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Introduction

In the type 1 diabetes (T1D) therapy, blood glucose (BG) con-
centration is maintained within the safe range by exogenous 
insulin.1 The American Diabetes Association recommends 
carbohydrate-counting in order to compute the meal insulin 
bolus,2 whose beneficial effects on glycemic control, in terms 
of glycated hemoglobin, have been demonstrated by several 
studies.3-5 This approach consists in estimating the meal car-
bohydrates (CHO) amount, called carb-counting, and then 
computing the size of the meal insulin bolus by dividing the 
estimated CHO amount by a patient-specific factor called 

carbohydrate-to-insulin ratio.6 However, many people living 
with T1D find carb-counting difficult, and despite receiving 
specific training about how to estimate the CHO content of 
different foods and meals, frequently under- or over-estimate 
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Abstract
Background: In the management of type 1 diabetes (T1D), systematic and random errors in carb-counting can have an 
adverse effect on glycemic control. In this study, we performed an in silico trial aiming at quantifying the impact of different 
levels of carb-counting error on glycemic control.

Methods: The T1D patient decision simulator was used to simulate 7-day glycemic profiles of 100 adults using open-loop 
therapy. The simulation was repeated for different values of systematic and random carb-counting errors, generated with 
Gaussian distribution varying the error mean from -10% to +10% and standard deviation (SD) from 0% to 50%. The effect 
of the error was evaluated by computing the difference of time inside (∆TIR), above (∆TAR) and below (∆TBR) the target 
glycemic range (70-180mg/dl) compared to the reference case, that is, absence of error. Finally, 3 linear regression models 
were developed to mathematically describe how error mean and SD variations result in ∆TIR, ∆TAR, and ∆TBR changes.

Results: Random errors globally deteriorate the glycemic control; systematic underestimations lead to, on average, up to 
5.2% more TAR than the reference case, while systematic overestimation results in up to 0.8% more TBR. The different time 
in range metrics were linearly related with error mean and SD (R2>0.95), with slopes of βMEAN = 0 21. , βSD = −0 07.  for ∆TIR, 
βMEAN = −0 25. , βSD = +0 06.  for ∆TAR, and βMEAN = 0 05. , βSD = +0 01.  for ∆TBR.

Conclusions: The quantification of carb-counting error impact performed in this work may be useful understanding causes 
of glycemic variability and the impact of possible therapy adjustments or behavior changes in different glucose metrics.
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carbohydrate content that can result in excess glucose excur-
sions.7-11 In a recent study, we demonstrated that carb-count-
ing error depends on meal CHO amount and type.12 Recently, 
some smartphone applications13-15 were designed to support 
T1D subjects with carb-counting, but such applications are at 
present used only by a minority of individuals.

Some studies attempted to quantify the impact of carb-
counting error on T1D patients glycemic control, showing 
that CHO underestimation can cause postprandial hypergly-
cemia, while CHO overestimation can lead to hypoglycemic 
episodes.16-20 Moreover, Smart et al21 found that an error of 
±10g per meal or snack on a meal size of 60g did not signifi-
cantly deteriorate the postprandial control, while a ±20g 
error had a significant impact on postprandial glycemia.22

Although errors in carb-counting can be mitigated by the 
adoption of closed-loop insulin delivery systems,23 these sys-
tems are still used by only a fraction of people with T1D. A 
precise quantification of the impact of carb-counting errors 
on glycemic control in a real-life setting would be desirable. 
An intrinsic limitation of the existing studies lies in the dif-
ficulty to isolate the contribution of a single factor, the carb-
counting error, from the contribution of many other factors 
that affect the daily glycemic profile of T1D subjects (eg, 
insulin sensitivity variability, amount and time of meals, 
physical activity and others). This limitation can be over-
come by performing in silico trials, in which the impact of 
each factor can be isolated by performing multiple simula-
tions in which a single factor is changed and all the other 
factors are fixed. A suitable tool for this purpose is the T1D 
patient decision simulator (T1D-PDS), based on the well-
known FDA-approved UVA/Padova T1D physiological 
model,24,25 a simulation tool that allows performing in silico 
trials in T1D and was shown to reproduce realistic treatment 
scenarios.26

In this work, we use the T1D-PDS to perform a sensitiv-
ity analysis aimed at quantifying the impact that different 
levels of carb-counting error have on glucose control 
indexes. For sake of simplicity, we do not consider the pos-
sible role of specific closed-loop algorithms and limit the 
analysis to virtual T1D patients treated with a standard 
open-loop therapy. The simulation study is first made in a 
single-meal scenario, to evaluate in an ideal, disturbance-
free setting the impact of the error on the post prandial glu-
cose, and then in a multi-meal scenario, to quantify the 
impact of the error repeated in time on the overall glycemic 
control represented by time in ranges. From the latter anal-
ysis, mathematical formulas which describe how time in 
ranges change in response to carb-counting error variations 
are obtained. These formulas provide, for the first time, a 
mathematical quantification of the extent to which carb-
counting error impact glycemic control in an open-loop 
scenario. Such evidence could be important to assist diabe-
tologists in patients’ therapy adjustments and to build an 
educational tool to help patients in understanding the detri-
mental effects of carb-counting error.

Methods

Single-Meal Analysis

Simulation scenario.  The T1D-PDS26 has been used to simu-
late a population of 100 virtual adults undergoing multiple 
single-meal scenarios in a disturbance-free environment in 
which the meal insulin dose is calculated using the CGM 
value at mealtime, the therapy parameters (basal insulin 
injection rate in the pump, carbohydrate-to-insulin ratio CR, 
correction factor CF) are set to their optimal value, post-
prandial correction boluses and hypo-treatments as well as 
the time-variability of insulin sensitivity are switched-off.

In each single-meal scenario, for each virtual subject, the 
simulation starts at 6:00, a meal with 60g of CHO is gener-
ated at 8:00, and the respective meal insulin bolus dose is 
calculated as:

	 Bolu sulin
CHO

CR

CurrentCGM T et BG

CF
s In

arg
= +

−

	 (1)

The carb-count,CHO, is defined as a perturbation of the true 
CHO amount:

	 CHO CHO CHO = +δ 	 (2)

where d  represents the signed relative carb-counting error. 
Different values for d  are tested, as described in the follow-
ing section, while maintaining the same surrounding condi-
tions. In the 2hours before the meal, BG levels, expressed as 
mean ± standard deviation, are 119.59±6.68mg/dl.

This kind of scenario permits us to focus on the impact 
that the carb-counting error has on the post-prandial glucose 
control, eliminating any confounding factors.

Carb-counting error generation.  In each simulation, a fixed value 
of the carb-counting error is simulated, equal for all the sub-
jects. Based on the analysis of real data published in Brazeau 
et al,9 we tested values of the signed relative error d  equal to 
±50%, ±40%, ±30%, ±20%, ±10% and 0%, which, for the 
meal of 60g considered, correspond to signed absolute errors of 
±30g, ±24g, ±18g, ±12g, ±6g, and 0g, respectively.

The absence of carb-counting error, that is, when the carb-
count is exactly equal to the real meal CHO amount (δ = 0), 
represents the reference case for the problem under study.

Glucose control metrics.  In the time window from mealtime 
(8:00) to 6hours after (14:00), the following glucose control 
metrics were computed: the BG post-prandial peak, the time 
from meal in which such peak occurs, the BG level at 
120minutes after the meal, the area under the glycemic curve 
in hypoglycemia and hyperglycemia.

Moreover, for each of these metrics, their difference com-
pared to the reference case (ie, BGpeak,  BG min120 , Timepeak,  
AUChyper , and AUChypo) were also calculated. For exam-

ple, the BGpeak  for a signed relative carb-counting error δ 
equal to δ’, was defined as:

∆∆ ∆
∆ ∆

∆
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     ∆ = ′( ) = = ′( ) − =( )BG BG BGpeak peak peakδ δ δ δ δ� 0 	 (3)

Sensitivity to carb-counting error on post-prandial glucose.  The 
effect of different levels of the error on post-prandial glucose 
was evaluated via graphical representation of the glycemic 
profiles of a representative virtual subject and by looking at 
the distribution of the glucose control metrics in the 100 sub-
jects with a boxplot representation.

Multi-Meal Analysis

Simulation scenario.  After evaluating the impact of the carb-
counting error on a single meal, disturbance-free environ-
ment, we generated a more complex and realistic scenario, 
by simulating the same population of 100 virtual subjects for 
7days, with 3 meals per day (ie, breakfast, lunch and dinner) 
and open-loop therapy based on non-adjunctive CGM use. 
The scenario included the use of sub-optimal therapy param-
eters, post-prandial correction boluses, hypo-treatments, and 
intra-patient variability of insulin sensitivity. Meal amounts 
were randomly generated from Gaussian distributions fitted 
on the real data extracted from Brazeau et al.9

The entire simulation was repeated for different values of 
the carb-counting error, while maintaining the same sur-
rounding conditions.

Carb-counting error generation.  In the generated multi-meal 
scenario, 2 components of the carb-counting error were 
investigated: the systematic error and the random error. For 
this reason, the signed relative error δ, expressed as percent-
age of the CHO amount in the meal, was generated by using 
a Gaussian distribution:

	 δ ~ ,N M SD( ) 	 (4)

where the mean M accounts for the systematic error commit-
ted by the subject, while the standard deviation SD reflects 
the random error.

Different signs and magnitudes of error were tested by 
using different mean and standard deviation values. In par-
ticular, we tested mean values of ±10%, ±5%, and 0%, 
where a negative error sign meant meal CHO underestima-
tion, while a positive sign indicated meal CHO overestima-
tion. For each of the mean values, we tested different values 
of the standard deviation, which were 0%, 10%, 20%, 30%, 
40%, and 50%. Such values of error parameters have been 
suggested by the analysis of real data published by Brazeau 
et al,9 in which the error mean for the 50 subjects involved in 
the study (expressed as mean±standard deviation) was 
−7.64%±10.18%, while the subjects error standard devia-
tion was 18.10%±9.19%.

Moreover, each of the Gaussian distributions was trun-
cated at −100%, which means a CHO estimate of 0g, and 

+100%, which means a CHO estimate of twice the real meal 
amount, in order to avoid unrealistic realizations of the carb-
counting error.

The case of 0% mean, accounting for the absence of sys-
tematic error, and 0% standard deviation, which means that 
no random error is present, was considered as the reference 
value δ0:

	 δ0 0 0~ ,N M SD= =( ) 	 (5)

Glucose metrics.  From the 100 subjects’ glycemic profiles 
obtained, the following metrics were computed: Time In tar-
get Range (TIR), that is, the percentage of BG values between 
70 and 180mg/dl; Time Above Range (TAR), that is, the per-
centage of BG values greater than 180mg/dl; Time Below 
Range (TBR), that is, the percentage of BG values lower 
than 70mg/dl.

Moreover, the delta time in ranges compared to the refer-
ence case, that is, ∆TIR, ∆TAR and ∆TBR, were also com-
puted. For example, the ∆TIR  when the carb-counting error 
mean M is equal to m and the carb-counting error standard 
deviation SD is equal to sd was defined as:

	 ∆ = = =( ) − = =( )TIR TIR M m SD sd TIR M SD, ,0 0 	 (6)

Sensitivity to carb-counting error in the multi-meal scenario.  Firstly, 
the impact of the carb-counting error was evaluated via box-
plot representation of the delta time in ranges distribution 
among the 100 subjects and by plotting the curve of the delta 
metrics for different values of M and SD. Secondly, mathe-
matical formulas were derived to quantify the relationship 
between delta time in ranges and different values of the sys-
tematic error (M) and the random error (SD). Specifically, 3 
multiple linear regression models were identified by using as 
output the mean of delta time in ranges among the 100 virtual 
subjects and as inputs both the error mean and the standard 
deviation, as follow:

	 ∆ = +TIR M SDTIR TIRα β 	 (7)

	 ∆ = +TAR M SDTAR TARα β 	 (8)

	 ∆ = +TBR M SDTBR TBRα β 	 (9)

The linearity of the relationship between inputs and each out-
put was verified by computing the coefficient of determina-
tion R2 of the models. The slope coefficients α and β are 
sensitivity indices, which permit quantification of the 
strength of the impact of the 2 factors under study on the time 
in ranges metrics.
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Results

Single-Meal Analysis

Sensitivity to carb-counting error on post-prandial glucose.  Figure 1 
shows the glycemic curves of a representative virtual subject 
for different carb-counting error levels up to 6hours after the 
mealtime. We can see that CHO overestimation mitigates the 
peak BG level compared to the case of absence of error (black 
line), but it leads to BG levels lower than 70mg/dl for errors 
larger than 10%. The larger the error, the sooner the hypogly-
cemic event happens. On the other hand, CHO underestimation 
leads to higher BG values in all the next 6hours.

The distributions of the postprandial glucose control met-
rics in the overall virtual population, expressed as differences 
compared to the reference case (δ = 0), are reported via box-
plot representation in Figure 2. The higher the overestima-
tion error, the lower the BG peak (panel A), the BG level at 
120min after the mealtime (panel B) and the AUC in hyper-
glycemia (panel C) compared to the reference case, at the 
expense of the AUC in hypoglycemia (panel D) which 
increases for higher positive values of carb-counting error. 
Conversely, increasing the underestimation error, the BG 
peak (panel A), the BG level at 120min after the mealtime 
(panel B) and the AUC in hyperglycemia (panel C) decrease, 
while no hypoglycemic episodes occurs for any subjects. 
Indeed, the AUC in hypoglycemia (panel D) remains zero for 
subjects who do not experience hypoglycemia in absence of 
carb-counting error, while it assumes negative values for the 
others. Moreover, the BG peak time from mealtime (panel E) 
decreases with CHO underestimation while increasing with 
CHO underestimations with an approximately linear trend.

Multi-Meal Analysis

Sensitivity to carb-counting error in the multi-meal scenario.  Pan-
els A, B and C of Figure 3 report the boxplots of the delta 
time in ranges metrics (∆TIR , ∆TAR  and ∆TBR) for the 100 
virtual subjects, by varying the mean carb-counting error and 
fixing the standard deviation to 0. In this way, we can inves-
tigate the impact of a systematic error in carb-counting on 
the time in ranges metrics in the absence of random error. 
For the majority of subjects, systematic underestimations of 
meal CHO content (ie, error mean equal to −5% and −10%) 
lead to higher TAR and lower TIR than the reference case, as 
visible in panels B and A, respectively. Instead, systematic 
overestimations (ie, error mean equal to +5% and +10%) 
lead to more TIR (panel A) at the expense of an increase 
TBR (panel C) in most of subjects.

Panels D, E and F of Figure 3 report the impact of the 
random error on the glycemic control metrics, in the absence 
of a systematic error. In fact, in this case, the boxplots repre-
sent the distribution of the delta time in ranges metrics (TIR,  
TAR, and TBR ) for the 100 subjects for different values of 
the carb-counting error standard deviation, when the mean is 

fixed to 0. We can see that the increase of random error 
apparently results in a deterioration of glycemic control, that 
is, lower TIR (panel A) and higher TAR and TBR (panels B 
and C).

Figure 4 reports the bidimensional maps of the mean 
among the 100 subjects of the delta time in ranges metrics, 
for all the tested combinations of carb-counting error mean 
and SD. Systematic underestimation with high random error 
leads to up to 5.2% more of mean TAR and 5.3% less of 
mean TIR compared to the reference. Note that, according to 
the International Consensus on time in ranges,27 a difference 
of 5% in TIR is clinically significant for individuals with 
T1D. Regarding the cases with systematic overestimation, 
the presence of large random errors results in up to a 0.8% 
increase of TBR over the reference. Note that the virtual sub-
jects intake of hypotreatments, which is enabled in this simu-
lation scenario, probably mitigates the increase of TBR due 
to the carb-counting error.

The mean among the 100 virtual subjects of the delta time 
in ranges is plotted in Figure 5 for different values of carb-
counting error mean (panels A, B, and C) and SD (panels D, 
E, and F). Looking at the plots of Figure 5, we notice that 
while the starting point of each curve is different, depending 
either on the error mean or on its standard deviation, the plots 
present a similar linear trend, with a different rate of change 
for the different time in ranges.

This suggests that the use of a linear technique to model 
the relationship which links the carb-counting error mean M 
and standard deviation SD to variations of time in ranges 
may be appropriate.

Figure 1.  Glycemic profiles of a representative subject for 
different carb-counting error levels. The black curve (the one 
with error equal to 0%) represents the subject BG excursion in 
absence of carb-counting error. A meal of 60grams of CHO is 
given to the subject at 8:00.
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Therefore, 3 multiple linear regression models were fitted 
by using as outcome the delta time in ranges and as regres-
sors M and SD. The resulting models are:

	 ∆ = −TIR M SD0 21 0 07. . 	 (10)

	 ∆ = − +TAR M SD0 25 0 06. . 	 (11)

	 ∆ = +TBR M SD0 05 0 01. . 	 (12)

The coefficient of determination R2 is equal to 0.982 for 
the model described by equation (10), 0.987 for the one 
described by equation (11) and 0.970 for the model with 
equation (12). The obtained R2, very close to 1, confirm that 
a linear technique is appropriate for such data.

Such formulas permit us to quantify how much time in 
ranges change (compared to the reference case) in response 
to different levels of systematic and random carb-counting 
errors. For example, considering equation (10), we can 
deduce that a carb-counting error with mean of −5% and SD 

Figure 2.  Boxplots of the difference in post-prandial glucose control metrics compared to the reference case, for all the carb-counting 
error values tested (on the x-axis). In particular, the BG peak level (panel A), BG level at 120min after the mealtime (panel B), peak time 
from mealtime (panel E), AUC in hyperglycemia (panel C) and AUC in hypoglycemia (panel D) are reported. Red zones are the ones in 
which the metrics are worse than for the reference case, while the green zones are the ones in which the metrics are better than for 
the reference case. In each boxplot, the red horizontal line represents the median, the blue box marks the interquartile range, dashed 
lines are the whiskers, and red crosses indicate outliers. Whiskers are drawn from the ends of the interquartile range to the adjacent 
values, which are the most extreme data values that are not outliers. By default, an outlier is a value that is more than 1.5 times the 
interquartile range away from the top or bottom of the box.
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of 10% leads to a ∆TIR equal to −1.75%. This means that 
TIR decreases of 1.75% compared to the value of TIR which 
we would have in the reference case, that is, in absence of 
carb-counting error (M=0, SD=0). For the same value of 
error mean but increasing the SD to 50%, we obtain a ∆TIR 
of −4.55%, that is, a TIR deterioration of 4.55% compared to 
the reference case.

Conclusions

While errors in carbohydrate-counting are recognized as most 
common reasons for glycemic excursions in people with 
T1D, there are few data that can quantify their impact on gly-
cemic indices. In this work, we filled this gap by analyzing 
the data of an in-silico trial performed by using the T1D-PDS. 
Firstly, the postprandial glucose excursions of 100 virtual 
subjects after a meal of 60-grams of CHO were simulated for 

different levels of the carb-counting error in an ideal, distur-
bance-free scenario, to focus on the impact of the carb-count-
ing error without any other correction actions which could 
influence the profiles. Differently from other previous stud-
ies, in this work a wider range of variation of the error (from 
±10% to ±50% of the meal CHO amount) were investigated. 
Then, the impact of different carb-counting error levels on 
time in ranges (TIR, TAR, TBR) was evaluated by simulating 
100 subjects for 7-days, repeating the simulation with the 
same surrounding conditions for different levels of the sys-
tematic (from −10% to +10%) and the random (from 0% to 
50%) carb-counting error. We found that random errors glob-
ally deteriorate the glycemic control; systematic underestima-
tion leads to an increase of TAR of up to 5.2% compared to 
the reference case, while systematic overestimation increases 
the TBR of up to 0.8% compared to the reference case. 
Finally, by using the generated multi-meal simulated data, we 

Figure 3.  Boxplot of the difference in time in ranges compared to the reference case for the 100 virtual subjects. The boxplots of the 
ΔTIR, ΔTAR, and ΔTBR for carb-counting error SD fixed to 0 and by varying the carb-counting error mean are reported in panels A, 
B and C, respectively. The boxplots of the ΔTIR, ΔTAR, and ΔTBR for carb-counting error mean fixed to 0 and by varying the carb-
counting error SD are reported in panels D, E, and F, respectively. Red zones are the ones in which the metrics are worse than for the 
reference case, while the green zones are the ones in which the metrics are better than for the reference case.
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Figure 5.  Plot of the mean difference in time in ranges among the 100 virtual subjects. The mean of ∆TIR, ∆TAR and ∆TBR by varying 
the carb-counting error SD and for different carb-counting error mean values is reported in panels A, B, and C, respectively (figures 
legend is reported in panel A). The mean of ∆TIR, ∆TAR, and ∆TBR by varying the carb-counting error mean and for different carb-
counting error SD values is reported in panels D, E, and F, respectively (figures legend is reported in panel D).

Figure 4.  Bidimensional maps of the mean among the 100 virtual subjects of ΔTIR (at left), ΔTAR (in the middle) and ΔTBR (at right), 
for all combinations of carb-counting error mean and SD tested. In each map, the x-axis represents error SD, while the y-axis the error 
mean. Each color represents a different quantitative value of the metric, reported by the legends on the right of each map.
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developed 3 linear formulas which put the difference in TIR, 
TAR, and TBR compared to the reference case (which corre-
sponds to the absence of carb-counting error) in relation with 
systematic and random carb-counting errors. These formulas 
permit, assuming an open-loop therapy scenario, quantifica-
tion of the impact of different levels of systematic and ran-
dom carb-counting error on the time in ranges.

This quantification of the impact of different types of 
carb-counting errors can be valuable to clinicians, research-
ers and people with diabetes to explain some of the glycemic 
excursions that occur, as well in aiding decisions around 
therapy adjustments. For example, the diabetologists can use 
the formulas we derived to guess how much the glycemic 
control of a patient can improve if a specific training is pro-
grammed for limiting the subject’s systematic or random 
error in carb-counting. In an equivalent way, the diabetolo-
gist can opt for adjusting the patient’s carbohydrate-to-insu-
lin ratio in order to compensate a systematic error in 
carb-counting by producing the same benefits in time in 
ranges estimated by our formulas. However, even if the 
quantification of the carb-counting error impact can be use-
ful to clinicians for the reasons explained above, we do not 
provide any indication about how diabetologists must adjust 
therapy parameters based on our findings. Moreover, the 
obtained formulas can also be integrated in educational tools 
usable to help subjects in understanding the detrimental 
effects of some behavioral aspects, such as carb-counting 
error, on glycemic control.

It is important to remark that the quantitative results 
reported in this paper are valid in an open-loop scenario only. 
Indeed, we expect that the impact of the carb-counting error 
may be mitigated by the use of sophisticated closed-loop 
approaches and technologies. It is possible that these formu-
las can be used to stress-test the impact of carbohydrate 
counting errors in novel closed-loop algorithms.

Moreover, it must be emphasized that, in our study, we 
simulated rapidly absorbed meals completely made of CHO, 
since the T1D-PDS does not include a model of the absorp-
tion of more complex meals containing also proteins and 
fats, and thus it cannot simulate slow-absorption meals. Of 
course, the impact of the carb-counting error could be differ-
ent if slow-absorption meals and/or the effect of other mac-
ronutrients are considered in the analysis. If an updated meal 
absorption model should become available and be included 
in the T1D-PDS, the analysis performed in this paper could 
be repeated considering different meal compositions.

To conclude, we point out that the same paradigm pro-
posed here could be extended to the quantitative analysis of 
the role of other behavioral factors in the management of 
T1D that have a detrimental impact on glycemic control: 
delays in meal insulin bolus, wrong estimation of insulin on 
board, excessive or insufficient hypotreatment dose, inap-
propriate CGM alert settings, delay in responding to CGM 
alerts. Thus, future work could also include the development 
of a suitable mathematical methodology to compare the 

impact of these behavioral factors on glycemic control indi-
ces and, eventually, provide healthcare providers and educa-
tors with a ranking indicating which behavioral factors 
influence glycemic control most.
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