difference in transmission rates (22, 23). This 
preventative method is so effective in the PMTCT of HIV and in 
protection against enteric infections that the WHO recommends 
EBF despite the HIV status of the mother when safe and sustain-
able alternative feeding is unavailable (30). While the reasons 
underlying this phenomenon remain unanswered, they have been 
closely linked with innate immune factors in breast milk (31, 32). 
In addition, intestinal permeability is significantly increased dur-
ing nEBF, replacement-fed (formula) and weaned infants which is 
associated with MTCT of HIV-1 (33). This strongly suggests that 
breast milk factors facilitate the nursing infant’s intestinal matura-
tion and help maintain integrity of the intestinal barrier. We have 
hypothesized that short-lived innate factors in milk would have to 
be consistently provided to the nursing infant via EBF to sustain a 
protective innate immune threshold to prevent HIV transmission 
via milk. Although a number of comprehensive reviews of breast-
feeding and HIV transmission have been published (34, 35), this 
article will highlight some of the current insights into biological 
and immunological factors in breast milk that are associated with 
protection from HIV infection via breastfeeding.

iNNATe AND ADAPTive iMMUNe 
FACTORS AND CellS iN HUMAN  
MilK THAT iNHiBiT Hiv

Humans are mammals because we have mammary glands which 
many believe evolved as part of the innate immune system (36). 
Innate and adaptive immune factors in breast milk have been 
shown to play critical evolutionary roles in protecting newborn 
infants against a wide variety of infections. Recently, of about 415 
proteins identified in a pooled milk sample, 261 were novel (37). 
Importantly, many of these factors have not been well character-
ized, but many have immunomodulatory and/or antimicrobial 
activities critical to protecting the immunologically naïve 
infant and promoting intestinal development and microbiome. 
Consequently, identification of these novel factors in milk and 
elucidation of their functions could inform the development of 
novel therapeutics or vaccines.

NON-CellUlAR COMPONeNTS iN 
HUMAN MilK

Non-cellular factors in breast milk that have been attributed to 
the protection from HIV infection observed in breastfed infants 
include innate factors, cytokines, and oligosaccharides (31, 32, 38) 
(Table 1). For other factors such as HIV-specific antibodies, the 
data are less clear (39, 40). The levels of many breast milk factors 
correlate with decreased MTCT of HIV and/or have direct anti-
HIV activity in vitro, including lactoferrin, secretory leukocyte 
protease inhibitor (SLPI), mucin, and soluble toll-like receptor 2 
(sTLR2) (41–44) (Figure 1). Specifically, lactoferrin, whose levels 

have been shown to correlate with reduced MTCT of HIV (45), has 
been shown in vitro to bind to the V3 loop of gp120, thus inhibit-
ing gp120 interaction with host CD4 receptor (46). Lactoferrin 
has also been shown to inhibit bacterial-induced inflammation 
(47, 48). Similarly, SLPI levels correlated with decreased MTCT 
HIV transmission through breast milk (49), which is supported 
by in vitro studies indicating that it interacts with target cells to 
inhibit viral entry (50). Another component abundant in breast 
milk, mucin-1, can inhibit HIV infection in vitro by preventing 
dendritic cell (DC)-SIGN-mediated transmission of HIV from 
DCs to activated CD4+ T cells (41).

Another recently identified innate factor in breast milk is 
Tenascin-C (TNC), which has the capability to neutralize HIV-1 
virions by binding to the chemokine co-receptor binding site 
on the HIV-1 envelope (51). Like lactoferrin, TNC binds to an 
epitope on the V3 loop of the HIV-1 envelope protein, blocking 
the virus’s interaction with mucosal epithelial cells due to this 
electrostatic interaction (51). These investigators concluded that 
due to TNC’s broad spectrum HIV-neutralizing activity it may 
provide a prophylactic agent to be orally administered to infants 
before breastfeeding (51). TNC is also an extracellular matrix 
protein previously shown to be involved in wound healing and 
fetal brain development (52, 53). Unfortunately, it was recently 
shown that the amount of TNC correlated only weakly with over-
all innate HIV-neutralizing activity of breast milk of uninfected 
women, indicating that the amount of TNC in mucosal fluids was 
inadequate to impede HIV transmission (54). Further, polyclonal 
IgG from HIV-infected breast milk blocked neutralizing activity 
of TNC (54).

We were the first to demonstrate that breast milk sTLR2 
directly interacts with specific HIV-1 structural proteins, namely, 
p17, p24, and gp41, thus inhibiting cellular activation and cell-
free HIV infection in  vitro (44, 55). Furthermore, sTLR2 has 
known antimicrobial properties that significantly inhibit pro-
inflammatory cytokine production in human intestinal epithelial 
cells (IECs), as well as reducing bacterial-associated inflamma-
tion in mice without impairing microbial clearance (44, 55, 56), 
and therefore, if developed, may provide a novel prophylactic 
anti-inflammatory agent in breastfeeding infants (57).

Recently, trappin-2/elafin was shown to be a biomarker of 
resistance to HIV infection in cervico-vaginal lavage of highly 
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FiGURe 1 | Schematic representation of the protective components in breast milk. Breast milk innate factors that have anti-inflammatory and antimicrobial 
properties are likely to affect the passage of HIV through the breastfeeding infant’s intestine by modulating the integrity of the intestinal mucosa and directly 
inactivating the virus. In contrast to exclusively breastfed infants, non-exclusively breastfed infants may be exposed to contaminated water and/or food antigens 
without a protective threshold level of innate factors in breast milk, which may lead to increased intestinal permeability and microbial translocation. In addition, the 
foreign antigens likely increase inflammation and recruit increased target cells leading to increased HIV transmission.

4

Henrick et al. Breastfeeding Behaviors and Human Milk

Frontiers in Immunology | www.frontiersin.org November 2017 | Volume 8 | Article 1631

exposed seronegative commercial sex workers in Kenya (58). Our 
lab went on to demonstrate that elafin is 130 times more potent 
against HIV compared with its precursor, trappin-2, and part of 
the antiviral activity of this antiprotease was due to modulation 
of innate sensing (59–61). Hence, it is anticipated that breast 
milk trappin-2/elafin along with other antiproteases might 
serve as natural host-based immunomodulatory molecules. 
Further, these factors function concomitantly to control aber-
rant microbial-induced inflammation, have direct antimicrobial 
effects, as was most recently shown by Pfaender et al. (62), and 
inhibit HIV–host interaction thus are protective against postnatal 
HIV transmission to infants.

Breast milk contains a range of cytokines, some of which could 
potentially influence immune function and directly correlate with 
MTCT HIV transmission. Specifically, the pro-inflammatory 
chemokine ligand 5 (RANTES/CCL5) indirectly inhibits HIV 
infection in vitro by binding to its ligand CCR5, thus inhibiting 
gp120 binding to its co-receptor which is integral to host–viral 
attachment (63). However, RANTES levels in breast milk posi-
tively correlated with increased MTCT of HIV (64). Conversely, 
levels of breast milk interleukin (IL) 15, a pleotropic cytokine 
involved in activating CD8+ T and NK  cells, positively cor-
related with protection from MTCT of HIV (65). Furthermore, 
we showed a positive correlation of sTLR2 and IL-15 levels in 

breast milk (55), thus indicating that these protective factors can 
function in concert to reduce MTCT of HIV.

STUDieS ON AFRiCAN Hiv-eXPOSeD 
iNFANTS AND BReASTFeeDiNG

Over the past decade, more than two million HIV-exposed unin-
fected (HEU) infants were born each year. In sub-Saharan Africa, 
HEU infants suffer up to four times increased risk of dying in the 
first 2 years of life and increased risk for infectious morbidity (66). 
The etiology of increased susceptibility of HEU infants to infec-
tious disease remains undetermined but is likely due to having 
their immune systems’ compromised.

A number of studies have been conducted on HEU infants 
relating breastfeeding to their health. One particular study con-
ducted by John-Stewart et al. concluded that EBF of HIV-exposed 
infants decreased the likelihood of them falling ill to pneumonia 
(67). Specifically, of the 388 HEU infants in Kenya followed from 
birth to 12 months of age, the breastfed infants had a 47% lower 
chance of getting pneumonia with a 74% lower chance of being 
hospitalized due to pneumonia (67). It can be concluded from 
these studies that breastfeeding HEU infants has many benefits 
including lower risk of HIV infection, pneumonia, and infectious 
diseases.
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In another study, Bork (68) discovered that HEU infants in 
Kesho Bora who were not breastfed had an increased risk of 
infection between birth and 2.9 months. HIV-infected pregnant 
women from five locations in Burkina Faso, Kenya, and South 
Africa involved in a study on MTCT in the Kesho Bora trail 
were asked to either exclusively breastfeed or formula feed their 
infants. In total, 751 infants were investigated for 2 years to see 
the health implications (particularly fever, diarrhea, vomiting, 
and other serious infections) in relation to feeding method. 
The results of this study further support that breastfeeding 
HEU infant’s has many positive implications on the health 
of the infants when compared with HEU infants who are not 
breastfed.

BeNeFiCiAl eFFeCTS OF HUMAN MilK 
OliGOSACCHARiDeS (HMOs)

Human milk oligosaccharides consist of a family of structur-
ally diverse, unconjugated sugars that are found at very high 
abundance (5–23 g/l) and high complexity in human milk. More 
than 200 different HMOs have been identified and are unique 
to human milk (69–71). Together, HMOs make up the third 
largest component of breast milk and are completely indiges-
tible to infants. Although once believed to have no biological 
significance, it is now clear that they can function as pathogen 
blocking agents or decoy receptors for pathogenic microbes (72), 
have direct signaling ability (73, 74), and play a major role in 
establishing a healthy microbiome (75–78).

To cause intestinal infection, bacterial and viral pathogens 
often adhere to lectin–glycan structures on mucosal surfaces to 
initiate colonization. For example, a common cause of bacterial 
diarrhea and infant mortality is due to Campylobacter jejuni, 
which binds to α1,2-fucosylatd glycan. Although recently 
contested (79), previous manuscripts have shown that HMOs 
directly reduce microbial infections by serving as soluble decoy 
receptors, which prevent pathogen binding to these glycans (80, 
81). Addition of soluble α1,2-fucosylated HMO blocks binding 
of C. jejuni to human intestinal mucosa and reduces colonization 
in mice (82). The beneficial effects of this HMO on reducing C. 
jejuni-associated diarrhea were confirmed in a prospective study 
on 100 mother–infant pairs in Mexico City (83). In addition, 
HMOs have antiviral properties. Most recently, specific HMOs, 
namely, 2′ and 3′ fucosylactose (2′FL and 3′FL, respectively) 
have been shown to structurally mimic histo-blood group aan-
tigens, and thus block norovirus from binding to this surrogate 
(84). Interestingly, HIV gp120 envelope glycoprotein binds to 
DC-specific ICAM3-grabbing non-integrin (DC-SIGN) on 
human DCs, which is important for mother-to-child HIV trans-
mission via breastfeeding. DC-SIGN, though, has higher affinity 
for the Lewis (Le) blood group antigens  (85, 86). HMOs contain-
ing Le blood group antigens compete with gp120 for binding to 
DC-SIGN in vitro (87). In the breastfed infant, mucosal surfaces 
are covered with high levels of HMOs that may block HIV entry 
via DC-SIGN, which may contribute to the relatively inefficient 
MTCT of HIV via breastfeeding (88).

Human milk oligosaccharides may also directly modulate 
IEC and immune cell responses. In vitro studies of human ECs 

incubated with the HMO 3′-sialyllactose decreases expression of 
sialyltransferases resulting in reduced binding of enteropatho-
genic Escherichia coli to intestinal ECs (89–91) and can directly 
alter growth-related cell cycle gene expression in intestinal 
ECs (92). It has also been proposed that sialylated HMOs may 
affect T lymphocyte maturation and promote a more balanced 
Th1/Th2 cytokine response (93). Indeed, exposure to sialylated 
HMOs was shown to reduce IL-4 production in lymphocytes 
from adult patients with peanut allergy (94) and, more recently, 
ingestion of 2′FL and 6′sialyllactose was shown to reduce food 
allergy through induction of IL-10 (+) T regulatory cells and 
indirect stabilization of mast cells in an animal model (95). 
Together, these data suggest HMOs may contribute to allergy 
prevention.

Arguably most importantly, our group, as well as others, have 
extensively elucidated how oligosaccharides, originally identified 
as “bifidus factor” (96), help promote and establish a healthy 
microbiome of breast feeding infants. HMOs, as a complex 
mixture of free glycans, provide a perfect growth advantage to 
Bifidobacterium infantis (97), which has evolved to contain all 
glycosyl hydrolases necessary to utilize HMOs internally (98) 
resulting in beneficial short-chain fatty acids and other metabo-
lite production. This favors the growth of commensals in addition 
to lowering luminal pH (99).

MilK COMPONeNTS HAve TeMPORAl 
AND SPATiAl SPeCiFiCiTY

There are various different protective factors in milk. Defense 
factors include maternal-derived SIgA and SIgM, oligosaccha-
rides, anti-inflammatory factors, antioxidants, epithelial growth 
factors, and the aforementioned leukocytes and cytokines (100). 
One of the most prevalent antibodies present in breast milk, SIgA, 
is produced by plasma cells in the mammary gland (101). It is 
argued that SIgA B cells migrate from the pregnant mother’s gut 
to her breast before delivery, although migration of maternal IgA 
B cells is not well characterized. In mucosal tissues, SIgA is pro-
duced as a dimer in which two immunoglobulin monomers are 
linked by the J chain. Upward of 75,000 IgA-producing plasma 
cells are present in the normal human intestine with 3–4  g of 
IgA secreted daily. This significantly exceeds the production of all 
other immunoglobulin classes. Continuous production of large 
amounts of SIgA occurs in the absence of pathogen invasion and 
is driven by recognition of resident microbiota. IgA secreted in the 
gut lumen binds to mucus coating epithelial surfaces where it is 
involved in preventing attachment to the epithelium and invasion 
by pathogens. IgA can also neutralize microbial toxins, bacterial 
lipopolysaccharide, and viruses it encounters. The formation of 
IgA:antigen complexes can enhance the uptake and transcytosis 
of luminal antigen by M or microfold cells and facilitate its uptake 
by Peyer’s patch DCs (101).

Full-term neonates are deficient in SIgA especially at the 
colostral stage of lactation. Breastfeeding provides specific 
maternal-derived SIgA antibodies to protect the infant (102). 
Similarly, SIgM is also transferred via breast milk and is key in 
combating neonatal enteric antigens such as microorganisms 
and food proteins (13).
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CellUlAR COMPONeNTS

The biological relevance of breast milk cells in MTCT of HIV 
remains unclear. Indeed, there are arguments that infected cells 
both facilitate and protect against HIV transmission in breast-
feeding infants (103–104). Depending on the stage of lactation, 
the predominant cells types in milk consist of various leukocytes, 
in colostrum (4 × 106/ml) and mature breast milk (105–106/ml), 
and mammary epithelial cells (MECs). The majority of leuko-
cytes in breast milk have an activated phenotype (105) and are 
comprised of macrophages (55–60%) and neutrophils (30–40%), 
while 5–10% are lymphocytes (~65% CD8+ T cells, 15% CD4+ 
T cells, and 20% B cells) (106–108).

STeM CellS iN HUMAN BReAST MilK

Although most studies of cells in breast milk have focused on 
leukocytes and their immunological activities, particularly post-
partum, more recent exciting studies have identified pluripotent 
stem cells in breast milk. Using a well-known stem cell marker 
found in neural, bone marrow, pancreatic and epithelial stem 
cells, nestin (109–111), Cregan et  al. were the first to identify 
human breast milk stem cells (hBSCs) in milk from full-term 
mothers (112). These dynamic cells, which account for an estim    
ated 10–15% of all breast milk cells, were later shown to be pluri-
potent and successfully differentiate breast milk stem cells into 
adipogenic, chondrogenic, and osteogenic lineages (113, 114). 
Moreover, some investigators hypothesize that these cells may 
promote growth and development of the infant (115). Indeed, in 
mouse models, ingested milk stem cells were shown to survive 
in the gastrointestinal tract (116, 117). Given these insightful 
studies, it is clear that additional investigation of hBSCs will not 
only further our understanding of how hBSCs ingestion in early 
life may reduce disease burden in later life but may also provide 
novel regenerative medicine to replenish and restore damaged 
tissues.

Cell-FRee veRSUS Cell-ASSOCiATeD 
Hiv: wHiCH iS ReSPONSiBle FOR MTCT 
OF Hiv?

Despite the increasing knowledge of breast milk virus, it remains 
unclear whether CFV or CAV is responsible for HIV-1 acquisi-
tion in the infant. Indeed, both CFV HIV RNA and CAV proviral 
DNA can be found in HIV-infected breast milk (when the mother 
is not receiving ARV therapy), and both levels correlate with post-
partum MTCT of HIV (118, 119). Importantly, it has been shown 
that multiple innate immune factors that are endogenous to 
breast milk, including mucin, SLPI, sTLR2, lactoferrin, lysozyme, 
and oligosaccharides can effectively inactivate CFV infection 
in vitro (31, 32, 44, 55, 58, 88, 120–123), whereas innate immune 
factors seemingly have little to no effect on CAV infection in vitro  
(32, 124). CAV HIV-1 infection has been shown to be more 
efficient compared with CFV infection (125) and is significantly 
more difficult to neutralize (126), thus indicating that CAV might 
be responsible for postnatal MTCT transmission. Conversely, 

ARV therapy significantly decreases HIV RNA and correlates 
with reduction in breast milk transmission rates (127, 128), while 
proviral DNA levels remain largely unaltered (129, 130). These 
observations suggest that CFV likely plays an important role in 
breast milk transmission. Given these contradictory studies, it 
could be argued that multiple factors including overall maternal 
viral load, breast health (i.e., mastitis), innate immune factor 
levels, as well as feeding practices all contribute to the founding 
viral infection in the infant.

Based on a collection of studies examining cell-free and cell-
associated HIV-1, there is a clear trend suggesting that CFV is 
more predominantly associated with viral load in the later stages 
postpartum. Ndirangu et  al. showed that at 6  months, CFV 
was more heavily associated with HIV transmission. Up until 
6  months, however, the viral load levels were analogous (131). 
Similarly, Koulinska et al. (130) showed that cell-free HIV-1 is a 
significant predictor of transmission after 9 months postpartum. 
In the earlier stages postpartum in both of the aforementioned 
studies, a 10-fold increase in both viral levels corresponded to a 
3-fold increase in viral transmission (35, 131).

The first demonstration of selective transmission of HIV 
variants was conducted by Wolinsky et al. in 1992 (132) which 
showed that a minor subset of maternal virus was transmitted to 
the infant. However, the understanding of transmitted/founder 
viruses in breast milk is still not clearly defined (133, 134). Similar 
to other mucosally transmitted founder viruses, postnatal acqui-
sition is primarily CCR5 tropic (134). Phylogenetic comparison 
of milk and plasma envelope gene sequences revealed that mono-
typic viruses are significantly more common in milk as compared 
with plasma from the same mother (133, 134), thus suggesting 
that the majority of breast milk viruses are produced by infected 
cells of the mammary gland. In addition, infant and maternal 
HIV variants did not differ in their sensitivity to broadly neutral-
izing antibodies; however, the viruses from transmitting mothers 
tended to be less sensitive to antibody-dependent neutralization 
(135). By contrast, other studies suggest that viral species found 
in the breast milk and plasma of infected mothers were geneti-
cally similar (136). Taken together, the role of breast milk cells 
in MTCT of HIV remains vague, and to explain these divergent 
observations, one possibility may be that the breast is continu-
ously replenished with systemic CFV or CAV that can readily be 
transmitted to the breastfeeding infant and/or undergoes local 
replication in the mammary compartment (134). It is important 
to note that although MECs can endocytose cell-free HIV (137); 
whether or not the virus integrates into the host genome remains 
controversial (137, 138).

CellS iNvOlveD iN MTCT

The biological relevance of breast milk cells in MTCT of HIV 
also remains unclear. Indeed, there are arguments that infected 
cells both facilitate and protect against HIV-1 transmission in 
breastfeeding infants (103, 104, 139).

Macrophages and MECs are thought to facilitate MTCT of HIV-1 
for multiple reasons. First, macrophages make up the majority of 
leukocytes in breast milk (106), are readily infected with HIV-1, and 
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express DC-SIGN, a DC-specific receptor for HIV-1 that facilitates 
HIV-1 infection in vitro (103). In addition, oral administration of 
macrophages to newborn mice survived several hours and were 
found in the neonatal intestine (104). Second, MECs make up 
a substantial portion of the cells in breast milk (108). These cells 
express several canonical HIV receptors (including CD4 and CCR5), 
readily endocytose cell-free HIV-1, and can act as a viral reservoir 
(137, 138). Furthermore, our laboratory recently found that MECs 
exposed to cell-free R5 HIV-1 on the basolateral surface readily 
transcytosed virus through the monolayer without damaging tight 
junctions but did not integrate virus into the genome (data not 
shown). Moreover, HIV-1 basolateral exposure significantly altered 
TLR expression, led to significantly elevated pro-inflammatory 
cytokine production in both apical and basolateral compartments, 
and increased CCR5 expression. Viral production in MECs, CD4+ 
cells, and breast milk macrophages has previously been shown 
(103, 138, 140). In fact, the HIV-infected CD4+ T cells in breast 
milk are 17 times more effective than in blood (35).

Multiple target sites in the nursing infant’s gastrointestinal tract, 
including oral, esophageal, and intestinal mucosal epithelium have 
been proposed. Specifically, the oral epithelium has been shown 
to be permissive to both CFV and CAV in vitro (141). Yet, the oral 
environment also has effective anti-HIV properties (31) making 
MTCT HIV transmission possible, albeit at a very low incidence 
(141). A recently published in vivo infection model demonstrated 
that humanized mice were readily infected with HIV through 
the oral cavity; however, breast milk had strong inhibitory effects 
on both CFV and CAV (142). A persuasive argument has been 
made for MTCT HIV transmission through the infant’s intestine 
through multiple studies showing that mixed feeding doubled the 
risk of an infant acquiring disease compared with EBF (21–23, 
143). In addition, a previous publication reported significantly 
increased lipopolysaccharide (LPS) levels in infants that were 
nEBF or weaned, indicating a disruption in the intestinal mucosa 
(33). Notably, this seminal publication showed that systemic LPS 
levels were a significant predictor of MTCT through breast milk, 
thus indicating that tight junctions were disrupted in the infant’s 
intestinal mucosa. Previously, Nazli et al. (144) showed that HIV-
dependent production of pro-inflammatory cytokines disrupted 
tight junctions in IECs.

NeXT STePS iN ReSeARCH ON iNNATe 
iMMUNe FACTORS: sTlR2

We showed that sTLR2 inhibited bacterial and viral-induced 
cellular activation in intestinal cells (44, 55, 57) and HIV virions 
induced cellular activation through a TLR-mediated pathway 
leading to increased infection in vitro (145). This indicates that 
sTLR2 likely plays a role in inhibiting HIV and/or bacterial-
induced cellular activation directly at the infant’s intestinal 
mucosa.

Toll-like receptors are evolutionarily conserved transmem-
brane pattern recognition receptors (PRRs) that recognize highly 
conserved pathogen-associated molecular patterns (PAMPs). 
They are part of the first line of defense against pathogen inva-
sion and trigger innate immune responses and subsequent 

antigen-specific adaptive immunity. The 10 TLRs in humans 
recognize highly conserved molecules broadly shared and also 
expressed by pathogens, but not found in mammals, such as 
dsRNA, ssRNA, flagellin, CpG DNA, and LPS either intracel-
lularly or extracellularly.

Historically, TLRs have not been extensively evaluated 
for their role in MTCT of HIV, despite the fact that soluble 
TLRs provide the most direct attenuation of inflammation and 
innate immune responses to pathogens by binding PAMPs, thus 
effectively inhibiting PAMP–PRR engagement (146). LeBouder 
et al. (147) were the first to identify forms of sTLR2 in breast 
milk and plasma and through computational molecular dock-
ing revealed a cylindrical arrangement between sTLR2 and 
soluble CD14 that encapsulates synthetic bacterial lipoprotein 
Pam3CSK4 preventing bacterial-induced cellular activation 
through membrane-bound TLR2. Additional publications have 
highlighted sTLR2’s role in significantly inhibiting bacterially 
induced pro-inflammatory cytokine production in vitro in oral 
epithelial cells, placental tissue explants, and human IECs (44, 
55, 148, 149).

Although sTLR2 is important in regulating bacteria-
induced cellular activation, sTLR2-dependent regulation 
of immune activation during viral infection remains poorly 
understood. Accruing evidence indicates that a range of 
soluble molecules, including defensins, interferons, antipro-
teases, and chemokines suppress and control viral infections 
(59, 150). In addition, our investigation showed that sTLR2 
directly interacts with HIV PAMPs, including p17, p24, and 
gp41, which leads to significantly reduced IL-8 production, 
CCR5 expression, NFκB activation, and HIV infection in a 
dose-dependent manner (55).

In proceeding with this research to solidify the evidence, the 
next step is to establish the mechanism by which this interaction 
takes place. In support of this hypothesis, we also showed that 
sTLR2 has a very short half-life at physiological temperatures 
(44). Interestingly, sTLR2 levels were significantly increased in 
HIV-infected compared with uninfected breast milk samples, and 
significantly correlated with p24 [a marker of viremia (151)] and 
IL-15 concentrations (55). The correlation between sTLR2 and 
IL-15 might have important implications since IL-15 in breast 
milk has been shown to correlate with decreased MTCT of HIV 
(65). These findings not only have important implications for our 
fundamental understanding of HIV infection and pathogenesis 
but also have the potential to inform novel therapeutic approaches 
to prevent mucosal transmission of HIV, including MTCT. We 
envision that sTLR2 alone or combined with other innate antiviral 
factors, e.g., IL-15, could be directly added to expressed breast milk 
and orally administered to infants to augment prevention of HIV 
mucosal transmission. This would, however, be limited to addition 
to breast milk, as sTLR2 would not be stable in acidic environments 
such as the gastrointestinal tract and vaginal mucosa according to 
our observations. Importantly, host innate factors, including solu-
ble TLR immunotherapeutics, are unlikely to be toxic. Similarly, 
sTLR2, alone or in combination with other innate factors, might be 
useful as a natural immunomodulatory molecule to prevent sexual 
transmission of HIV-1.
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BReAST MilK, MiCRORNAs (miRNAs) 
AND eXOSOMeS: ReGUlATORS OF 
GROwTH, DevelOPMeNT, AND iMMUNe 
PROTeCTiON

Human milk contains short, non-coding single RNA molecules 
called miRNAs that are approximately 22 nucleotides in length. 
Compared with other body fluids, milk is one of the richest 
sources of miRNAs, which are present in all three fractions 
of human milk, including cells, lipids, and skim milk (152). 
miRNAs serve as key regulators of gene expression at the 
posttranscriptional level by binding to an mRNA target to 
either inhibit translation of mRNA into protein or promote its 
degradation (153–155). miRNAs are first transcribed into pri-
mary microRNA (pri-microRNA) from specific genes on DNA 
by RNA polymerase II, and then are converted into hairpin 
precursor microRNA (pre-microRNA) by the Drosha–DGCR8 
complex. The enzyme Dicer then produces mature miRNA 
from pre-microRNA in the cytoplasm (156, 157). A single 
mature miRNA can bind and regulate multiple mRNAs (158). 
Studies indicate that miRNAs can regulate up to 50% of protein 
synthesis (154).

Importantly, miRNAs play a key role in regulating the  
immune system, including T and B cell development (159, 160), 
release of inflammatory mediators (161), proliferation of mono-
cytes and neutrophils (162), and differentiation of macrophages and  
DCs (163).

Breast milk miRNAs are frequently packaged in vesicles 
such as exosomes which play an important role in their survival 
under harsh conditions (164, 165). Indeed, since the nursing 
infant’s gut is less acidic and more permeable compared with 
adults, this provides strong support for survival, adsorption, 
and integration of milk miRNAs in the infant and facilitate early 
growth, protection, and development. Thus, it is important to 
characterize miRNAs in human milk and examine factors that 
might influence it.

Of 12 body fluids examined, breast milk contained vastly more 
miRNAs than any other fluid tested, including greater than 80-fold 
the concentration found in amniotic fluid and colostrum (152). 
miRNAs are resistant to acidic conditions, digestion by RNAse, 
incubation at room temperature and various freeze thaw cycles 
(166–169). In breast milk, this resistance is due to the fact that 
miRNAs are contained in exosomes or microvesicles. Treatment 
with detergent, Triton-X, that disrupts lipid membranes, results 
in degradation of miRNAs by RNAse (170). Resistance to acidic 
conditions ensures passage through the stomach and adsorption 
into the bloodstream, which in turn allows the exchange of genetic 
information between mother and offspring. Valadi et al. were the 
first to demonstrate that exosome-mediated transfer of mRNAs 
and miRNAs is a novel mechanism of genetic exchange between 
cells (171). Secreted miRNAs represent a newly recognized layer 
of gene regulation and intercellular communication (172–174), 
while exosomal miRNAs play a pivotal role in horizontal miRNA 
transfer (174) as was originally shown by Raposo et  al. who 
provided the first evidence for exosome-mediated immune cell 
communication (175).

MicroRNAs were shown to play a critical role in innate antivi-
ral defense (176–178). This was demonstrated by Triboulet et al. 
who knocked down two important miRNA processing proteins, 
Drosha and Dicer, resulting in significant enhancement of viral 
replication in peripheral blood mononuclear cells (PBMCs) 
from HIV-infected patients and in latently infected cells (179). 
Interestingly, they also demonstrated that knockdown of some 
of these effectors led to virus reactivation in PBMCs isolated 
from HIV-infected patients undergoing suppressive combination 
ART (180). These studies highlight the importance of miRNs in 
modulating HIV-1 infection. In a ground-breaking study, Huang 
et al. showed that a selected group of miRNAs, including miR-28,  
miR-125b, miR-150, miR223, and miR-382, bound to the 3′ UTR 
of viral mRNAs and showed that activation of resting CD4+ 
T cells resulted in downregulation of these miRNAs, which corre-
lated with enhanced HIV-1 susceptibility (181). Further, experi-
ments in which all five of these miRNAs were inhibited in resting 
CD4+ T cells from cART-treated individuals (with undetectable 
viremia) displayed enhanced HIV-1 production indicating that 
“anti-HIV-1 miRNAs” contribute to HIV-1 latency in resting 
CD4+ T cells. Thus, these studies suggest these novel anti-HIV-1 
miRNAs could play a role in controlling HIV latency and their 
manipulation could potentially contribute to purging of viral 
reservoirs (181).

Other modulators of anti-HIV-1 miRNAs include cytokines 
and TLR ligands. For example, stimulation of TLR3 was shown 
to induce an anti-HIV effect in primary macrophages, partially 
through upregulation of miR-28, miR-125b, miR-150, and miR-
382 (182). More recently, activation of TLR3 in primary human 
macrophages resulted in significantly enhanced expression of 
miR-155 that correlated with decreased HIV-1 infectivity (183). 
These investigators also showed that miR-155 inhibited HIV-1 at 
a postentry, pre-integration step (183). Together, these findings 
indicate interplay between miRNAs, TLRs, and HIV-1 that have 
important implications for HIV-1 infection, replication, and 
chronic immune activation (184).

CONClUSiON AND FUTURe DiReCTiONS

The majority of infants’ breastfeeding from their HIV-infected 
mothers do not acquire HIV. Indeed, EBF has been one of the most 
successful interventions in protecting infants in resource-limited 
countries from a broad range of infectious diseases, including 
HIV. Although the reason for this remains unclear, coordination 
of a number of innate immune factors in breast milk seem cru-
cial for providing protection when infants are most vulnerable. 
Identification and characterization of natural immune factors 
that protect susceptible individuals from acquiring HIV might 
facilitate the production of novel innate immunotherapeutics 
in the near future. Given that a number of innate factors have 
demonstrated anti-HIV activity, and ensuing decreased MTCT, 
it can be concluded that innate factors are indeed a viable option 
to pursue as protective therapies. In addition, other factors such 
as sTLR2 and IL-15 have shown promising results and should be 
pursued to further understand their mechanisms of binding and 
blocking HIV-1 MTCT.
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Human milk is a gold mine of uncharacterized, natural innate 
bioactive factors that have great promise to be developed and 
utilized for therapy or treatment of infections and inflammatory 
conditions in infants as well as adults and the elderly.
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