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Noise is generally considered to harm information processing performance. However, in
the context of stochastic resonance, noise has been shown to improve signal detection
of weak sub- threshold signals, and it has been proposed that the brain might actively
exploit this phenomenon. Especially within the auditory system, recent studies suggest
that intrinsic noise plays a key role in signal processing and might even correspond
to increased spontaneous neuronal firing rates observed in early processing stages of
the auditory brain stem and cortex after hearing loss. Here we present a computational
model of the auditory pathway based on a deep neural network, trained on speech
recognition. We simulate different levels of hearing loss and investigate the effect of
intrinsic noise. Remarkably, speech recognition after hearing loss actually improves with
additional intrinsic noise. This surprising result indicates that intrinsic noise might not
only play a crucial role in human auditory processing, but might even be beneficial for
contemporary machine learning approaches.

Keywords: speech processing, auditory perception, hearing loss, stochastic resonance, deep artificial neural
networks, dorsal cochlear nucleus, tinnitus mechanisms, Zwicker tone

INTRODUCTION

The term noise usually describes undesirable disturbances or fluctuations, and is considered to
be the “fundamental enemy” (McDonnell and Abbott, 2009) for communication and error-free
information transmission and processing in engineering. However, a vast and still increasing
number of publications demonstrate the various benefits of noise for signal detection and
processing, among which the most important phenomena are called stochastic resonance
(McDonnell and Abbott, 2009), coherence resonance (Pikovsky and Kurths, 1997), and recurrence
resonance (Krauss et al., 2019a).

The term stochastic resonance (SR), first introduced by Benzi et al. (1981), refers to a processing
principle in which signals that would otherwise be sub-threshold for a given sensor can be
detected by adding a random signal of appropriate intensity to the sensor input (Benzi et al., 1981;
Gammaitoni et al., 1998; Moss et al., 2004). SR occurs ubiquitously in nature and covers a broad
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spectrum of systems in physical and biological contexts
(Wiesenfeld and Moss, 1995; McDonnell and Abbott, 2009).
Especially in neuroscience, it has been demonstrated to play an
essential role in a vast number of different systems (Douglass
et al., 1993; Collins et al., 1996; Gluckman et al., 1996; Nozaki
et al., 1999; Usher and Feingold, 2000; Ward et al., 2002; Kosko
and Mitaim, 2003; Aihara et al., 2008; Faisal et al., 2008). Also,
it has already been proposed that spontaneous random activity,
i.e., noise, may increase information transmission via SR in the
auditory brain stem (Mino, 2014).

In self-adaptive signal detection systems based on SR, the
optimal noise intensity is continuously adjusted via a feedback
loop so that the system response remains optimal in terms
of information throughput, even if the characteristics and
statistics of the input signal change. The term adaptive SR
was coined for this processing principle (Mitaim and Kosko,
1998, 2004; Wenning and Obermayer, 2003). In a previous
study we demonstrated that the auto-correlation of the sensor
output, a quantity always accessible and easy to analyze by
neural networks, can be used to quantify and hence maximize
information transmission even for unknown and variable input
signals (Krauss et al., 2017).

In further studies we demonstrated theoretically and
empirically that adaptive SR based on output auto-correlations
might be a major processing principle of the auditory system
that serves to partially compensate for acute or chronic
hearing loss, e.g., due to cochlear damage (Krauss et al., 2016,
2018, 2019b; Gollnast et al., 2017; Krauss and Tziridis, 2021;
Schilling et al., 2021d). Here, the noise required for SR would
correspond to increased spontaneous neuronal firing rates in
early processing stages of the auditory brain stem and cortex, and
would be perceived as a phantom perception. Remarkably, this
phenomenon has frequently been observed in animal models
and in humans with subjective tinnitus (Wang et al., 1997; Ahlf
et al., 2012; Tziridis et al., 2015; Wu et al., 2016), which in turn is
assumed to be virtually always caused by some kind of apparent
(Heller, 2003; Nelson and Chen, 2004; König et al., 2006; Shore
et al., 2016) or hidden hearing loss (Schaette and McAlpine,
2011; Liberman and Liberman, 2015). From this point of view,
phantom perceptions like tinnitus seem to be a side effect of an
adaptive mechanism within the auditory system whose primary
purpose is to compensate for reduced input through continuous
optimization of information transmission (Krauss et al., 2016,
2018, 2019b; Krauss and Tziridis, 2021; Schilling et al., 2021d).
This adaptive mechanisms can also be investigated by simulating
a hearing loss. Thus, the presentation of a white noise stimulus
with a spectral notch, which leads to reduced input in a certain
frequency range, leads to better hearing thresholds within
this frequency range on the one hand (Wiegrebe et al., 1996;
Krauss and Tziridis, 2021) and causes an auditory phantom
perception—the so called Zwicker tone (Zwicker, 1964; Parra
and Pearlmutter, 2007)—after noise offset, on the other hand.

The dorsal cochlear nucleus (DCN) was shown to be the
earliest processing stage, where decreased cochlear input, due
to acoustic trauma induced hair cell loss and synaptopathy
(Liberman et al., 2016; Tziridis et al., 2021), results in
increased spontaneous firing rates (Kaltenbach et al., 1998;

Kaltenbach and Afman, 2000; Zacharek et al., 2002; Wu et al.,
2016). Interestingly, the amount of this increase in spontaneous
activity, i.e., neural hyperactivity, is correlated with the
strength of the behavioral signs of tinnitus in animal models
(Brozoski et al., 2002; Kaltenbach et al., 2004). Furthermore,
the hyperactivity is localized exclusively in those regions of
the DCN that are innervated by the damaged parts of the
cochlea (Kaltenbach et al., 2002). Gao et al. (2016) recently
described changes in DCN fusiform cell spontaneous activity
after noise exposure that supports the proposed SR mechanism.
In particular, the time course of spontaneous rate changes shows
an almost complete loss of spontaneous activity immediately after
loud sound exposure (as no SR is needed due to stimulation that
is well above threshold), followed by an overcompensation of
spontaneous rates to levels well above pre-exposition rates since
SR is now needed to compensate for acute hearing loss (Gao
et al., 2016). It is well-known that the DCN receives not only
auditory input from the cochlea, but also from the somatosensory
system (Young et al., 1995; Nelken and Young, 1996; Ryugo et al.,
2003; Shore and Zhou, 2006; Koehler and Shore, 2013; Wu et al.,
2016; Ansorge et al., 2021; Niven and Scott, 2021), and that noise
trauma alters long-term somatosensory-auditory processing in
the DCN (Dehmel et al., 2012), i.e., somatosensory projections
are up-regulated after deafness (Zeng et al., 2012).

In self-adaptive signal detection systems based on SR, the
optimal noise level is continuously adjusted so that the system
response in terms of information throughput remains optimal,
even if the properties of the input signal change. The term
adaptive SR was coined for this processing principle (Mitaim
and Kosko, 1998, 2004). An objective function for quantifying
information content is the mutual information be- tween the
sensor input and the output (Shannon, 1948), which is often
used in theoretical approaches (Levin and Miller, 1996; Mitaim
and Kosko, 2004; Moss et al., 2004). The choice of mutual
information is obvious, since the basic purpose of each sensor is
to transmit information to a subsequent information processing
system. It has already been shown that the mutual information
has a maximum as a function of the noise intensity, which
indicates the optimal noise level that has to be added to the
input signal in order to achieve optimal information transmission
by SR (Moss et al., 2004). A fundamental disadvantage of the
mutual information, however, is the impossibility of calculating
it in every application of adaptive SR if the signal to be
recognized is unknown (Krauss et al., 2017). Even if the
underlying signal is known, the use of mutual information
in the context of neural network architectures seems to be
rather impractical, since its calculation requires the evaluation
of probability distributions, logarithms, products and fractions,
i.e., operations difficult to implement in neural networks. In
an earlier work (Krauss et al., 2017) we were able to show
that this fundamental disadvantage can be overcome by another
objective function, namely the autocorrelation of the sensor
response. Both, the mutual information and the autocorrelation
peak at the same noise level. Hence, maximization of the output
autocorrelation leads to similar or even identical estimates of
the optimal noise intensities for SR as the mutual information,
but with the decisive advantage that no knowledge of the input
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signal is required (Krauss et al., 2017). In contrast to mutual
information, the evaluation of autocorrelation functions in neural
networks can easily be implemented using delay lines and
coincidence detectors (Licklider, 1951). Remarkably, a cerebellar-
like neuronal architecture resembling such delay-lines is known
to exist in the DCN (Osen et al., 1988; Hackney et al., 1990;
Nelken and Young, 1994; Oertel and Young, 2004; Baizer et al.,
2012). Therefore, we previously proposed the possibility that
the neural noise for SR is injected into the auditory system
via somatosensory projections to the DCN (Krauss et al., 2016,
2018, 2019b; Krauss and Tziridis, 2021; Schilling et al., 2021d,
2022). The idea that central noise plays a key role in auditory
processing has recently gained increasing popularity (Zeng, 2013,
2020; Koops and Eggermont, 2021) and is supported by various
findings. For instance, it is well-known, that jaw movements lead
to a modulation of subjective tinnitus loudness (Pinchoff et al.,
1998). This may easily be explained within our framework, as
jaw movements alter somatosensory input to the DCN. Since this
somatosensory input corresponds to the noise required for SR,
auditory input to the DCN is modulated through this mechanism,
and the altered noise level is then perceived as modulated tinnitus
(Krauss et al., 2016, 2018, 2019b; Schilling et al., 2021d). Along
the same line, one may explain why both, the temporomandibular
joint syndrome and whiplash, frequently cause so called somatic
tinnitus (Levine, 1999). Another example is the finding of Tang
and Trussell (2015, 2017), who demonstrated that somatosensory
input and hence tinnitus sensation may also be modified by
serotonergic regulation of excitability of principal cells in the
DCN. In addition, DCN responses to somatosensory stimulation
are enhanced after noise-induced hearing loss (Shore et al.,
2008; Shore, 2011). Finally, and most remarkable, electro-tactile
stimulation of finger tips, i.e., increased somatosensory input,
significantly improves both, melody recognition (Huang et al.,
2019) and speech recognition (Huang et al., 2017) in patients with
cochlear implants.

However, while we propose the DCN to be the place where
auditory input from the cochlea is integrated with neural noise
from the somatosensory system, we cannot rule out that SR
rather occurs in the ventral cochlear nucleus (VCN) instead (see
“Discussion” section).

In order to further support the hypothesis that SR plays
a key role in auditory processing, we here present a hybrid
computational model of the auditory pathway, trained on speech
recognition. An overview of the model layout is provided in
Figure 1.

The model is not intended to be a fine-grained model
of the complete auditory pathway with exhaustive biological
detail, but is rather used to demonstrate, analyze and interpret
the basic principles of information processing in the auditory
system. Thus, we abstracted from most biological details and
constructed a coarse-grained model of the cochlea, which does
not cover the full potential of cochlear information processing
compared to more fine-grained implementations as introduced
e.g., by Carney (1993, 2021), Sumner et al. (2002), James et al.
(2018), and Verhulst et al. (2018). Thus, Carney and co-workers
simulate the cochlea as narrow-band filters but applied a feed-
back loop changing the parameters of this filters with intensity

(Carney, 1993). Sumner and coworkers model the molecular
mechanisms including the distribution of calcium ions and
neurotransmitter release (Sumner et al., 2002) in the cochlea
and Verhulst and coworkers map their model on existing
neurophysiological recordings of human subjects and animals
(Verhulst et al., 2018).

In our approach, also the DCN circuitry is not modeled in
all detail, but only as a one-layered structure of leaky-integrate-
and-fire neurons, which are not interconnected. The aim of our
implementation is not to understand the whole auditory pathway
in detail, which would be far to ambitious, but to find out if SR
could have a significant effect on speech perception. Thus, it is
not the aim of the study to analyze the auditory system on an
implementational level (see Marrs’ level of analysis; Marr and
Poggio, 1979), but to explain the algorithmic level (Krauss and
Schilling, 2020; Schilling et al., 2022).

The output of the DCN is fed to a deep neural network trained
on word recognition. The deep neural network can be interpreted
as a surrogate for all remaining stages of the auditory pathway
beyond the DCN up to the auditory cortex. However, it may also
be regarded as a tool to quantify the information content of the
DCN output. The deep neural network was trained once on a
training data set and kept stable for the experiments.

Furthermore, we simulate different levels of hearing loss
(cochlear damage) and compare the resulting word recognition
accuracies for with the accuracy of the non-disturbed model (i.e.,
without simulated hearing loss). Subsequently, we add intrinsic
noise of different intensities to the model. The overall data flow
in our model is depicted in Figure 2.

As expected and shown in various experimental studies with
human subjects (Lorenzi et al., 2006; Zeng and Liu, 2006) we
find in our model that speech recognition accuracy decreases
systematically with increasing hearing loss (Zeng and Djalilian,
2010). In the case of additional intrinsic noise, we find SR-like
behavior for all levels of hearing loss: depending on the intensity
of the noise, accuracy first increases, reaches a peak, and finally
decreases again. This means that speech recognition after hearing
loss may indeed be improved by our proposed mechanism.
A simple increase of the spontaneous activity of the DCN neurons
did not lead to an increased speech recognition, which indicates
that indeed SR causes the increase in word recognition accuracy.
This intriguing result indicates, that SR indeed plays a crucial
role in auditory processing, and might even be beneficial for
contemporary machine learning approaches.

RESULTS

Dorsal Cochlear Nucleus Model Neurons
Show Phase Coupling Below 4 kHz
In order to validate our DCN model, we investigate the
spike train output of the 30 leaky integrate- and-fire (LIF)
neurons for different sine wave inputs (Figure 3). As described
in detail in “Methods” section, the parameters of the LIF
neurons are chosen so that the refractory time (0.25 ms) of
the neurons does not allow for firing rates above 4 kHz. This
is much more than the maximum spiking rate of a biological
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FIGURE 1 | Model layout. The complete model consists of three different modules representing different stages of the auditory pathway in the human brain. The
input to the model are single words encoded as wave files with a sampling rate of 44.1 kHz and 1 s duration (A). The cochlea and the spiral ganglion are modeled as
an array of 30 band-pass filters (B). The continuous output signal of (B) serves as input to 30 leaky integrate-and-fire-neurons representing the DCN (C). The
spike-train output of the DCN model is down sampled and serves as input for a deep neural network that is trained with error backpropagation on the classification
of 207 different German words (D). The classification accuracy serves as a proxy for speech recognition (E). In order to investigate the effect of a particular hearing
loss, the cochlea output amplitude is decreased by a certain factor independently for all frequency channels (F). White noise representing somatosensory input to
the DCN can be added independently to the input of the different leaky-integrate-and-fire-neurons (LIF, G).

FIGURE 2 | Data flow in auditory pathway model. The scheme shows how the speech data is processed within the model. The cochlea splits the signal via 30
bandpass filters. The bandpass filtered data is scaled down to simulate a hearing loss. The hearing loss affects only channels within the speech relevant frequency
range (orange, green, red). The other frequency channels are unchanged. Neural noise is added to investigate the effect of stochastic resonance (only in hearing
impaired channels). The DCN is simulated as 30 LIF neurons. Each LIF neuron represents a complete biological neuron population. The spike data is down-sampled
and fed to the deep neural network.

neuron (400 Hz) (Nizami, 2002). However, the recruitment of
several neurons to increase the frequency range in which phase
coupling is possible is a core concept within the dorsal cochlear
nucleus (Langner, 1988). Thus, in our model 1 simulated LIF
neuron represents approximately 10 biological neurons, having
individual refractory times above 1 ms.

We find that for stimulus frequencies above 4 kHz and
amplitudes of 0.001 the LIF neurons do not spike at all
(Figure 3A). In contrast, for a larger amplitude of 0.002, a rate
coding without phase coupling can be observed (Figure 3B).
Furthermore, we find that the LIF neurons are sensitive to
amplitude modulations also in the frequency range above 4 kHz

(Figures 3C,D). Thus, our DCN neurons are designed so
that they allow for phase coupling in the frequency range
crucial for speech comprehension, as is known from the human
auditory system.

Word Processing From Cochlea to
Dorsal Cochlear Nucleus
In analogy to the auditory system, the complex auditory stimuli
representing spoken words (Figure 4A) are transformed in
the cochlea into continuous signals in a number of different
frequency channels, in our model 30. However, the cochlea does
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FIGURE 3 | DCN model response to sine waves. Shown are the spiking outputs of the LIF neurons for sine input with two different constant amplitudes (A: 0.001, B:
0.002), and two different amplitude modulations (C,D). For lower amplitudes (A) and higher frequencies the LIF neurons do not spike at all, whereas for higher
amplitudes a rate code can be observed as the neurons’ maximum spiking rate is limited due to the refractory period. The parameters of the LIF neurons are chosen
so that there is phase coupling in the frequency range which is relevant for speech perception.

not perform a simple Fourier transform, but rather splits the
signal into multiple band pass filtered signals, thereby preserving
the complete phase information (Figure 4B). For the purpose
of simplicity, in the context of our model we assume that the
auditory nerve fibers directly transmit this analog signal to the

DCN, which is regarded to be a special feature of the auditory
system (Kandel et al., 2000; Young and Davis, 2002).

The analog signals are then further transformed into spike
train patterns in the DCN (Figure 4C). Thus, each spoken word
is represented as a unique spiking pattern with a dimensionality
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FIGURE 4 | Exemplary processing of a word in cochlea and DCN model. (A) The first 0.2 s of audio data of the German word “die” (the). (B) The 30 frequency
components (blue without hearing loss, orange with hearing loss) after the first part of the model, which represents the cochlea and the spiral-ganglion (Figure 1A).
A virtual hearing loss is applied by weakening the signal at a certain frequency range (e.g., 400 Hz–4 kHz, −30 dB). The bandpass filtered signal (matrix of 30
frequency channels and fs × signal duration) is fed to the LIF neurons (refractory time: ≈ 0.25 ms) and spike trains (C) are generated. These spike trains are
down-sampled by a factor of 5 and fed to the deep neural network (D). (E) The same signal (of panel D) with added hearing loss of 30 dB in the frequency range
400 Hz–4 kHz being the speech relevant range.

of 30 × N, where 30 corresponds to the number of frequency
channels and N is the sampling rate in Hz times the word length
in seconds. Note that we down-sampled these matrices by a factor
of five from 44,100 to 8,200 Hz for deep learning (Figure 4D).

This does not affect the phase coupling information in the speech
relevant frequency range. In order to analyze speech processing in
an impaired auditory system, we simulated a hearing loss in the
speech relevant frequency range (400 Hz–4 kHz) by decreasing
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the cochlea output amplitudes by a certain factor. The weakened
cochlea outputs and the resulting modified DCN spike train
outputs are shown in Figures 4B,C, where orange corresponds to
an exemplary hearing loss of 30 dB, and blue corresponds to the
undisturbed signals, i.e., without hearing loss. The corresponding
down sampled spike pattern matrices used as test data for the
deep neural network, are shown in Figure 4D (without hearing
loss) and in Figure 4E (with 30 dB hearing loss). We provide an
exemplary overview of the effect of different hearing losses from
0 to 45 dB on the spike pattern matrices in Figure 5.

Intrinsic Noise Partially Restores Spike
Patterns After Simulated Hearing Loss
To test the putative beneficial effect of intrinsic noise in case
of hearing loss, we analyzed spiking patterns generated with
and without intrinsic noise and compared them with the
corresponding undisturbed patterns (Figure 6). In Figure 6A
a sample spike pattern in case of no hearing loss is shown as
reference. As expected, a simulated hearing loss of 30 dB in
the frequency range of 400 Hz to 4 kHz leads to a decreased

spiking activity (Figure 6B), which can be partially restored by
the addition of intrinsic noise with optimal intensity (Figure 6C).

A point-to-point comparison of the spikes resulting from the
undisturbed system (no hearing loss) with the spikes resulting
from hearing loss and additional intrinsic noise, demonstrates
that there is indeed some improvement. In Figure 6D only
those spikes are shown that occur in both mentioned cases. In
contrast, there are less spikes resulting from hearing loss without
intrinsic noise (Figure 6E). Further analysis yield that intrinsic
noise not only restores spikes correctly (Figure 6F, yellow), but
also introduces false positive spikes (Figure 6F, blue). However, a
direct point-to-point comparison of spike patterns does not fully
capture the benefit of intrinsic noise. As shown in Figures 6A,C
(green boxes), intrinsic noise even restores larger spatio-temporal
spiking patterns correctly, yet with some temporal shift.

Intrinsic Noise Improves Accuracy for
Speech Recognition After Simulated
Hearing Loss
We also analyzed the effect of intrinsic noise on speech
recognition accuracy in case of hearing loss in different scenarios.

FIGURE 5 | Compressed spike patterns with added hearing loss. The figure shows the down-sampled spike patterns of the same word as shown in Figure 4. The
speech relevant frequency range (400 Hz–4 kHz) is artificially weakened (hearing loss). Panles (A–J) refer to hearing losses 0–45 dB.
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FIGURE 6 | Effect of intrinsic noise on the DCN output patterns. (A) Spiking without HL (same as in Figure 5A). (B) Spiking with a HL of 30 dB (same as
Figure 5G). (C) Spiking activity with HL and intrinsic noise of optimal intensity. Additional white noise increases spiking activity. (D) Point-to-point comparison of
spiking patterns for no HL and with HL and intrinsic noise. Shown are only spikes that occur in both cases, i.e., that are not affected by HL or that are correctly
restored by noise. (E) Point-to-point comparison of spiking patterns for no HL with HL and without intrinsic noise. Shown are only spikes that occur in both cases,
i.e., that are not affected by HL. (F) Intrinsic noise of optimal intensity not only restores spikes correctly (yellow), but also introduces false positive spikes (dark blue).
Intrinsic noise restores spatio-temporal spiking patterns correctly, yet with some temporal shift (green boxes in panels A,C, zoom of spike pattern in green box).

Using our custom-made data set, we investigated hearing loss
in two different frequency ranges. Furthermore, using the free
spoken digit data set (FSDD) data set, we investigated hearing
loss using two different neural networks. In all cases, we find
that intrinsic noise of appropriate intensity improves accuracy
for speech recognition after simulated hearing loss. Note that
the weights of the deep neural network are kept constant for all
further analyses. Thus, the relative accuracy is normalized to the
original test accuracy (0.37) of the undisturbed network.

Custom-Made Data Set and Hearing
Loss in the Frequency Range of
400 Hz–4 kHz
For the first scenario, we used a convolutional neural network
(Table 1) trained on our custom-made data set. After training,
we simulated a hearing loss in the frequency range of 400 Hz to
4 kHz which is known to be crucial for speech comprehension
in humans (Fox, 2006). The effect of improved or decreased
speech comprehension is quantified by the classification accuracy
of the words (test accuracy). The classification accuracy as a
function of the hearing loss has a biologically plausible sigmoid
shape (Figure 7A dark blue curve). The test accuracies as a
function of the added noise for different hearing losses show a
clear resonance curve with a global maximum (Figure 7B). For a
hearing loss of about 20 dB, the relative improvement of speech
comprehension is more than doubled (Figure 7C). Furthermore,
it can be shown that the optimal noise level correlates with
the hearing loss (Figure 7D). This effect is plausible as for a
weaker signal a higher noise amplitude is needed to lift the
signal over the threshold of the LIF neurons. In summary, it
can be stated that the addition of noise can lead to an improved
speech comprehension for all hearing losses. This fact can be
seen in Figure 7A, where the cyan curve shows the test accuracy

as a function of the hearing loss with the ideal amount of
added Gaussian noise.

Custom-Made Data Set and Hearing
Loss in the Frequency Range Above
4 kHz
Since many people suffer from hearing losses in the high
frequency range (Ciorba et al., 2011). In the next step, the
stochastic resonance effect is analyzed for a high frequency range

TABLE 1 | Exact parameters of the used deep convolutional network
(main analysis).

Layer Type Input-output-dim Activation Characteristics

1 Convolution
2D

30, 8,820, 1;1, 8,791, 128 ReLu

2 Reshape 1, 8,791, 128; 8,791, 128

3 Convolution
1D

8,791, 128; 8,782, 128 ReLu

4 MaxPooling
1D

8,782, 128; 4,391, 128 Pool size: 2

5 DropOut 4,391, 128; 4,391, 128 Dropout: 0.5

6 Convolution
1D

4,391, 128; 4,391, 128 ReLu

7 Convolution
1D

4,391, 128; 4,390, 128 ReLu

8 MaxPooling
1D

4,390, 128; 2,195, 128 Pool size: 2

9 DropOut 2,195, 128; 2,195, 128 Dropout: 0.5

10 Flatten 2,195, 128; 280,960

11 Dense 280,960; 150 ReLu

12 Dense 150; 50 ReLu

13 Dense 50; 207 Softmax
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FIGURE 7 | Effect of SR on speech recognition. (A) The curve shows the relative accuracy of the trained neural network as a function of the hearing loss (red dashed
line: chance level; (1/207)

max accuracy ). The hearing loss (5–50 dB, 5 dB steps, frequency range of HL: 400 Hz–4,000 Hz) was implemented in the test data set and

propagated through the pre-trained network. Thus, the cochlea output was multiplied with an attenuation factor (10
−HL
20 ). This output was then transformed using the

integrate-and-fire neurons and fed in the neural network. (B) Relative accuracy as a function of the applied noise level for different hearing losses. Resonance curves
with one global maximum at a certain noise level > 0 could be shown. (C) Best relative improvement as a function of the hearing loss. (D) Optimal noise level as a
function of the hearing loss.

hearing loss starting at a frequency of 4 kHz. It can be shown that
the high frequency loss does not affect the speech comprehension
abilities in the same manner as hearing losses in the critical
frequency range between 400 Hz and 4 kHz (Figure 8A). The
relative accuracy does not drop below a value of 50%. Thus, the
effect of stochastic resonance is also reduced (Figure 8B), which
means a maximal relative improvement of approximately 10%
(Figures 8C,D). Furthermore, there is no real resonance curve
with one maximum at a certain noise frequency but a second
maximum at a higher noise level (Figure 8B). To put it in a
nutshell, we can state that the addition of noise can lead to a
significant improvement of speech recognition.

Custom-Made Data Set and Hearing
Loss With Non-linearity in the Frequency
Range of 400 Hz to 4 kHz
So far, we simulated linear hearing loss in the model cochlea.
However, it is known that different damages to the cochlea or
the synapses from the cochlea to the cochlear nuclei yield to
different degrees of non-linearity in hearing loss. Therefore, we
also tested our model with an additional threshold of −50 dB,
i.e., all values above − 10

−50
20 and below 10

−50
20 ≈ 0.003 are set

to zero. Also in the case of an additional hard threshold, leading
to real information loss, the SR effect still works. The added
noise leads to a signal enhancement. Thus, the signal causes

more spiking in the DCN (Figure 9A). Consequently, the relative
speech recognition accuracy is partly restored by SR (Figure 9B).

Free Spoken Digit Data Set Data Set and
Hearing Loss in the Frequency Range
Above 400 Hz
In order to further demonstrate that the reported results are
not limited to a certain data set, natural language or neural
network architecture, we repeated our analyses using two further
neural networks, an alternative convolutional neural network
architecture (Table 2) and a network with Long-Short-Term-
Memories (Table 3), both trained and tested on English language,
i.e., the FSDD data set (Figure 10). A hearing loss in the critical
frequency range for speech comprehension leads to a decrease in
the classification accuracy (10a for the convolutional network and
10c for the Long- Short-Term-Memory network). Furthermore,
the stochastic resonance effect in terms of a clear resonance curve
with one maximum can be observed (Figures 10B,D).

METHODS

Computational Resources
The simulations were run on a desktop computer equipped
with an i9 extreme processor (Intel) with 10 calculation cores.
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FIGURE 8 | Effect of SR on speech recognition (high frequency hearing loss). Same analysis as shown in Figure 7 for high frequency hearing loss. (A) The plots
show the relative accuracy of the trained neural network as a function of the hearing loss (red dashed line: chance level). The high frequency hearing loss lead to
different effects (10–50 dB, 10 dB steps, frequency range of HL: above 4,000 Hz). (B) The relative accuracy as a function of the noise has no clear maximum above
the value for no added noise (nearly no SR). Furthermore, a second local maximum occurs. (C) The best relative improvement does not significantly increase over
10%. (D) Optimal noise level as a function of hearing loss shows similar behavior as for the hearing loss in the speech relevant frequency range (cf. Figure 7).

BA

FIGURE 9 | SR effect with additional threshold. (A) Example of signal after simulated cochlea for one frequency channel and an additional threshold of −50 dB

(−50 dB means that all values above −10
−50
20 and below 10

−50
20 ≈ 0.003 are set to zero). This threshold is introduced to show that the SR effect also works when

hearing loss leads to a real information loss. The noise leads to a signal enhancement (cyan curve). Thus, the signal causes more spiking in the DCN (cyan dots
compared to brown dots). (B) Relative accuracy as a function of the amplitude of the added noise. SR resonance partly restores the accuracy. For very high
thresholds, where main parts of the signals are deleted, the SR does not restore the accuracy.

Furthermore, the machine learning was run on the same
computer on two Nvidia Titan XP graphical processor units.
To test the validity of our calculations the simulations were
performed on two different code bases. The main results based
on our own speech data set are mainly based on Numpy
(Walt et al., 2011) and SciPy (Jones et al., 2001) calculations.

The convolutional network was implemented in Keras (Chollet,
2018) with Tensorflow (Abadi et al., 2016) back-end. All main
results were confirmed by analyzing a standard speech data
set—the so called Jakobovski free spoken digit data set (FSDD)
(Jackson et al., 2018), containing spoken numbers from 0 to 9
in English language in accordance to the MNIST data set with
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TABLE 2 | Exact parameters of the used deep convolutional network
(FSDD data set).

Layer Type Input-output-dim Activation Characteristics

1 Convolution
2D

9,131, 30, 1; 9,102, 1, 32 ReLu

2 MaxPooling
2D

9,102, 1, 32; 4,551, 1, 32 Pool size: (2, 1)

3 DropOut 4,551, 1, 32; 4,551, 1, 32 Droupout: 0.2

4 Convolution
2D

4,551, 1, 32; 4,547, 1, 64 ReLu

5 MaxPooling
2D

4,547, 1, 64; 2,273, 1, 64 Pool size: (2, 1)

6 DropOut 2,273, 1, 64; 2,273, 1, 64 Dropout: 0.2

7 Convolution
2D

2,273, 1, 64; 2,272, 1, 32 ReLu

8 MaxPooling
2D

2,272, 1, 32; 1,136, 1, 32 Pool size: (2, 1)

9 DropOut 1,136, 1, 32; 1,136, 1, 32 Dropout: 0.2

10 Flatten 1,136, 1, 32; 36,352

11 Dense 36,352; 400 ReLu

12 DropOut 400; 400 Dropout: 0.2

13 Dense 400; 50 ReLu

14 Dense 50; 10 Softmax

TABLE 3 | Exact parameters of the used LSTM network (FSDD data set).

Layer Type Input-output-dim Activation Characteristics

1 GroupToBatches 9,000, 30; 45, 6,000

2 LSTM 45, 6,000; 45, 200 tanh

3 DropOut 45, 200; 45, 200 Dropout: 0.5

4 LSTM 45, 200; 45, 100 tanh

5 DropOut 45, 100; 45, 100 Dropout: 0.5

6 TimeDistributed
Dense

45, 100; 45, 100

7 DropOut 45, 100; 45, 100 Dropout: 0.5

8 TimeDistributed
Dense

45, 100; 45, 10

written digits in this range (LeCun et al., 1998). This was done
using a completely new code base exclusively build of KERAS
layers. Thus, a custom-made KERAS layer implemented as sinc
FIR filters for the cochlea layer as well as the leaky-integrate-and-
fire neurons were implemented. All plots were created using the
Matplotlib Python library (Hunter, 2007) and plots were arranged
using the pylustrator (Gerum, 2020).

Layout of the Computational Model and
General Approach
The model comprises three modules (Figure 1): (1) an artificial
cochlea modeled as an array of band-pass filters, (2) a model
of the dorsal cochlear nucleus (DCN), implemented as an
array of leaky integrate-and-fire (LIF) neurons, and (3) a deep
neural network, that represents all further processing stages
beyond the DCN up to the auditory cortex and higher, language
associated, cortex areas.

The input to the model are single words of spoken language
encoded as wave files with a sampling rate of 44.1 kHz and 1 s
duration (Figure 1A). These wave files represent the acoustic
input of speech to the auditory system, and are processed in
the first module of the model representing the cochlea and
the spiral ganglion (Figure 1B). Like in previously published
models (Moore and Glasberg, 1983; Houser et al., 2001; Sayles
and Winter, 2010), this module is implemented as an array
of rectangular band-pass filters. In order to limit the total
computation time, we restricted our model to 30 band-pass
filters, instead of the actual amount of approximately 3,500 inner
hair cells in the human cochlea (Nadol, 1988). According to
the physiology of the cochlea (Russell and Nilsen, 1997), the
center frequencies of the band-pass filters are chosen such that
they cover the frequency range from 100 Hz to 10 kHz in
logarithmic steps.

The continuous multi-channel output of the band-pass filter
array serves as input to an array of 30 LIF neurons (Burkitt,
2006) representing the DCN (Figure 1C). We here applied a
one-to-one mapping from band-pass filters to model neurons,
i.e., we do not explicitly account for putative cross-talk between
neighboring frequency channels. However, since both the cochlea
and the DCN model only consist of 30 different frequency
channels, each of these channels may be regarded as an already
coarse grained version of approximately 100 different frequency
channels that exist in the human auditory system. Thus, eventual
cross-talk is implicitly implemented in our model within each
of the 30 modeled channels. The output of our DCN model
comprises the spike trains of the 30 LIF neurons. Note that, in
our DCN model, a single LIF neuron represents approximately
10 biological neurons processing the same frequency channel
(Kandel et al., 2000).

In our cochlea and DCN model, the outputs of the band-pass
filters and the membrane potentials of the LIF neurons change
with the same rate (44.1 kHz) as the wave file input. However, the
LIF neurons spike at lower average rates, due to their refractory
period. It is therefore possible to down-sample this sparse output
spike train, thereby reducing the data volume for the subsequent
deep neural network. In order to preserve enough temporal
information for phase coding, we down-sample the DCN output
only by a factor of five, so that the 44,100 momentary amplitudes
of the input wave file per second are finally transformed into a
binary 30× 8,820 matrix.

These binary matrices serve as training input for the deep
neural network, representing all further processing stages beyond
the DCN up to the auditory cortex and higher, language
associated, cortex areas. The neural network consists of four
convolutional layers and three fully connected layers, and is
trained with error backpropagation on the classification of 207
different German words (Figure 1D). The resulting classification
accuracy of the trained network serves as a proxy for speech
recognition (Figure 1E).

In order to simulate a particular hearing loss, the output
amplitudes of the cochlea model are decreased by a certain
factor, independently for the different frequency channels
(Figure 1F). Subsequently, these modified cochlea outputs are
further processed in the LIF neurons, finally resulting in a new
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A

DC
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FIGURE 10 | The SR resonance effect in different network architectures using the FSDD data set. (A) The plot shows the test accuracy as a function of the applied
hearing loss for a deep convolutional network architecture (dark blue, starting at 400 Hz, exact network architecture shown in Table 2) trained on English words
(digits: 0–9). The impaired speech comprehension by the hearing loss can be partly compensated by adding Gaussian noise (stochastic resonance). The cyan curve
shows the improvement of speech comprehension for the optimal noise level (maxima values in panel B). (B) Test accuracy for different hearing losses (shades of
blue) as a function of the added noise. The maxima show that SR can help to restore speech comprehension. (C) Similar analysis as shown in panel (A) for a two
layer LSTM network (exact network architecture shown in Table 3); (D) Similar analysis as shown in panel (B) for the LSTM architecture. The improvement of speech
perception in impaired systems (hearing loss) is a universal principle and does not depend on the used neural network.

binary matrix for each word for a particular hearing loss. These
new matrices then serve as test data for the previously trained
deep neural network, yielding a new classification accuracy. By
comparing the reference test accuracy (without any hearing loss)
with the new test accuracy, the effect of a particular hearing loss
on speech recognition was estimated.

Optionally, Gaussian noise with zero mean and a certain
standard deviation, representing somatosensory input to the
DCN, was added independently to the input of each LIF neuron
(Figure 1G). Here, the standard deviation corresponds to the
noise intensity. As described before, again this finally results in
a new binary matrix for each wave file, yet corresponding to a
particular hearing loss and, in addition, also to a particular set
of frequency channel specific noise intensities. Again, all these
new matrices serve as test data for the deep neural network. By
comparing the reference test accuracy (without any hearing loss
and noise) with the new test accuracy, the effect of particular
noise intensities on speech recognition with a certain hearing
loss was estimated. A sketch of the complete data flow in case of
certain hearing loss and additional noise is depicted in Figure 2.

Simplified Model of the Cochlea
The cochlea is simulated as 30 Butterworth bandpass filters
(3rd order) with no overlapping bands. These 30 bandpass
filters are a simplification of the more than 3,000 inner
hair cells of the human cochlea (Dallos, 1992). In contrast
to other complex cochlea models (Tan and Carney, 2003;

Chambers et al., 2019), this simplification of the dynamics
of the inner hair cells was chosen to derive basic principles
and to increase interpretability. The center frequencies (of the
bandpass filters) are between 100 Hz (minfreq.) and 10 kHz
(maxfreq.) including the complete frequency range needed for
speech comprehension. The center frequencies are chosen to
grow exponentially [centerfreq. = minfreq. · factori with i ∈

{0,1,. . . ,29} and factor = maxfreq
minfreq

1/(channels−1)
]. Thus, for higher

frequencies the spacing of the center frequencies becomes larger
in analogy to the tonotopy of the human cochlea (Kandel et al.,
2000; Fox, 2006). The width of the bandpass filters is defined as
[centerfreq. factor−0.5, centerfreq. factor0.5].

Model of the Dorsal Cochlear Nucleus
The dorsal cochlear nucleus (DCN) was modeled as 30 leaky
integrate-and-fire (LIF) neurons (Burkitt, 2006), each of these
neurons is connected to one frequency channel of the cochlea.
Thus, no lateral inhibition was realized to focus on the core
effects. The maximum spiking rate of the simulated LIF neurons
is approximately 4 kHz (trefrac. = 11

44100 1
s
≈

11
4000 S = 0.25 ms,

trefrac.: refractory time), which is much more than the maximum
spiking rate of a biological neuron (400 Hz) (Nizami, 2002).
Thus, in the simulation 1 LIF neuron represent approximately
10 real neurons. The recruitment of several neurons to increase
the frequency range in which phase coupling is possible is a
core concept within the dorsal cochlear nucleus (Langner, 1988).
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The numerical integration of the LIF neurons was performed
using the “Euler” method, as this method lead to the lowest
computational complexity compared to “Heun” and “Runge
Kutte”—being standard integration techniques (Fathoni and
Wuryandari, 2015)—without causing significant inaccuracies.

Model of Brain Stem and Cortex
The neural processing stages of the auditory pathway above
the DCN including superior olive, lateral lemniscus, inferior
colliculus, medial corpus geniculatum in the thalamus, and
auditory cortex are modeled as a deep neural network (Kandel
et al., 2000). For our main simulations with the custom-
made data set we used a Deep Convolutional Neural Network
(LeCun et al., 2015) (for architecture and exact parameters see
Table 1). For the FSDD data set we used a slightly different
architecture (Table 2). Furthermore, we also used Deep LSTM
networks (Hochreiter and Schmidhuber, 1997) to double-check
the validity and universality of the beneficial effects of intrinsic
noise (Table 3).

Data Sets
Custom-Made Data Set
Our custom-made data set created for the purpose of the present
study was recorded from 12 different speakers (6 male, 6 female)
in a range of 20–61 years. The data was recorded with a sampling
rate of 44.1 kHz bit using Audacity. Each participant had to
speak the 207 most common German words 10 times each. After
recording, the data was labeled using forced alignment and cut
into 1 s intervals. The data from 10 participants served as training
data set, whereas the data from the two other speakers was used as
test data set. All evaluations, i.e., simulated hearing loss and effect
of intrinsic noise, were based on the modified test data.

Ethics Statement
All experiments were performed in accordance with relevant
guidelines and regulations. Informed consent was obtained from
all subjects. According to the Ethics Committee of the University
Hospital Erlangen, no further ethics approval was required
since non-invasive studies like this are exempted from formal
ethics approvals.

Free Spoken Digit Data Set Data Set
The second used data set is an open data set consisting of spoken
digits (0–9)–in analogy to the MNIST data set– in English. The
data set is sampled with 8 kHz and consists of 2,000 recorded
digits from four speakers (Jackson et al., 2018). Here the first five
repetitions of for each speaker and each digit are used as test data,
the respective remaining 45 repetitions serve as training data.

Training of Deep Neural Networks With
Undisturbed Test Data
As described above the complete auditory pathway beyond the
DCN, including the superior olive, lateral lemniscus, inferior
colliculus, medial geniculate corpus, and the auditory cortex,
is modeled as a deep neural network which is trained on the
classification of 207 different German words (custom- made data
set), or 10 English words corresponding to the digits from 0 to 9

(FSDD data set; Jackson et al., 2018), respectively. In both cases
the compressed, i.e., down sampled, DCN output matrices served
as training and test data input.

In case of our custom-made data set, the network is exclusively
trained on the data of 10 out of 12 speakers, while the remaining
two speakers serve as test data. Furthermore, for network
training we used only those compressed spike train matrices
that correspond to the undisturbed system, i.e., without hearing
loss and added noise. Due to the image-like features of the
compressed spike pattern matrices [similar to frequently used
Mel spectrograms (Meng et al., 2019) in speech recognition,
the deep neural network mainly consisted of convolutional
layers. The exact architecture and all parameters are provided
in Table 1]. For training on our custom-made data set, the
maximum test accuracy (0.37) significantly decreases after 20
epochs of training, and thus we applied the early stopping
procedure (Caruana et al., 2001) to prevent the network from
overfitting. The trained networks were used for all further
analyses with different modifications of the test data set, i.e.,
different hearing losses and different intensities of intrinsic noise.

Simulation of Hearing Loss
The hearing loss was simulated by a linear attenuation of the
cochlear output at the affected frequency ranges. Thus, a hearing
loss of X dB means that the outputs of the affected frequency
channels are multiplied with the factor 10

X
20 . Additionally, for

further experiments we added a real information loss by setting
an additional threshold. A threshold of -X dB means that all
values, where the absolute value is smaller than the threshold
value 10

−X
20 are set to 0 (see Figure 9A).

DISCUSSION

In this study, we demonstrated with a computational model of
the auditory system that noise added to the DCN may improve
speech recognition after hearing loss, by means of SR. The
relative benefit of SR turned out to be largest for hearing losses
between 20 and 30 dB.

Because SR works by partly restoring missing information
in the input data, adding noise improves the classification
accuracy of the neural network even after the training period is
finished. This stands in contrast to machine learning techniques
that achieve an increased robustness and generalization ability
by purposefully using noisy training data from the beginning
(Karpukhin et al., 2019), or by adding artificial noise during the
training period (An, 1996; Zhao et al., 2019).

Furthermore, this is also the crucial difference between the SR
model of auditory perception and alternative central gain models.
Instead of restoring the average spontaneous neural activity after
hearing loss, SR increases the information transmitted to the
auditory system.

In our work, we first train the neural network for speech
recognition, then simulate a hearing loss, and finally reduce this
loss by adding noise. This approach is biologically plausible, as
also the brain is trained on speech recognition during childhood
(Dabrowska and Kubinski, 2004; Gervain, 2015), where hearing
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ability is usually optimal [Indeed, hearing impairment in
childhood can lead to problems in language acquisition, which
cannot be fully cured in adulthood (Pimperton and Kennedy,
2012)]. In the coarse of a lifetime, hearing ability becomes
permanently (Gates and Mills, 2005; Huang and Tang, 2010)
or temporarily worse (Willott and Lu, 1982), often due to high
amplitude sound exposure.

We have proposed that hearing ability can be restored
by a control cycle embedded in the brain stem, along the
auditory pathway, which uses internal neural noise to exploit
the effect of stochastic resonance (Krauss et al., 2016). Thus,
it is supposed that the neural activity in damaged frequency
channels is up-regulated by internally generated noise to
restore hearing within this frequency range. Indeed, simulated
transient hearing loss improves auditory detection thresholds
(Krauss and Tziridis, 2021).

Overshooting of this noise up-regulation is proposed to be the
origin of tinnitus (Krauss et al., 2016). Our model could provide
an interesting explanation for overshooting internal noise: In
our simulation of high frequency hearing loss, we found that
the accuracy as a function of the added noise has not only a
single maximum, as expected for a resonance curve, but features
a second maximum at a higher noise level (Figure 8B). If the
neural control cycle would be drawn to this secondary maximum,
this might explain an overshooting of the neural noise and the
corresponding emergence of tinnitus (Krauss et al., 2016, 2017;
Schilling et al., 2021d). Another potential cause of tinnitus arises
from the fact that phase locking, the encoding of a signal’s
phase information in neural spike trains, is only possible for
frequencies up to 4 kHz, the maximum spike rate of the DCN
neurons (Figure 3A).

The stochastic resonance effect probably works only below
this limit frequency, and thus it is not clear whether (or how)
the neural control system compensates for the hearing loss in
the frequency range above 4 kHz, as it has no real maximum to
optimize for. Potentially, the tuning of the noise parameters in
this frequency regime is done only by random trial. This model
would fit to the observation that tinnitus mainly occurs in the
high frequency range (Gollnast et al., 2017).

While we propose the DCN to be the place where auditory
input from the cochlea is integrated with neural noise from
the somatosensory system, we cannot rule out that SR rather
occurs in the ventral cochlear nucleus (VCN) instead. Our
LIF neurons correspond to narrow band neurons, which
transform their cochlear input with minimal processing into
spike trains. Neurons like e.g., bushy cells with such primary-
like responses that show increased spontaneous firing rate after
hearing loss are known to exist also in the VCN (Martel and
Shore, 2020). In contrast, DCN neurons show strong non-
linearities in sound processing through inhibitory shaping of
their responses by inhibitory inter-neurons (Young and Davis,
2002; Oertel and Young, 2004). This circuitry might be the
correlate of the noise-adjusting feedback-loop proposed in our
model. For the sake of simplicity, we did not explicitly model
this exact circuitry. Furthermore, the VCN is also innervated
by trigeminal nerve fibers (Wu et al., 2015, 2016) which may
be the source of the neural noise for SR. However, the DCN

identification is not necessary for our model to work, and the
identification of our model LIF neurons as VCN neurons would
be possible as well.

We were able to show that neural noise could potentially
help to increase speech comprehension in neural systems in a
computational model of the auditory pathway. Even though,
previous studies suggested a benefit of SR of only about 5dB (Zeng
et al., 2000; Krauss et al., 2016; Gollnast et al., 2017), an accuracy
improvement of up to a factor of 2 is possible. This model
provides new insights how the auditory system optimizes speech
comprehension on small time scales, and why this processing was
evolutionary preserved even though, tinnitus results in strong
psychiatric burden: comprehension of natural speech (Schilling
et al., 2021c; Garibyan et al., 2022) is essential for humans. More
general, recognition of communication sounds can be assumed
to be essential for all social species, in particular mammals. This
may explain why behavioral and neural correlates of tinnitus are
also frequently observed in rodents.

Furthermore, we could give a mechanistic explanation of the
development and characteristics of tinnitus perception. These
finding could have a major impact on medical treatment of
phantom perceptions, but on the other hand raises new research
questions in the field of engineering.

However, it has to be stated that the SR model of tinnitus
development is by no means complete. While our model provides
a valid explanation for acute tinnitus perceived directly after
noise trauma, and also explains why a tinnitus percept could be
suppressed by acoustic noise of low intensity (Schilling et al.,
2021a; Tziridis et al., 2022), it does not include long-term neural
circuit-level effects (Jeschke et al., 2021) due to neural plasticity.
Furthermore, our model is [like the central gain (Auerbach et al.,
2014) and the lateral inhibition model (Gerken, 1996)] a pure
bottom-up model, which means that cortical or thalamocortical
top-down modulations are not regarded. Note that, we do not
discuss further bottom-up models of tinnitus development in
detail, as these models make no predictions on speech perception
benefit of tinnitus after hearing loss (for an in-depth comparison
of the different models, see Schilling et al., 2022). In contrast
to bottom-up models, top- down models play a crucial role in
understanding why brainstem hyperactivity passes the “gate to
consciousness” (the thalamus) and results in suffering a psychic
burden. Furthermore, attention effects also play a crucial role
in stress related modulations of tinnitus loudness (Mazurek
et al., 2015). Thus, some models describe the conscious tinnitus
percept as a consequence of thalamocortical dysrhythmia. This
dysrhythmia is induced by changed thalamo-cortical signal
transmission, which is a result of reduced resp. increased sub-
thalamic input to the medial geniculate body (Llińas et al., 1999;
De Ridder et al., 2015; Gault et al., 2018). More recent approaches
suggest that tinnitus is a prediction error and formalize their
models within the Bayesian brain framework (Sedley et al., 2016;
Hullfish et al., 2019; De Ridder and Vanneste, 2021). In summary,
it is necessary to merge bottom-up and top-down models of
tinnitus development to achieve a unified explanation of tinnitus
development (Schilling et al., 2022). Our bottom-up model has
not exclusively explanatory power but might also serve as source
of inspiration for advanced machine learning approaches.
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Furthermore, the effect of SR could be used to improve sensory
systems (Krauss et al., 2017). Although noisy data is already
used to make machine learning approaches more stable and less
vulnerable to small distortions (e.g., Neelakantan et al., 2015;
Gulcehre et al., 2016), the SR phenomenon can be used in a
different way. Thus, feedback loops could be implemented in
artificial intelligence systems, which are optimized on finding
the ideal noise level to make a signal detectable. This approach
goes well beyond already established techniques in artificial
intelligence research.

Our study provides evidence that an interplay of deep
learning and neuroscience helps on the one hand to raise
understanding of the function of biological neural networks
and cognition in general (e.g., Schilling et al., 2018, 2021b;
Krauss et al., 2019a,c,d, 2021; Gerum et al., 2020; Krauss
and Maier, 2020; Bönsel et al., 2021; Metzner and Krauss,
2022), an emerging science strand referred to as cognitive
computational neuroscience (Kriegeskorte and Douglas, 2018).
On the other hand, fundamental processing principles from
nature—such as stochastic resonance—can be transferred to
improve artificial neural systems, which is called neuroscience-
inspired AI (Hassabis et al., 2017; Gerum et al., 2020; Gerum and
Schilling, 2021; Yang et al., 2021; Maier et al., 2022).

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

AS, RG, and PK performed the simulations. AS, RG, CM,
and PK analyzed the data. CM and AM provided the analysis
tools. PK and AM supervised the study. All authors wrote
the manuscript.

FUNDING

This work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation): grant KR 5148/2-1
(project number 436456810) to PK, and grant SCHI 1482/3-
1 (project number 451810794) to AS. Furthermore, this work
was funded by the Emerging Talents Initiative (ETI) of the
University Erlangen-Nuremberg (Grant 2019/2-Phil-01 to PK),
and the Interdisciplinary Center for Clinical Research (IZKF) at
the University Hospital of the University Erlangen-Nuremberg
(grant ELAN- 17-12-27-1-Schilling to AS).

ACKNOWLEDGMENTS

We are grateful for the donation of two Titan Xp GPUs by
the NVIDIA Corporation. We thank Alexandra Zankl and
Martin Haller for technical assistance, and Holger Schulze for
providing us access to the lab. Finally, we also thank the 12
speakers who lend us their voices for generating the custom-made
speech data set.

REFERENCES
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., et al. (2016).

“Tensorflow: a system for large-scale machine learning,” in Proceedings of the
12th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 16), (Berkeley, CA: USENIX), 265–283.

Ahlf, S., Tziridis, K., Korn, S., Strohmeyer, I., and Schulze, H. (2012). Predisposition
for and prevention of subjective tinnitus development. PLoS One 7:e44519.
doi: 10.1371/journal.pone.0044519

Aihara, T., Kitajo, K., Nozaki, D., and Yamamoto, Y. (2008). Internal noise
determines external stochastic resonance in visual perception. Vis. Res. 48,
1569–1573. doi: 10.1016/j.visres.2008.04.022

An, G. (1996). The effects of adding noise during backpropagation training on a
generalization per- formance. Neural Comput. 8, 643–674.

Ansorge, J., Wu, C., Shore, S. E., and Krieger, P. (2021). Audiotactile interactions
in the mouse cochlear nucleus. Sci. Rep. 11:6887. doi: 10.1038/s41598-021-8
6236-9

Auerbach, B. D., Rodrigues, P. V., and Salvi, R. J. (2014). Central gain control in
tinnitus and hyperacusis. Front. Neurol. 5:206. doi: 10.3389/fneur.2014.00206

Baizer, J. S., Manohar, S., Paolone, N. A., Weinstock, N., and Salvi, R. J.
(2012). Understanding tinnitus: the dorsal cochlear nucleus, organization and
plasticity. Brain Res. 1485, 40–53. doi: 10.1016/j.brainres.2012.03.044

Benzi, R., Sutera, A., and Vulpiani, A. (1981). The mechanism of stochastic
resonance. J. Phys. A Math. Gen. 14:L453.

Brozoski, T., Bauer, C., and Caspary, D. (2002). Elevated fusiform cell activity in the
dorsal cochlear nucleus of chinchillas with psychophysical evidence of tinnitus.
J. Neurosci. 22, 2383–2390. doi: 10.1523/JNEUROSCI.22-06-02383.2002

Burkitt, A. N. (2006). A review of the integrate-and-fire neuron model: I.
homogeneous synaptic input. Biol. Cybern. 95, 1–19. doi: 10.1007/s00422-006-
0068-6

Bönsel, F., Krauss, P., Metzner, C., and Yamakou, M. E. (2021). Control of noise-
induced coherent oscillations in three-neuron motifs. Cogn. Neurodyn. 636,
1–20.

Carney, L. H. (1993). A model for the responses of low-frequency auditory-nerve
fibers in cat. J. Acoust. Soc. Am. 93, 401–417. doi: 10.1121/1.405620

Carney, L. H. (2021). Speeding up machine hearing. Nat. Mach. Intell. 3, 190–191.
Caruana, R., Lawrence, S., and Giles, C. L. (2001). “Overfitting in neural nets:

backpropagation, conjugate gradient, and early stopping,” in Proceedings of
the Advances in Neural Information Processing Systems, (Cambridge, MA: MIT
Press), 402–408.

Chambers, J., Elgueda, D., Fritz, J. B., Shamma, S. A., Burkitt, A. N., and Grayden,
D. B. (2019). Computational neural modelling of auditory cortical receptive
fields. Front. Comput. Neurosci. 13:28. doi: 10.3389/fncom.2019.00028

Chollet, F. (2018). Deep Learning mit Python und Keras: Das Praxis-Handbuch vom
Entwickler der Keras-Bibliothek. Wachtendonk: MITP Verlags-GmbH & Co.
KG.

Ciorba, A., Benatti, A., Bianchini, C., Aimoni, C., Volpato, S., Bovo, R., et al. (2011).
High frequency hearing loss in the elderly: effect of age and noise exposure in
an Italian group. J. Laryngol. Otol. 125, 776–780. doi: 10.1017/S00222151110
01101

Collins, J. J., Imhoff, T. T., and Grigg, P. (1996). Noise-enhanced information
transmission in rat sa1 cutaneous mechanoreceptors via aperiodic stochastic
resonance. J. Neurophysiol. 76, 642–645. doi: 10.1152/jn.1996.76.1.642

Dabrowska, E., and Kubinski, W. (2004). Language acquisition in the light of
cognitive linguistics. Zmogus Kalbos Erdveje [Man in the Space of Language].
Moksliniu Straipsniu Rinkinys 3, 253–267.

Dallos, P. (1992). The active cochlea. J. Neurosci. 12, 4575–4585.
De Ridder, D., and Vanneste, S. (2021). The bayesian brain in imbalance: medial,

lateral and descending pathways in tinnitus and pain: a perspective. Prog. Brain
Res. 262, 309–334. doi: 10.1016/bs.pbr.2020.07.012

Frontiers in Neuroscience | www.frontiersin.org 15 June 2022 | Volume 16 | Article 908330

https://doi.org/10.1371/journal.pone.0044519
https://doi.org/10.1016/j.visres.2008.04.022
https://doi.org/10.1038/s41598-021-86236-9
https://doi.org/10.1038/s41598-021-86236-9
https://doi.org/10.3389/fneur.2014.00206
https://doi.org/10.1016/j.brainres.2012.03.044
https://doi.org/10.1523/JNEUROSCI.22-06-02383.2002
https://doi.org/10.1007/s00422-006-0068-6
https://doi.org/10.1007/s00422-006-0068-6
https://doi.org/10.1121/1.405620
https://doi.org/10.3389/fncom.2019.00028
https://doi.org/10.1017/S0022215111001101
https://doi.org/10.1017/S0022215111001101
https://doi.org/10.1152/jn.1996.76.1.642
https://doi.org/10.1016/bs.pbr.2020.07.012
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-908330 June 8, 2022 Time: 11:39 # 16

Schilling et al. Intrinsic Noise Improves Speech Recognition

De Ridder, D., Vanneste, S., Langguth, B., and Llinas, R. (2015). Thalamocortical
dysrhythmia: a theoretical update in tinnitus. Front. Neurol. 6:124. doi: 10.3389/
fneur.2015.00124

Dehmel, S., Pradhan, S., Koehler, S., Bledsoe, S., and Shore, S. (2012). Noise
overexposure alters long-term somatosensory-auditory processing in the dorsal
cochlear nucleus—possible basis for tinnitus-related hyperactivity? J. Neurosci.
32, 1660–1671. doi: 10.1523/JNEUROSCI.4608-11.2012

Douglass, J. K., Wilkens, L., Pantazelou, E., and Moss, F. (1993). Noise
enhancement of information transfer in crayfish mechanoreceptors by
stochastic resonance. Nature 365, 337–340. doi: 10.1038/365337a0

Faisal, A. A., Selen, L. P., and Wolpert, D. M. (2008). Noise in the nervous system.
Nat. Rev. Neurosci. 9, 292–303.

Fathoni, M. F., and Wuryandari, A. I. (2015). “Comparison between euler, heun,
runge-kutta and adams-bashforth-moulton integration methods in the particle
dynamic simulation,” in Proceedings of the 2015 4th International Conference on
Interactive Digital Media (ICIDM) (Johor Bahru: IEEE), 1–7.

Fox, S. I. (2006). Human Physiology, 9th Edn. New York, NY: McGraw-Hill press.
Gammaitoni, L., Hänggi, P., Jung, P., and Marchesoni, F. (1998). Stochastic

resonance. Rev. Mod. Phys. 70, 223–287.
Gao, Y., Manzoor, N., and Kaltenbach, J. (2016). Evidence of activity-dependent

plasticity in the dorsal cochlear nucleus, in vivo, induced by brief sound
exposure. Hear. Res. 341, 31–42. doi: 10.1016/j.heares.2016.07.011

Garibyan, A., Schilling, A., Boehm, C., Zankl, A., and Krauss, P. (2022). Neural
correlates of linguistic collocations during continuous speech perception.
bioRxiv [Preprint] doi: 10.1101/2022.03.25.485771

Gates, G. A., and Mills, J. H. (2005). Presbycusis. Lancet 366, 1111–1120.
Gault, R., Mcginnity, T. M., and Coleman, S. (2018). A computational model of

thalamocortical dysrhythmia in people with tinnitus. IEEE Trans. Neural Syst.
Rehabil. Eng. 26, 1845–1857. doi: 10.1109/TNSRE.2018.2863740

Gerken, G. M. (1996). Central tinnitus and lateral inhibition: an auditory brainstem
model. Hear. Res. 97, 75–83.

Gerum, R. (2020). Pylustrator: code generation for reproducible figures for
publication. J. Open Source Softw. 5:1989.

Gerum, R. C., Erpenbeck, A., Krauss, P., and Schilling, A. (2020). Sparsity through
evolutionary pruning prevents neuronal networks from overfitting. Neural
Netw. 128, 305–312. doi: 10.1016/j.neunet.2020.05.007

Gerum, R. C., and Schilling, A. (2021). Integration of leaky-integrate-and-
fire neurons in standard machine learning architectures to generate hybrid
networks: a surrogate gradient approach. Neural Comput. 33, 2827–2852. doi:
10.1162/neco_a_01424

Gervain, J. (2015). Plasticity in early language acquisition: the effects of prenatal
and early childhood experience. Curr. Opin. Neurobiol. 35, 13–20. doi: 10.1016/
j.conb.2015.05.004

Gluckman, B. J., Netoff, T. I., Neel, E. J., Ditto, W. L., Spano, M. L., and Schiff, S. J.
(1996). Stochastic resonance in a neuronal network from mammalian brain.
Phys. Rev. Lett. 77, 4098–4101. doi: 10.1103/PhysRevLett.77.4098

Gollnast, D., Tziridis, K., Krauss, P., Schilling, A., Hoppe, U., and Schulze, H.
(2017). Analysis of audiometric differences of patients with and without tinnitus
in a large clinical database. Front. Neurol. 8:31. doi: 10.3389/fneur.2017.00031

Gulcehre, C., Moczulski, M., Denil, M., and Bengio, Y. (2016). “Noisy activation
functions,” in Proceedings of the International Conference on Machine Learning,
(London: PMLR), 3059–3068.

Hackney, C. M., Osen, K. K., and Kolston, J. (1990). Anatomy of the cochlear
nuclear complex of guinea pig. Anat. Embryol. 182, 123–149. doi: 10.1007/
BF00174013

Hassabis, D., Kumaran, D., Summerfield, C., and Botvinick, M. (2017).
Neuroscience-inspired artificial intelligence. Neuron 95, 245–258.

Heller, A. J. (2003). Classification and epidemiology of tinnitus. Otolaryngol. Clin.
North Am. 36, 239–248. doi: 10.1016/s0030-6665(02)00160-3

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural
Comput. 9, 1735–1780.

Houser, D. S., Helweg, D. A., and Moore, P. W. (2001). A bandpass filter-bank
model of auditory sensitivity in the humpback whale. Aquat. Mamm. 27, 82–91.

Huang, J., Lu, T., Sheffield, B., and Zeng, F.-G. (2019). Electro-tactile stimulation
enhances cochlear- implant melody recognition: effects of rhythm and musical
training. Ear Hear. 41, 106–113. doi: 10.1097/AUD.0000000000000749

Huang, J., Sheffield, B., Lin, P., and Zeng, F.-G. (2017). Electro-tactile stimulation
enhances cochlear implant speech recognition in noise. Sci. Rep. 7:2196. doi:
10.1038/s41598-017-02429-1

Huang, Q., and Tang, J. (2010). Age-related hearing loss or presbycusis. Eur. Arch.
Otorhinolaryngol. 267, 1179–1191.

Hullfish, J., Sedley, W., and Vanneste, S. (2019). Prediction and perception: insights
for (and from) tinnitus. Neurosci. Biobehav. Rev. 102, 1–12. doi: 10.1016/j.
neubiorev.2019.04.008

Hunter, J. D. (2007). Matplotlib: a 2d graphics environment. Comput. Sci. Eng. 9,
90–95.

Jackson, Z., Souza, C., Flaks, J., Pan, Y., Nicolas, H., and Thite, A. (2018).
Jakobovski/free-spoken- digit-dataset: v1.0.8. doi: 10.5281/zenodo.1342401

James, R., Garside, J., Plana, L. A., Rowley, A., and Furber, S. B. (2018). Parallel
distribution of an inner hair cell and auditory nerve model for real-time
application. IEEE Trans. Biomed. Circuits Syst. 12, 1018–1026. doi: 10.1109/
TBCAS.2018.2847562

Jeschke, M., Happel, M. F., Tziridis, K., Krauss, P., Schilling, A., Schulze, H., et al.
(2021). Acute and long-term circuit-level effects in the auditory cortex after
sound trauma. Front. Neurosci. 14:598406. doi: 10.3389/fnins.2020.598406

Jones, E., Oliphant, T., and Peterson, P. (2001). Scipy: Open Source Scientific Tools
for Python. Available Online at: http://www.scipy.org (accessed May 27, 2022).

Kaltenbach, J. A., and Afman, C. E. (2000). Hyperactivity in the dorsal cochlear
nucleus after intense sound exposure and its resemblance to tone-evoked
activity: a physiological model for tinnitus. Hear. Res. 140, 165–172. doi: 10.
1016/s0378-5955(99)00197-5

Kaltenbach, J. A., Godfrey, D. A., Neumann, J. B., McCaslin, D. L., Afman, C. E.,
and Zhang, J. (1998). Changes in spontaneous neural activity in the dorsal
cochlear nucleus following exposure to intense sound: relation to threshold
shift. Hear. Res. 124, 78–84. doi: 10.1016/s0378-5955(98)00119-1

Kaltenbach, J. A., Rachel, J. D., Mathog, T. A., Zhang, J., Falzarano, P. R.,
and Lewandowski, M. (2002). Cisplatin-induced hyperactivity in the dorsal
cochlear nucleus and its relation to outer hair cell loss: relevance to tinnitus.
J. Neurophysiol. 88, 699–714. doi: 10.1152/jn.2002.88.2.699

Kaltenbach, J. A., Zacharek, M. A., Zhang, J., and Frederick, S. (2004). Activity in
the dorsal cochlear nucleus of hamsters previously tested for tinnitus following
intense tone exposure. Neurosci. Lett. 355, 121–125. doi: 10.1016/j.neulet.2003.
10.038

Kandel, E. R., Schwartz, J. H., Jessell, T. M., Jessell, M. B. T., Siegelbaum, S., and
Hudspeth, A. (2000). Principles of Neural Science, Volume 4. New York, NY:
McGraw-hill.

Karpukhin, V., Levy, O., Eisenstein, J., and Ghazvininejad, M. (2019). Training on
synthetic noise improves robustness to natural noise in machine translation.
arXiv [Preprint] doi: 10.48550/arXiv.1902.01509

Koehler, S. D., and Shore, S. E. (2013). Stimulus timing-dependent plasticity in
dorsal cochlear nucleus is altered in tinnitus. J. Neurosci. 33, 19647–19656.
doi: 10.1523/JNEUROSCI.2788-13.2013

Koops, E. A., and Eggermont, J. J. (2021). The thalamus and tinnitus: bridging
the gap between animal data and findings in humans. Hear. Res. 407:108280.
doi: 10.1016/j.heares.2021.108280

Kosko, B., and Mitaim, S. (2003). Stochastic resonance in noisy threshold neurons.
Neural Netw. 16, 755–761. doi: 10.1016/S0893-6080(03)00128-X

Krauss, P., and Maier, A. (2020). Will we ever have conscious machines? Front.
Comput. Neurosci. 14:556544. doi: 10.3389/fncom.2020.556544

Krauss, P., Metzner, C., Joshi, N., Schulze, H., Traxdorf, M., Maier, A., et al.
(2021). Analysis and visualization of sleep stages based on deep neural
networks. Neurobiol. Sleep Circadian Rhythms 10:100064. doi: 10.1016/j.nbscr.
2021.100064

Krauss, P., Metzner, C., Schilling, A., Schütz, C., Tziridis, K., Fabry, B., et al. (2017).
Adaptive stochastic resonance for unknown and variable input signals. Sci. Rep.
7:2450. doi: 10.1038/s41598-017-02644-w

Krauss, P., Prebeck, K., Schilling, A., and Metzner, C. (2019a). Recurrence
resonance” in three-neuron motifs. Front. Comput. Neurosci. 13:64. doi: 10.
3389/fncom.2019.00064

Krauss, P., Schilling, A., Tziridis, K., and Schulze, H. (2019b). Models of tinnitus
development: from cochlea to cortex. HNO 67, 172–177. doi: 10.1007/s00106-
019-0612-z

Frontiers in Neuroscience | www.frontiersin.org 16 June 2022 | Volume 16 | Article 908330

https://doi.org/10.3389/fneur.2015.00124
https://doi.org/10.3389/fneur.2015.00124
https://doi.org/10.1523/JNEUROSCI.4608-11.2012
https://doi.org/10.1038/365337a0
https://doi.org/10.1016/j.heares.2016.07.011
https://doi.org/10.1101/2022.03.25.485771
https://doi.org/10.1109/TNSRE.2018.2863740
https://doi.org/10.1016/j.neunet.2020.05.007
https://doi.org/10.1162/neco_a_01424
https://doi.org/10.1162/neco_a_01424
https://doi.org/10.1016/j.conb.2015.05.004
https://doi.org/10.1016/j.conb.2015.05.004
https://doi.org/10.1103/PhysRevLett.77.4098
https://doi.org/10.3389/fneur.2017.00031
https://doi.org/10.1007/BF00174013
https://doi.org/10.1007/BF00174013
https://doi.org/10.1016/s0030-6665(02)00160-3
https://doi.org/10.1097/AUD.0000000000000749
https://doi.org/10.1038/s41598-017-02429-1
https://doi.org/10.1038/s41598-017-02429-1
https://doi.org/10.1016/j.neubiorev.2019.04.008
https://doi.org/10.1016/j.neubiorev.2019.04.008
https://doi.org/10.5281/zenodo.1342401
https://doi.org/10.1109/TBCAS.2018.2847562
https://doi.org/10.1109/TBCAS.2018.2847562
https://doi.org/10.3389/fnins.2020.598406
http://www.scipy.org
https://doi.org/10.1016/s0378-5955(99)00197-5
https://doi.org/10.1016/s0378-5955(99)00197-5
https://doi.org/10.1016/s0378-5955(98)00119-1
https://doi.org/10.1152/jn.2002.88.2.699
https://doi.org/10.1016/j.neulet.2003.10.038
https://doi.org/10.1016/j.neulet.2003.10.038
https://doi.org/10.48550/arXiv.1902.01509
https://doi.org/10.1523/JNEUROSCI.2788-13.2013
https://doi.org/10.1016/j.heares.2021.108280
https://doi.org/10.1016/S0893-6080(03)00128-X
https://doi.org/10.3389/fncom.2020.556544
https://doi.org/10.1016/j.nbscr.2021.100064
https://doi.org/10.1016/j.nbscr.2021.100064
https://doi.org/10.1038/s41598-017-02644-w
https://doi.org/10.3389/fncom.2019.00064
https://doi.org/10.3389/fncom.2019.00064
https://doi.org/10.1007/s00106-019-0612-z
https://doi.org/10.1007/s00106-019-0612-z
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-908330 June 8, 2022 Time: 11:39 # 17

Schilling et al. Intrinsic Noise Improves Speech Recognition

Krauss, P., Schuster, M., Dietrich, V., Schilling, A., Schulze, H., and Metzner, C.
(2019c). Weight statistics controls dynamics in recurrent neural networks. PLoS
One 14:e0214541. doi: 10.1371/journal.pone.0214541

Krauss, P., Zankl, A., Schilling, A., Schulze, H., and Metzner, C. (2019d). Analysis of
structure and dynamics in three-neuron motifs. Front. Comput. Neurosci. 13:5.
doi: 10.3389/fncom.2019.00005

Krauss, P., and Schilling, A. (2020). Towards a cognitive computational
neuroscience of auditory phantom perceptions. arXiv [Preprint] doi: 10.48550/
arXiv.2010.01914

Krauss, P., and Tziridis, K. (2021). Simulated transient hearing loss improves
auditory sensitivity. Sci. Rep. 11:14791. doi: 10.1038/s41598-021-94429-5

Krauss, P., Tziridis, K., Metzner, C., Schilling, A., Hoppe, U., and Schulze, H.
(2016). Stochastic resonance controlled upregulation of internal noise after
hearing loss as a putative cause of tinnitus- related neuronal hyperactivity.
Front. Neurosci. 10:597. doi: 10.3389/fnins.2016.00597

Krauss, P., Tziridis, K., Schilling, A., and Schulze, H. (2018). Cross-modal stochastic
resonance as a universal principle to enhance sensory processing. Front.
Neurosci. 12:578. doi: 10.3389/fnins.2018.00578

Kriegeskorte, N., and Douglas, P. K. (2018). Cognitive computational
neuroscience. Nat. Neurosci. 21, 1148–1160.

König, O., Schaette, R., Kempter, R., and Gross, M. (2006). Course of hearing loss
and occurrence of tinnitus. Hear. Res. 221, 59–64. doi: 10.1016/j.heares.2006.0
7.007

Langner, G. (1988). “Physiological properties of units in the cochlear nucleus
are adequate for a model of periodicity analysis in the auditory midbrain,” in
Auditory Pathway, eds J. Syka and R. B. Masterton (Boston, MA: Springer),
207–212.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521, 436–444.
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proc. IEEE 86, 2278–2324.
Levin, J. E., and Miller, J. P. (1996). Broadband neural encoding in the cricket

cereal sensory system enhanced by stochastic resonance. Nature 380, 165–168.
doi: 10.1038/380165a0

Levine, R. A. (1999). Somatic (craniocervical) tinnitus and the dorsal cochlear
nucleus hypothesis. Am. J. Otolaryngol. 20, 351–362. doi: 10.1016/s0196-
0709(99)90074-1

Liberman, L. D., and Liberman, M. C. (2015). Dynamics of cochlear synaptopathy
after acoustic overexposure. J. Assoc. Res. Otolaryngol. 16, 205–219.

Liberman, M. C., Epstein, M. J., Cleveland, S. S., Wang, H., and Maison, S. F. (2016).
Toward a differential diagnosis of hidden hearing loss in humans. PLoS One
11:e0162726. doi: 10.1371/journal.pone.0162726

Licklider, J. C. R. (1951). A duplex theory of pitch perception. J. Acoust. Soc. Am.
23:147. doi: 10.1007/BF02156143
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