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Vitiligo is characterized by circumscribed depigmented macules in the skin resulting due to
the autoimmune destruction of melanocytes from the epidermis. Both humoral as well as
cell-mediated autoimmune responses are involved in melanocyte destruction. Several
studies including ours have established that oxidative stress is involved in vitiligo onset,
while autoimmunity contributes to the disease progression. However, the underlying
mechanism involved in programing the onset and progression of the disease remains a
conundrum. Based on several direct and indirect evidences, we suggested that
endoplasmic reticulum (ER) stress might act as a connecting link between oxidative
stress and autoimmunity in vitiligo pathogenesis. Oxidative stress disrupts cellular redox
potential that extends to the ER causing the accumulation of misfolded proteins, which
activates the unfolded protein response (UPR). The primary aim of UPR is to resolve the
stress and restore cellular homeostasis for cell survival. Growing evidences suggest a vital
role of UPR in immune regulation. Moreover, defective UPR has been implicated in the
development of autoimmunity in several autoimmune disorders. ER stress-activated UPR
plays an essential role in the regulation and maintenance of innate as well as adaptive
immunity, and a defective UPR may result in systemic/tissue level/organ-specific
autoimmunity. This review emphasizes on understanding the role of ER stress-induced
UPR in the development of systemic and tissue level autoimmunity in vitiligo pathogenesis
and its therapeutics.
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INTRODUCTION

Extensive research over the years established that a complex interaction between genetic,
environmental, biochemical, and immunological factors collectively generate a microenvironment
favoring melanocyte loss in vitiligo (1–3). The complex genetics of vitiligo involves multiple
susceptibility loci, incomplete penetrance, and genetic heterogeneity with gene-gene and gene-
environment interactions and altered miRNA expression (Table S1) (4–6). Accumulation of
oxidative stress due to defective recycling of tetrahydrobiopterin, mitochondrial impairment
org February 2021 | Volume 11 | Article 6245661
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(Table S2), and compromised antioxidant system are reported in
vitiligo patients (7–11). This accumulated oxidative stress might
result in DNA damage, lipid and protein peroxidation,
neoantigen formation, and may affect normal melanogenesis in
melanocytes (12). Moreover, both humoral and cellular
autoimmunity, altered CD4+/CD8+ T cell ratio, decreased
regulatory T cells (Tregs) function, presence of autoreactive
anti-melanocyte CD8+ T cells in both blood and skin, as well
as imbalance of pro- and anti-inflammatory cytokine levels
are reported to be involved in vitiligo pathogenesis (2, 13–20).
Our extensive population based studies indicated impeded redox
and immune homeostasis in the skin and blood of vitiligo
patients from Gujarat population (2, 14, 17, 21–41). Hence,
based on our observations, we proposed that oxidative stress
triggers vitiligo onset, while autoimmunity contributes to the
disease progression (2). Despite extensive research, the exact
mechanism which connects the triggering factors with the
disease progression is still obscure. Investigating the connecting
link between the factors involved in onset and progression of
vitiligo may enhance our understanding of its pathomechanisms
and thereby open new avenues for development of novel
therapeutic strategies.

It has been reported that melanocytes from vitiligo patients
had dilated endoplasmic reticulum (ER) as compared to healthy
melanocytes (42). The accumulation of misfolded proteins in the
ER lumen and its dilation are the characteristics of ER stress.
Excessive load of protein folding in ER may also generate
oxidative stress (43). Several studies suggested the generation
of ROS during normal protein folding process in ER and
oxidation of ER proteins under oxidative stress led to the
accumulation of misfolded proteins (44, 45). Interestingly,
vitiligo patients are reported to have significantly elevated
homocysteine levels which may induce oxidative stress, ER
stress, and expression of pro-inflammatory cytokines (28, 46,
47). Unfolded protein response (UPR) upon ER stress is also
known to regulate the innate immune response in different ways
(48). Based on several direct and indirect evidences, earlier we
speculated that ER stress could be a major link between oxidative
stress and autoimmunity, which might play a key role in the
onset and exacerbation of vitiligo (49). In this review, we will
emphasize on the potential role of ER stress in the development
of autoimmune/inflammatory responses in vitiligo.
UNDERSTANDING ER STRESS-INDUCED
UPR

The ER is an active intracellular organelle with different
functions like protein folding and maturation within the
eukaryotic cell, essential for cellular homeostasis, proteostasis,
cellular development, and stress responsiveness (50). Aberrations
in protein folding may result in an imbalance leading to the
accumulation of misfolded proteins in the ER, which is known as
ER stress. To combat ER stress, the cell activates UPR which may
alleviate ER stress through global translation attenuation,
Frontiers in Immunology | www.frontiersin.org 2
induction of chaperones, degradation of misfolded proteins by
ER-associated degradation (ERAD), and apoptosis (51). The
accumulation of misfolded proteins increases the production of
BiP/GRP78 (78-kDa glucose-regulated protein) (52). GRP78
forms dynamic stability between the nascent polypeptides
(unfolded proteins) and intra-luminal domains of the three ER
stress sensors viz. inositol-requiring enzyme 1a (IRE1a), PKR
like endoplasmic reticulum kinase (PERK), and activating
transcription factor 6 (ATF6) (53–56). In non-stress conditions,
all three sensors are primarily bound with GRP78, which helps
to maintain its inactive state. The fate of the stressed cell
towards survival or death depends upon the interplay among
these three major arms of the UPR signaling pathways (57, 58)
(Figure 1).
ROLE OF UPR IN INFLAMMATION
AND IMMUNE REGULATION

The UPR has emerged as a hallmark of several diseases including
inflammatory bowel disease, arthritis, neurodegenerative
diseases, diabetes mellitus, stroke, and cancer (58–60). UPR
plays a vital role in inflammation, mainly regulated by nuclear
factor kappaB (NF-kB) and activator protein 1 (AP-1) (61–63).
NF-kB regulates the expression of various genes including those
encoding cytokines, chemokines, and also participates in
inflammasome regulation. All three pathways can activate NF-
kB independently, but IRE1a plays an essential role in
inflammatory pathways (64). IRE1 interaction with TRAF2
(TNF Receptor Associated Factor 2) in response to ER stress
leads to the recruitment of IkB kinase (IKK) which
phosphorylates and subsequently degrades IkB (65), thereby
activating NF-kB. PERK-eIF2a signaling pathway halts overall
protein synthesis. Thus, NF-kB to IkB ratio in cell increases due
to IkB’s shorter half-life than NF-kB, which subsequently favors
NF-kB dependent transcription (66, 67). Activated IRE1 also
interacts with TRAF2 and ASK1 that further activates the JNK in
addition to the activation of NF-kB and leading to the AP1
activation (68–70). Genes transcribed by AP1 include cytokines
such as tumor necrosis factor (TNF), keratinocyte growth factor
(KGF), granulocyte-macrophage colony-stimulating factor (GM-
CSF), IL8, IL-1 receptor antagonists, and fibroblast growth factor
receptor 1, implying that AP1 also plays a crucial role in the
regulation of cytokine receptors (71).

All three major arms of UPR viz. PERK, ATF6, and IRE1
have a central role in immune regulation. In PERK signaling,
ATF4 activates IL6 transcription in macrophages (72). Further,
phosphorylation of eIF2a upon activation of PERK signaling
allows selective translation of mRNAs bearing upstream open
reading frames (uORFs) in their 5′-untranslated regions (5′-
UTR), which might act as novel antigens for MHC-I
presentation (73). IRE1a undergoes phosphorylation by signals
downstream to Toll-like receptors (TLRs). Phosphorylated IRE1a
induces unspliced XBP1u mRNA splicing resulting in an active
transcription factor, spliced XBP1 (XBP1s), which activates the
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production of pro-inflammatory cytokines in macrophages (74).
IRE1a/XBP1s also contributes to homeostasis and survival of
CD8a+ conventional dendritic cells (DCs) (75). Furthermore, it
has also been reported that XBP1s may regulate the expression of
TNF and IL6 in macrophages (74). Notably, transcriptional targets
of ATF6 include XBP1 and thus ATF6 is also recognized as a
regulator of the IRE1/XBP1 axis (76–78). Interestingly, it has been
reported that cleaved ATF6 can act as an enhancer and increase
the CREBH-mediated (cAMP response element-binding protein
H) acute inflammatory response, indicating a link between ATF6
and inflammation (79).
Frontiers in Immunology | www.frontiersin.org 3
IMPLICATIONS OF LOCALIZED AND
PERIPHERAL ER STRESS IN VITILIGO

ER Stress in the Skin Microenvironment
In the skin, ER stress may be induced by various endogenous
as well as exogenous stressors such as UV irradiation, trauma,
and chemical stressors (Table S3). Interestingly, chemical
stressors including phenolic derivatives such as rhododendrol,
hydroquinone, MBEH (mono benzyl ether of hydroquinone),
and 4-TBP (4-tertiary butyl phenol) present in the cosmetic skin
whitening agents have been identified to induce UPR mediated
FIGURE 1 | Activation of unfolded protein response. Due to stress conditions, unfolded protein levels increase in the ER lumen. The dissociation of GRP78 from
transmembrane sensors PERK, ATF6, and IRE1 leads to the activation of UPR signaling. Activation of IRE1 and PERK results in their oligomerization and
transphosphorylation. Active IRE1 triggers the unconventional splicing of XBP1u mRNA resulting in the translation of an active transcription factor sXBP1. The active
IRE1 can also interact with JNK and TRAF2 and thereby activating downstream signaling. The activation of ATF6 leads to its translocation to the Golgi and its
proteolytic cleavage, resulting in a transcriptionally active form. Activation of PERK triggers phosphorylation of elF2a leading to global translational attenuation and
favoring translation of ATF4. Activation of all three pathways activate downstream transcriptional machinery resulting in expression of target genes to overcome the
stress conditions. Persistent and excessive ER stress may lead to activation of mitochondria mediated cell death pathway.
February 2021 | Volume 11 | Article 624566
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melanocyte death (80–84). Importantly, physiological ER stress
is required for the maintenance of normal biological functions
including keratinocyte differentiation in the skin (85). ER stress-
signaled UPR was found to be activated during epidermal
keratinocyte differentiation (85–87). Expression of UPR activation
markers such as sXBP1, CHOP, and GRP78 is increased in the
undifferentiated/proliferative stage of keratinocytes during their
differentiation (85, 88). Furthermore, CD8+ T cells are found to
be essential effectors of melanocyte destruction in vitiligo patients
(89, 90). The recruitment of CD8+ T cells to skin lesions is carried
out by the IFN-g-mediated T cell chemokine receptor, C-X-Cmotif
chemokine receptor 3 (CXCR3), and its ligands CXCL9, CXCL10,
and CXCL11, which are found to be abundant in skin biopsy
specimens from vitiligo patients (91). The blockade of this pathway
mitigated the vitiligo in mice as well as in human subjects (92, 93).
IRE1a/sXBP1 signaling in stressed keratinocytes augmented the
levels of CXCL16, which is involved in CD8+ T cell recruitment to
skin lesions (94).

ER Stress in Peripheral System
Peripheral blood mononuclear cells (PBMCs) play a critical role
in immune response, metabolism, and communication with other
cells. PBMCs of vitiligo patients were reported to have metabolic
deregulations and oxidative stress, similar to those found in
melanocytes and the lesional epidermis (95–97). Histological
studies have demonstrated that infiltration of CD8+ T cells
occurs surrounding the vitiligo lesions (98–101). Hence, the
role of ER stress in the regulation of the peripheral immune
system may be interesting in understanding vitiligo pathogenesis.
The UPR signaling is involved in the differentiation, proliferation,
and homeostasis of both B and T cells. In the presence of a
differentiation stimulus, both B and T cells increase GRP78
protein levels, initiate XBP1 splicing, and induce ATF6
signaling (102–105). The inhibition of GRP78, ATF6, or XBP1
greatly reduces plasma cell differentiation and their efficacy
upon maturation (102, 106). Cell fate determines whether UPR
signaling is maintained for example, early B cells exhibit active
UPR signaling, but it is absent in mature B cells. Similarly, CD4−/
CD8− progenitor T cells do not exhibit UPR, but greatly increase
UPR during maturation as CD4+/CD8+ T cells. Upon
differentiation to CD4+ T cells, the UPR is once again repressed
(103). CD8+ T cells play a major role in anti-melanocyte
autoimmunity in vitiligo. Infection of mice with lymphocytic
choriomeningitis virus (LCMV) resulted in the upregulation of
spliced and unspliced XBP1 that further enhanced differentiation
of CD8+ T cells (104). ER stress chaperone, GRP78 also plays an
essential role in the regulation of granzyme B in CD8+ T cells and
CD8+ intraepithelial lymphocytes. CD8+ T cells of heterozygous
GRP78 mouse model had reduced granzyme B secretion and
cytotoxicity. This granzyme B deficiency was due to a reduction in
IL-2 mediated proliferation, as exogenous IL-2 helped to partially
restore granzyme B expression (107).

ER stress is also implicated in the regulation of Treg cells.
Human Treg clones had elevated IL-10 production when treated
with thapsigargin, an activator of ER stress and UPR, in an eIF2a
phosphorylation-dependent manner (108). Loss of ATF4 led to a
modest increase in FOXP3 mRNA expression in mouse CD4+
Frontiers in Immunology | www.frontiersin.org 4
cells differentiated under T regulatory conditions in a high
oxidizing environment (109). Recently, decreased levels of
NFATs and FOXP3 are reported in Tregs of generalized
vitiligo patients which may impair Treg cell function along
with reduced IL10 and CTLA4 levels (18–20).
PLAUSIBLE INVOLVEMENT OF ER
STRESS IN VITILIGO AUTOIMMUNITY

The ER stress may contribute to the development of
autoimmunity through the recognition of misfolded proteins
by autoreactive immune cells. Release of neo-autoantigens and
UPR-related autoantigens by stressed cells, subsequently provoke
autoimmunity. ER stress may indirectly contribute to
autoimmunity through impairment of immune-tolerance
mechanisms in cells with an abnormal UPR and conferring
resistance to UPR mediated apoptosis in autoreactive cells by
upregulating ERAD-associated proteins (48). Under certain
pathophysiological conditions, several ER chaperones are
translocated to the cell surface or released in extracellular
space, which may serve as damage-associated molecular
patterns (DAMPS) and attract the innate immune system to
target “abnormal” cells for phagocytosis leading to subsequent
activation of adaptive immunity (110). These phenomena have
been established in various autoimmune disorders such as type I
diabetes (T1D), rheumatoid arthritis (RA), systemic lupus
erythematosus (SLE) (111, 112). Interestingly, one of the
essential ER chaperones, GRP78 has immunomodulatory
functions upon cell surface translocation. Vig et al. (112) have
demonstrated that sGRP78 serves as a pro-apoptotic signaling
receptor in beta cells and postulated that inflamed beta cells set
up a self-destructing feedback loop through the combined
surface translocation and secretion of GRP78. These findings
suggest an important role of surface translocated GRP78 in
autoimmune destruction of target cells. Though the role of
sGRP78 is not yet established in melanocyte destruction, a few
studies on other chaperones have encouraged researchers to
hypothesize its role in melanocyte destruction in vitiligo. Kroll
et al. (113) have observed that 4-tertiary butyl-phenol (4-TBP)
induced expression and release of HSP70 by PIG3V melanocytes
(immortalized vitiligo melanocytes). Further, it induced
expression of tumor necrosis factor-related apoptosis-inducing
ligand (TRAIL) on the membrane and activated DC effector
functions towards the stressed melanocytes. Interestingly, they
observed increased expression of TRAIL and CD11c+ dendritic
cell infiltration in the perilesional skin of vitiligo patients. This
suggested that HSP70 release by stressed melanocytes may
facilitate DC activation leading to melanocyte destruction in
vitiligo (113). In another exciting study, Zhang et al. have
reported oxidative stress-induced translocation of calreticulin
(CRT) on melanocyte surface (114). They observed that CRT
surface translocation (sCRT) on melanocytes induced expression
of pro-inflammatory cytokines such as IL-6 and TNF-a by
human PBMCs in vitro. Elevated sCRT was concordant with
decreased membrane CD47 expression; CD47 acts as a “don’t eat
February 2021 | Volume 11 | Article 624566
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me” signal in contrast to “eat me” signal of CRT, resulting in
immunogenic cell death (114, 115). Moreover, a positive
correlation of plasma CRT levels was observed with the area
affected and the activity of the disease in vitiligo patients
suggesting CRT’s role in vitiligo pathogenesis (114). These
studies led us to postulate the potential role of ER stress
response proteins in the initial development of autoimmune
response against stressed melanocytes.
FUTURE PROSPECTS AND
TRANSLATIONAL RELEVANCE OF ER
STRESS IN VITILIGO

As per the recent understanding, it is clear that the ER stress is at
the verge of oxidative stress and inflammatory/immunoregulatory
response in the cell, making it an ideal therapeutic target.
However, the core UPR signaling involved in melanocyte
biology and vitiligo pathomechanism is not much explored. A
few studies demonstrate that therapeutic agents modulating ER
stress can be promising for vitiligo treatment. Zhu et al. (116) have
reported that Baicalin attenuated the progression and reduced the
area of depigmentation in the C57BL/6 mouse model of vitiligo.
Furthermore, they observed that Baicalin stimulated the
proliferation of melanocytes in depigmented skin, which further
led to a decrease in CD8+ T cell infiltration and the expression of
CXCL10 and CXCR3 in mice skin. Interestingly, they also
observed significantly decreased levels of IL-6, TNF-a, IFN-g,
and IL-13 in sera of vitiligo mice models (116). Baicalin is an
active ingredient of S. baicalensis, which is reported to protect
cardio-myocytes and chondrocytes from ER stress-induced
Frontiers in Immunology | www.frontiersin.org 5
apoptosis (117, 118). Bilobalide is one of the active components
of G. biloba extract. Lu et al. reported that pre-treatment with
bilobalide could protect melanocytes from oxidative damage by
inhibiting H2O2 induced cytotoxicity. It also inhibited eIF2a
phosphorylation and downregulated CHOP expression (119).
However, the exact mechanism of ER stress modulation by
these herbal extracts is not clear. Apart from these, therapeutic
strategies aiming to improve protein-folding capacity during ER
stress might also be promising. Chemical chaperones such as
Tauro-ursodeoxycholic acid (TUDCA) and 4−phenyl butyrate
(PBA) can improve protein folding in the ER. Success in the
alleviation of ER stress-induced hyperglycemia, restoration of
insulin sensitivity, and fatty liver disease amelioration was
observed upon TUDCA and 4-PBA treatments in obese mice
(120). Cao et al. have reported that TUDCA and 4-PBA decreased
ER stress in the intestinal epithelium leading to reduced dextran
sodium sulfate (DSS) induced colitis severity (121). Moreover, it
was found that 4-PBA leads to a decrease in lipopolysaccharide
(LPS)-induced lung inflammation through modulating ER stress,
NF−kB, and hypoxia-inducing factor 1a (HIF1a) signaling (122).
Nevertheless, further studies to understand the molecular
mechanism of ER stress signaling in melanocytes, neighboring
keratinocytes, and circulatory as well as infiltrated immune cells
are warranted for the development of novel targeted and
personalized ER stress modulating therapeutics for vitiligo.
CONCLUSIONS

Over the decades, the role of UPR in the pathogenesis of various
autoimmune disorders is well established. However, its role in
anti-melanocyte autoimmunity in vitiligo is yet to be unraveled.
FIGURE 2 | Role of ER stress, oxidative stress, inflammation, and autoimmunity in vitiligo pathogenesis. Various exogenous and endogenous stressors in the skin
result in oxidative stress and ER stress. ER stress activates the UPR signaling to resolve the stress. However, prolonged ER stress and defective UPR may lead to
activation of inflammatory transcriptional program and release of proinflammatory cytokines, which generates further ER stress and oxidative stress. Further, the
defective apoptosis of melanocytes might result in the release of misfolded/unfolded proteins that can potentially act as autoantigens and might be identified as
damage-associated molecular patterns by the immune cells. The antigen presenting cells (APC) may process and present the altered proteins/peptides generating
novel epitopes, which in turn will activate target B and T cells, resulting in an anti-melanocyte autoimmune response.
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Although extensive research has been done to decipher the
conundrum of the underlying molecular mechanisms of
melanocyte destruction, the role of UPR in vitiligo still remains
an enigma. Several studies have uncovered essential direct and
indirect mechanistic links that established cross-talk among
oxidative stress, ER stress, and autoimmunity, which appears
to be crucial in vitiligo pathogenesis (Figure 2). A wide range of
studies has demonstrated that ER stress-activated UPR plays an
essential role in the regulation and maintenance of innate as well
as adaptive immunity. Though the role of ER stress in affecting
immunity at systemic as well as tissue level is not well understood, a
defective UPR might result in organ-specific autoimmunity. Since
the immune response is a multi-step process, depending on the
microenvironment of the cell, UPR can promote cell survival or
death. This review suggests that the UPR is orchestrating the cell fate
differently in the active participating immune cells and the target
melanocytes. The genetic predisposition and the microenvironment
of the target tissue play a major role in deciding the cell fate. Thus,
further studies deciphering the tissue/cell type-specific UPR and
developing UPR modulating strategies accordingly are warranted.
Future research work in this direction will be promising in the
development of novel immunotherapeutics for vitiligo.
Frontiers in Immunology | www.frontiersin.org 6
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